Supplementary Information

The transcriptome of *Cryptosporidium* oocysts and intracellular stages

Lucas V. S. Matos, John McEvoy, Saul Tzipori, Katia D. S. Bresciani, Giovanni Widmer

Supplemental material

Table S1. FPKM values for 35 samples and 3793 Cryptosporidium parvum genes.

 Table S2. Ortholog counts of 50 genes most highly expressed in oocysts/sporozoites.

Table S3. Ortholog counts of 50 genes most highly expressed in trophozoites/meronts(intracellular stages).

Fig. S1. Flowchart of experimental procedures.

Fig. S2. Micrograph of a sporozoite preparation.

Fig. S3. PCA of 18 RNA-Seq datasets from *Cryptosporidium parvum* oocysts and sporozoites. Crossed triangles represent transcriptomic data generated by Lippuner et al.

Fig. S4. Lack of correlation between the number of sequences mapping to the *C. parvum* genome and Shannon diversity for 35 samples.

Fig. S5. Percent of RNA-Seq sequence reads mapping to the *C. parvum* genome at three timepoints post-infection.

Fig. S6. Correlation between transcript abundance and life cycle stage.

Fig. S1. Experimental procedures.

Fig. S2. Phase contrast micrograph of a preparation of sporozoites used in the experiments. Commashaped structures are sporozoites, low-contrast spherical structures are empty oocysts and highcontrast spherical structures are unexcysted oocysts which co-purified the sporozoites. Oocysts are approximately 4.5 μ m in diameter.

Fig. S3. Principal Component Analysis of 18 RNA-Seq datasets from *Cryptosporidium parvum* oocysts and sporozoites. Crossed triangles represent RNA-Seq data generated by Lippuner et al. The percent of variance explained by each axis is indicated.

Fig. S4. Lack of correlation between the number of sequences mapping to the *C. parvum* genome and Shannon diversity for 35 samples. Fewer sequences from intracellular transcriptomes map to the genome of *C. parvum* because of the predominance of host transcripts in infected cells.

Fig. S5. Percent of RNA-Seq reads mapping to the *C. parvum* genome at three timepoints post-infection. Merogony is associated with an increase in the fraction of *C. parvum* transcripts in the host-parasite transcriptome.

Fig. S6. Correlation between transcript abundance and life cycle stage. FitE values plotted on the y axis represent the percent fit of FPKM for each gene explained by the extracellular stage, where 100% indicates a perfect correlation and 0% no correlation. The entire *C. parvum* genome (3857 genes) was ranked in order of decreasing FitE. The 21 glycolysis genes highlighted in blue in the left panel show a wide range of fit, from 87.9% for cgd7_480 down to 0.03% for cgd2_3270, indicating widely different expression patterns in this pathways. A control analysis with 7 genes encoding *Cryptosporidium* oocyst wall proteins (COWP), expected to be co-expressed during the life cycle, showed a much narrower FitE range, consistent with transcriptional co-regulation. The low COWP FitE values are expected based on the fact that oocyst wall synthesis does not occur in the life cycle stages examined in this study.