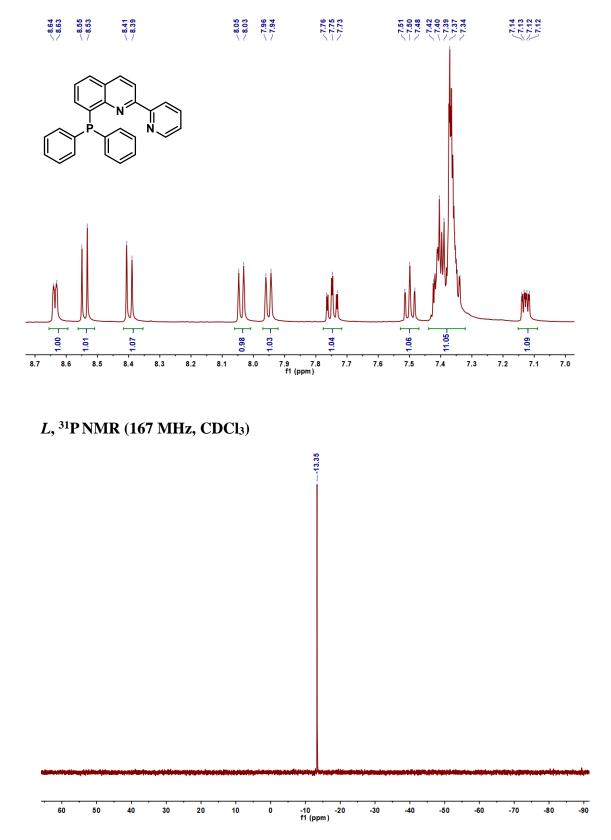
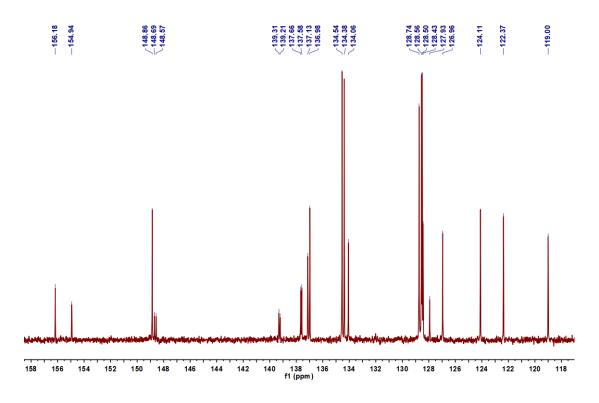
Synthesis of a redox-active NNP-type pincer ligand and its application to firstrow transition metal complexes for electrocatalytic CO₂ reduction

Kallol Talukdar, Asala Issa, and Jonah W. Jurss*

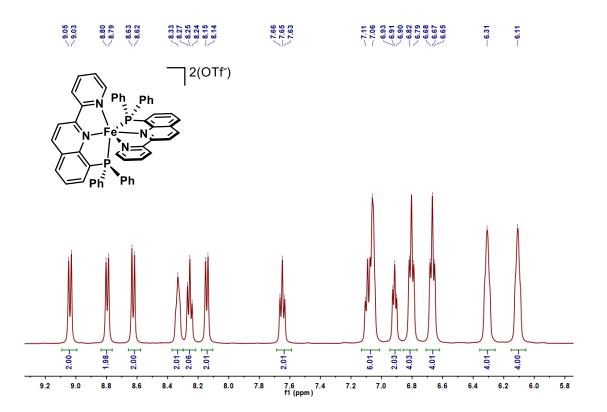
Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA.

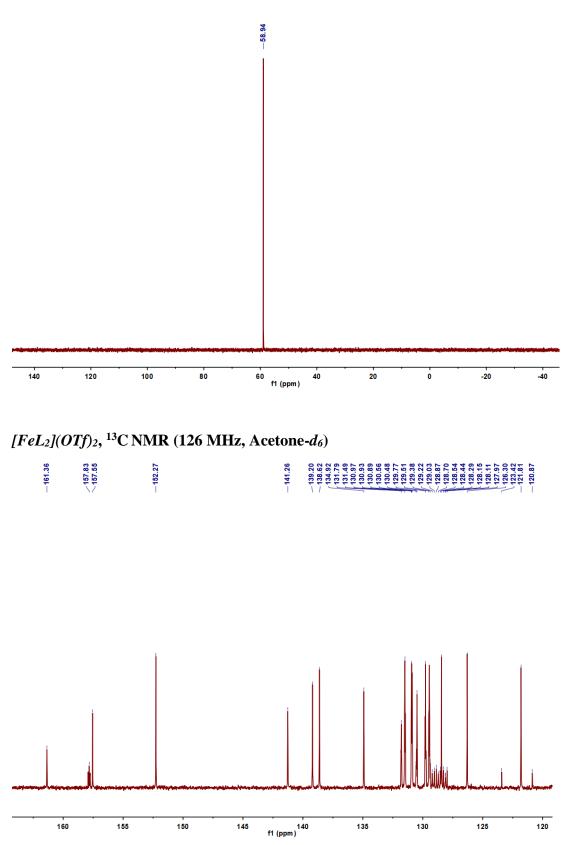

*jwjurss@olemiss.edu

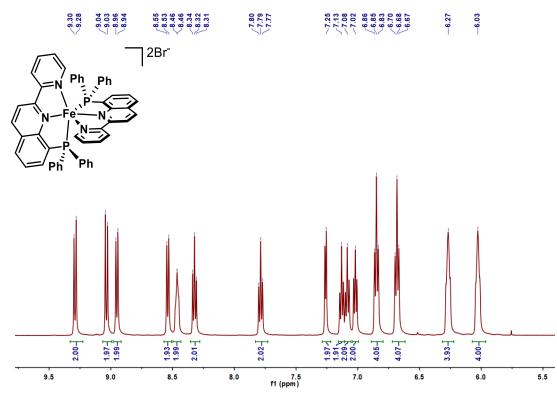
-Supporting Information-

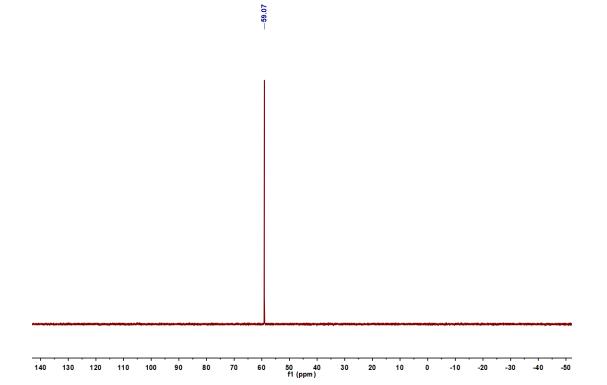

Table of Contents

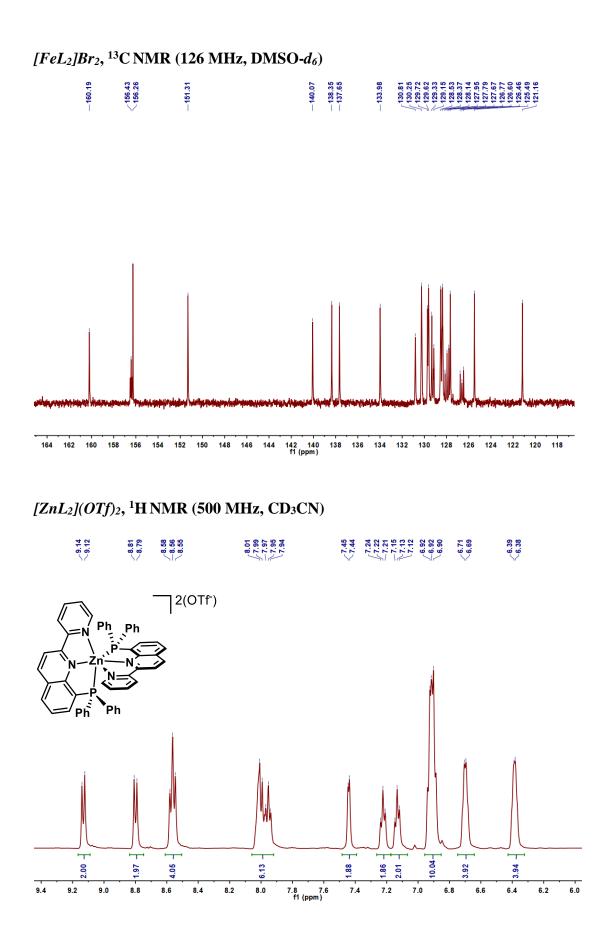
NMR spectra of the ligand, <i>L</i>
NMR spectra of [FeL ₂](OTf) ₂
NMR spectra of <i>[FeL₂]Br</i> ₂
NMR spectra of [<i>ZnL</i> ₂](<i>OTf</i>) ₂ 7
Crystal data and structure refinement for NiL2 ²⁺ 9
Redox potentials of the $M(NNP)_2^{2+}$ complexes in acetonitrile
CVs of $\mathbf{FeL}2^{2+}$, $\mathbf{CoL}2^{2+}$, $\mathbf{NiL}2^{2+}$, and $\mathbf{ZnL}2^{2+}$ in DMF10
CVs of Co(II) complex at different metal to ligand ratio
Repeated CVs of CoL_2^{2+} under N ₂ atmosphere
HR-MS of controlled potential electrolysis solution of CoL_2^{2+} under N ₂ 12
Scan rate dependence studies of $\text{FeL}_{2^{2+}}$, $\text{CoL}_{2^{2+}}$, and $\text{NiL}_{2^{2+}}$
Kinetics of CoL_2^{2+} (i_{cat}/i_p vs potential and TOF vs scan rate)
CVs of $FeL_{2^{2+}}$, $CoL_{2^{2+}}$, and $NiL_{2^{2+}}$ under dry and wet conditions
Representative Charge vs Time plots of CPEs
Representative CVs before and after CPE experiment of CoL2 ²⁺
CV, Charge vs Time plot, and NMR experiment of $\mathbf{ZnL}_{2^{2+}}$
Proposed mechanisms for CO_2 and H ⁺ reduction by CoL_2^{2+}


L, ¹H NMR (500 MHz, CD₃CN)

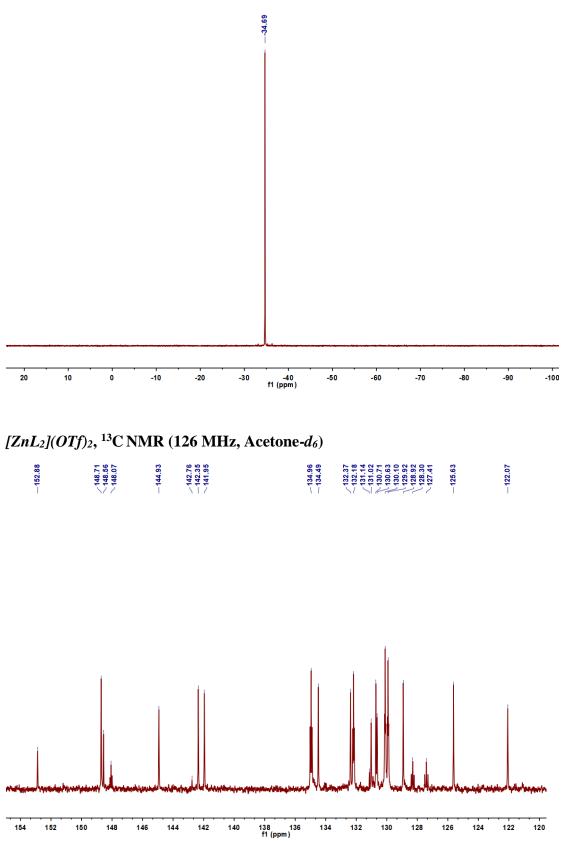

L, ¹³C NMR (126 MHz, CDCl₃)


[FeL2](OTf)2, ¹H NMR (500 MHz, CD₃CN)


[FeL2](OTf)2, ³¹P NMR (167 MHz, CDCl3)



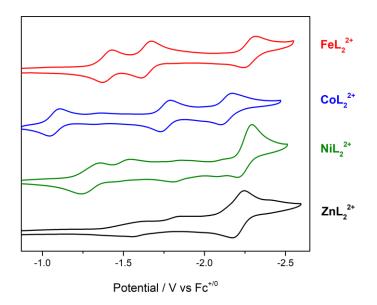
[FeL₂]Br₂, ¹H NMR (500 MHz, DMSO-d₆)



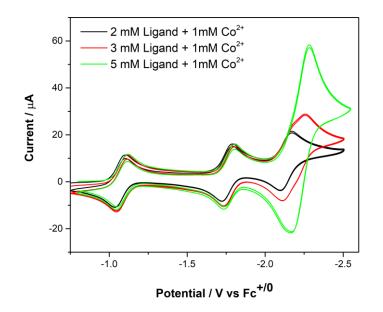
[FeL2]Br2, ³¹P NMR (167 MHz, DMSO-d₆)

[ZnL₂](OTf)₂, ³¹P NMR (167 MHz, CDCl₃)

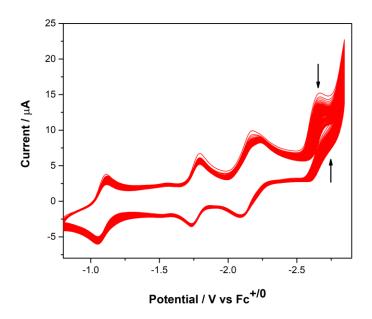
Table S1. Crystal data and structure refinement for NiL_2^{2+} (CCDC deposition #: 1909986).

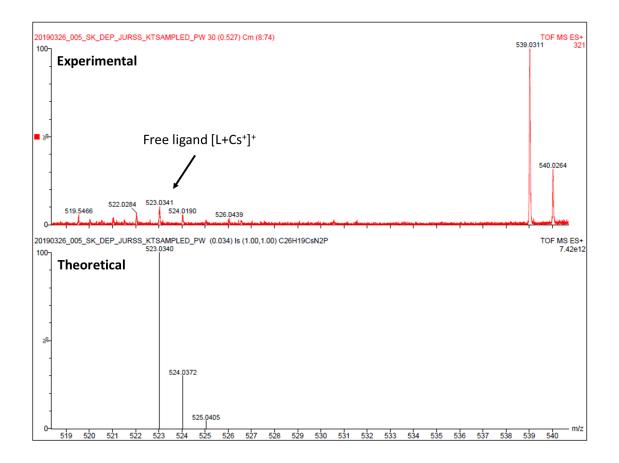

Empirical formula	C54 H46 Cl2 N4 Ni O10 P2		
Formula weight	1102.50		
Temperature	200(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2(1)/n		
Unit cell dimensions	a = 11.383(3) Å	$\alpha = 90^{\circ}$	
	b = 17.434(5) Å	$\beta = 96.227(5)^{\circ}$	
	c = 25.580(7) Å	$\gamma = 90^{\circ}$	
Volume	5047(2) Å ³		
Z	4		
Density (calculated)	1.451 Mg/m ³		
Absorption coefficient	0.618 mm ⁻¹		
F(000)	2280		
Crystal size	0.20 x 0.20 x 0.20 mm ³		
Theta range for data collection	1.42 to 25.33°.		
Index ranges	-12<=h<=13, -20<=k<=20, -30<=l<=30		
Reflections collected	34960		
Independent reflections	9131 [R(int) = 0.0356]		
Completeness to theta = 25.00°	99.7 %		
Absorption correction	None		
Max. and min. transmission	0.8863 and 0.8863		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	9131 / 1 / 662		
Goodness-of-fit on F^2	1.160		
Final R indices [I>2sigma(I)]	R1 = 0.0698, wR2 = 0.1723		
R indices (all data)	R1 = 0.0768, wR2 = 0.1765		
Largest diff. peak and hole	1.031 and -0.737 e.Å ⁻³		

Electrochemical Data


Table S2. Redox properties of $M(NNP)_2^{2+}$ complexes in acetonitrile / 0.1 M Bu₄NPF₆ solutions under N₂. Scan rate = 100 mV/s, glassy carbon disk working electrode. All potentials are referenced versus the ferrocenium/ferrocene (Fc^{+/0}) couple.

Complex	Redox Potentials, $E_{1/2}$ (V vs Fc ^{+/0})						
FeL ₂ ²⁺	0.80	-1.36	-1.63	-	-2.24	-	-
CoL2 ²⁺	-	-0.46	-1.06	-1.78	-2.12	-	-
NiL ₂ ²⁺	0.66	-1.25	-1.50	-1.83 ^b	-2.15^{b}	-2.25 ^c	-
$\operatorname{CuL}_2^{2+a}$	-0.22	-0.46	-0.76 ^b	-1.10 ^c	-1.87 ^c	-2.18	-2.32
\mathbf{ZnL}_{2}^{2+a}	-	-1.36	-1.54	-2.16	-2.35	-	-


a. Unstable under repeated cycles; *b*. Irreversible $(E_{p,a})$; *c*. Irreversible / quasireversible $(E_{p,c})$


Fig. S1. Cyclic voltammograms of FeL_2^{2+} , CoL_2^{2+} , NiL_2^{2+} , and ZnL_2^{2+} at 0.5 mM concentrations in DMF / 0.1 M Bu₄NPF₆ under N₂. Scan rate = 100 mV/s; glassy carbon disk working electrode, platinum wire counter electrode, and silver wire quasi-reference electrode.

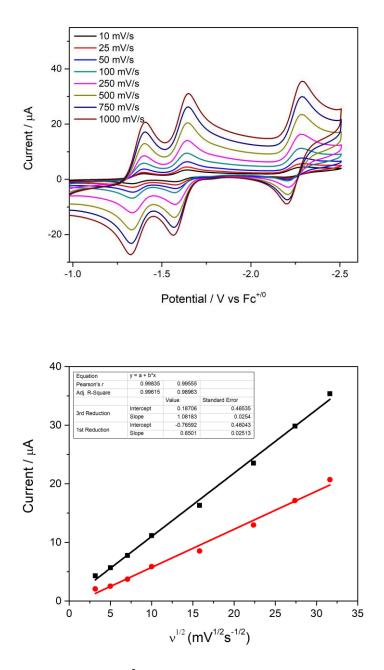

Fig. S2. Cyclic voltammograms of CoL_2^{2+} prepared *in situ* by adding different amounts of metal precursor and ligand in DMF / 0.1 M Bu₄NPF₆ under N₂. Scan rate = 100 mV/s; glassy carbon disk working electrode, platinum wire counter electrode, and silver wire quasi-reference electrode.

Fig. S3. Repeated cyclic voltammograms of CoL_2^{2+} under N₂ atmosphere in DMF / 0.1 M Bu₄NPF₆. Scan rate = 100 mV/s; glassy carbon disk working electrode, platinum wire counter electrode, and silver wire quasi-reference electrode.

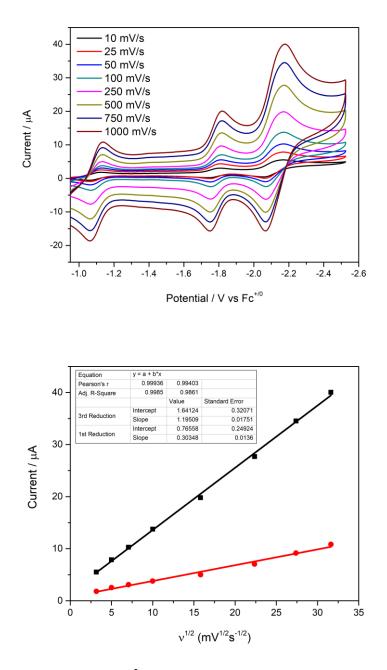
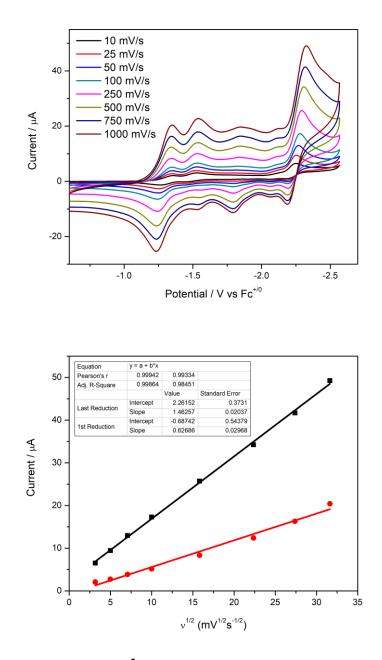
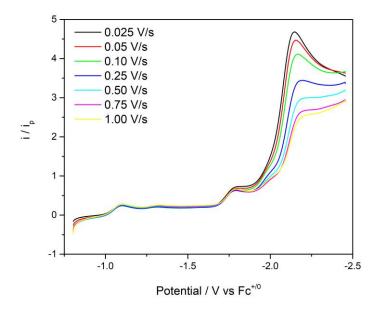


Fig. S4. High resolution mass spectrum of 2 mM CoL_2^{2+} in N₂-saturated DMF / 0.1 M Bu₄NPF₆ solution after controlled potential electrolysis at $E_{appl} = -2.65$ V. The sample was analyzed after 45 minutes of electrolysis. Glassy carbon rod working electrode, platinum wire counter electrode, and silver wire quasi-reference electrode.


Fig. S5. (Top) CVs of 0.5 mM FeL_2^{2+} under N₂ atmosphere at different scan rates in DMF / 0.1 M Bu₄NPF₆. Glassy carbon disk working electrode, platinum wire counter electrode, and silver wire quasi-reference electrode.

(Bottom) Plot of reductive peak currents of the first reduction (red circles) and third reduction (black squares) from cyclic voltammograms versus the square root of the scan rate.

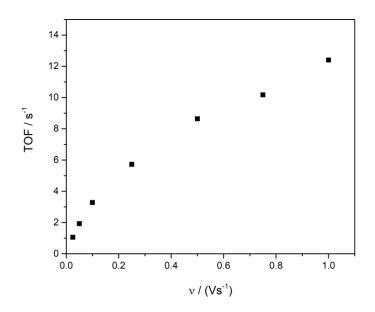
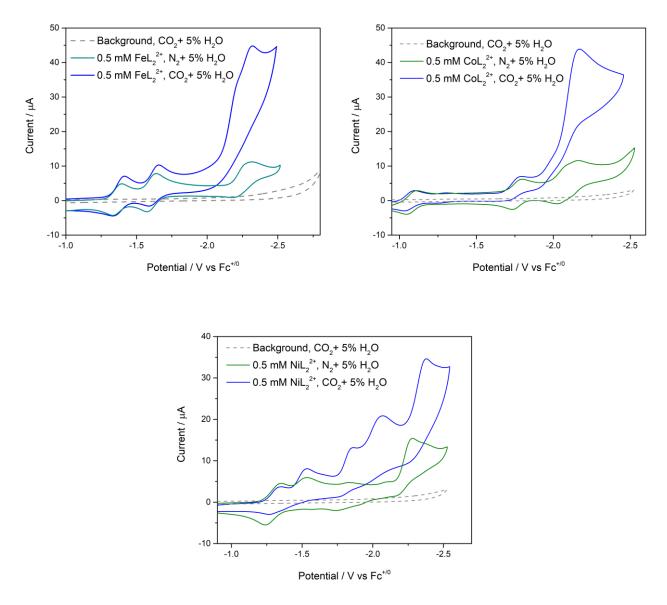
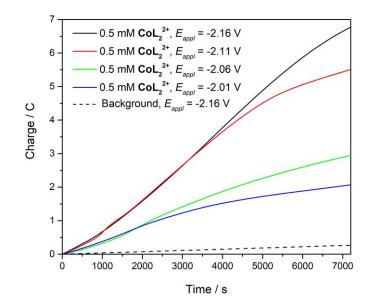

Fig. S6. (Top) CVs of 0.5 mM CoL_2^{2+} under N₂ atmosphere at different scan rates in DMF / 0.1 M Bu₄NPF₆. Glassy carbon disk working electrode, platinum wire counter electrode, and silver wire quasi-reference electrode.

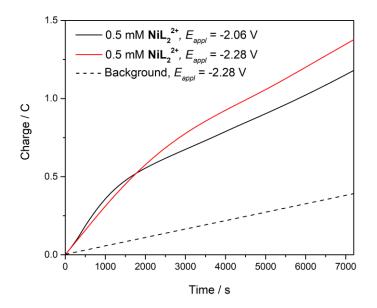
(Bottom) Plot of reductive peak currents of the first reduction (red circles) and third reduction (black squares) from cyclic voltammograms versus the square root of the scan rate.

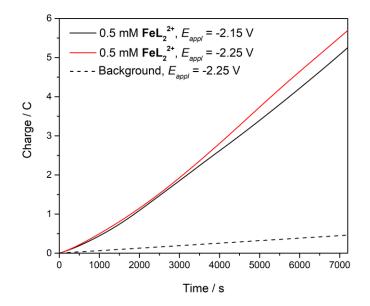
Fig. S7. (Top) CVs of 0.5 mM NiL_2^{2+} under N₂ atmosphere at different scan rates in DMF / 0.1 M Bu₄NPF₆. Glassy carbon disk working electrode, platinum wire counter electrode, and silver wire quasi-reference electrode.

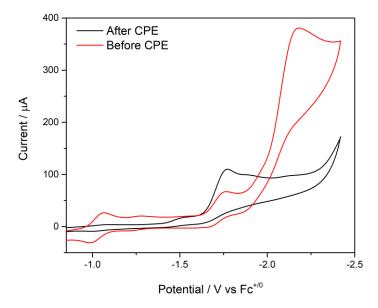
(Bottom) Plot of reductive peak currents of the first reduction (red circles) and last reduction (black squares) from cyclic voltammograms versus the square root of the scan rate.

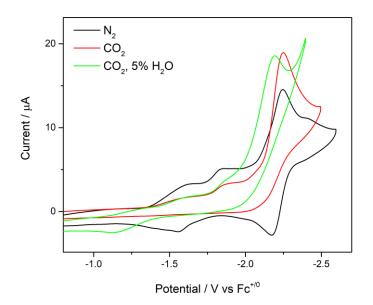
Fig. S8. Normalized linear sweep voltammograms (i_{cat}/i_p) of 0.5 mM CoL2²⁺ in CO₂-saturated DMF / 0.1 M Bu₄NPF₆ containing 5% H₂O at different scan rates. Glassy carbon disk working electrode, platinum wire counter, and silver wire quasi-reference electrode.

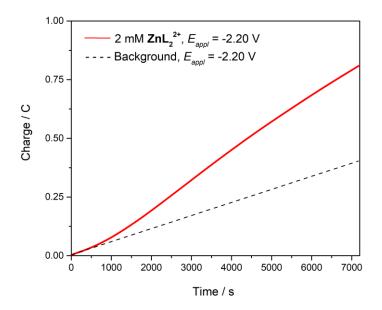




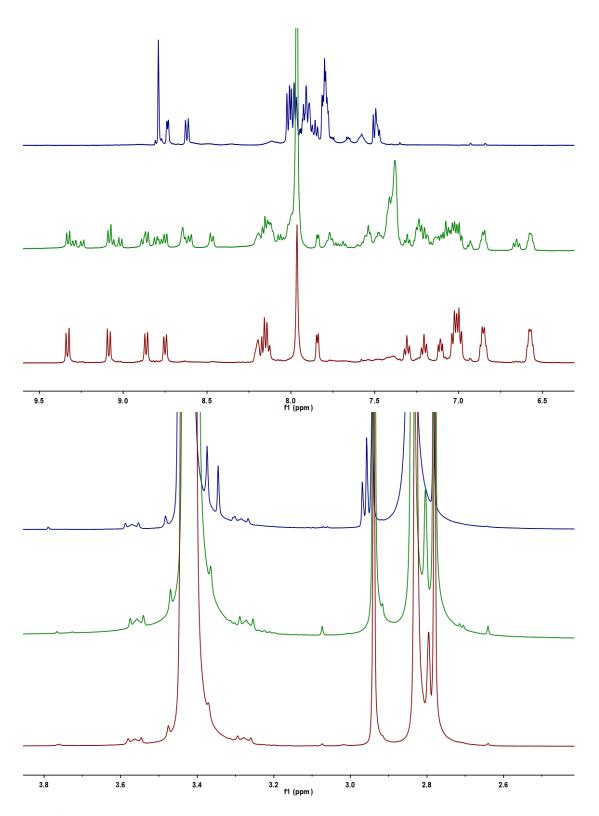

Fig. S9. Plot of turnover frequency (TOF) versus scan rate (calculated from Fig. S8).


Fig. S10. CVs of 0.5 mM **FeL**₂²⁺, **CoL**₂²⁺, and **NiL**₂²⁺ under N₂ (green line) and CO₂ atmosphere (blue line) in DMF / 0.1 M Bu₄NPF₆ containing 5% H₂O. The background is shown as a dashed line under the same conditions in the absence of metal complex. Scan rate = 100 mV/s; glassy carbon disk working electrode, platinum wire counter electrode, and silver wire quasi-reference electrode.


Fig. S11. Representative charge versus time plots from controlled potential electrolyses of CoL_2^{2+} at different applied potential. 0.5 mM CoL_2^{2+} in CO₂-saturated DMF/0.1 M Bu₄NPF₆ solutions containing 5% H₂O. Background CPE was done in the absence of CoL_2^{2+} at $E_{appl} = -2.16$ V. Glassy carbon rod working electrode, platinum wire counter electrode, and silver wire quasi-reference electrode.


Fig. S12. Representative charge versus time plots from controlled potential electrolyses of 0.5 mM NiL₂²⁺ at different applied potentials in CO₂-saturated DMF / 0.1 M Bu₄NPF₆ solutions containing 5% H₂O. Background CPE was done in the absence of NiL₂²⁺ at $E_{appl} = -2.28$ V. Glassy carbon rod working electrode, platinum wire counter electrode, and silver wire quasi-reference electrode.


Fig. S13. Representative charge versus time plots from controlled potential electrolyses of 0.5 mM **FeL**₂²⁺ at different applied potentials in CO₂-saturated DMF / 0.1 M Bu₄NPF₆ solutions containing 5% H₂O. Background CPE was done in the absence of **FeL**₂²⁺ at $E_{appl} = -2.25$ V. Glassy carbon rod working electrode, platinum wire counter electrode, and silver wire quasi-reference electrode.


Fig. S14. Representative CVs before and after a controlled potential electrolysis (CPE) experiment of 0.5 mM CoL_2^{2+} in CO₂-saturated DMF / 0.1 M Bu₄NPF₆ solution containing 5% H₂O. Glassy carbon rod working electrode, platinum wire counter electrode, and silver wire quasi-reference electrode.

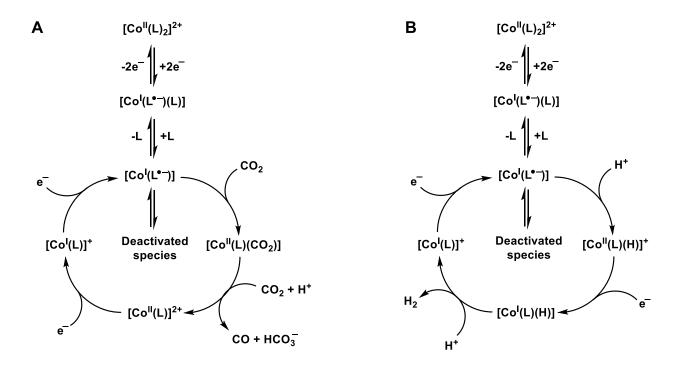

Fig. S15. Cyclic voltammograms of ZnL_2^{2+} at 0.5 mM concentrations in DMF / 0.1 M Bu₄NPF₆ under N₂ (black), CO₂ (red) and CO₂ with 5% H₂O (green). Scan rate = 100 mV/s; glassy carbon disk working electrode, platinum wire counter electrode, and silver wire quasi-reference electrode.

Fig. S16. Charge versus time plots from controlled potential electrolyses of 2 mM ZnL_2^{2+} at $E_{appl} = -2.2$ V in CO₂-saturated DMF / 0.1 M Bu₄NPF₆ solution containing 5% H₂O. Background CPE was done in the absence of ZnL_2^{2+} at $E_{appl} = -2.20$ V. Glassy carbon rod working electrode, platinum wire counter electrode, and silver wire quasi-reference electrode.

Fig. S17. ¹H NMR spectra (taken in acetone- d_6) of the electrolysis solution of **ZnL**₂²⁺ before electrolysis (maroon), after electrolysis (green), and after reacting with CH₃I (blue). The CPE was run for 3 hours and then excess CH₃I was added to the solution which was stirred for 1 hour. The solutions were dried under high vacuum before taking the NMRs.

Fig. S18. Proposed mechanisms for electrocatalytic CO_2 reduction (A) and H⁺ reduction (B) by the CoL_2^{2+} complex.