Notch and mTOR Signaling Pathways Promote Human Gastric Cancer Cell Proliferation

Elise S. Hibdon^a, Nataliya Razumilava^b, Theresa M. Keeley^a, Gabriela Wong^a, Sumeet Solanki^a, Yatrik M. Shah^{a,b} and Linda C. Samuelson^{a,b,*}

Departments of ^aMolecular and Integrative Physiology and ^bInternal Medicine, University of Michigan

SUPPLEMENTARY MATERIAL

Index:

Supplementary Table 1. Patient information for human stomach tissue analysis.

Supplementary Table 2. List of antibodies used for immunostaining.

Supplementary Table 3. List of antibodies used for Western blot analysis.

Supplementary Table 4. List of RT-qPCR primers.

Supplementary Figure 1. Association of Notch pathway activation with molecular subtypes of human gastric cancer.

Supplementary Figure 2. Histology of non-cancer control tissues.

Supplementary Figure 3. Gastric cancer growth response to Notch inhibition.

Patient	Age	Gender	Disease Pathology	Sample	Tissue Type	Tissue Use
1	42	Male	Moderately differentiated adenocarcinoma	H12	Gastric cancer	RNA, histology
				H13	Non-cancer	RNA, histology
2	68	Female	Adenocarcinoma, poorly cohesive type	H37	Non-cancer	Histology
				H38	Gastric cancer	Histology
3	54	Male	Invasive adenocarcinoma, tubular type	H39	Non-cancer	RNA, histology
				H40	Gastric cancer	RNA, histology
4	80+	Female	Invasive poorly differentiated adenocarcinoma	H41	Non-cancer	RNA, histology
				H42	Gastric cancer	RNA, histology
5	68	68 Male	Invasive moderately differentiated adenocarcinoma	H46	Non-cancer	RNA, histology, organoids
				H47	Gastric cancer	RNA, histology, organoids

Supplementary Table 1. Patient information for human stomach tissue samples used in current study.

Antibody	Host Species	Dilution	Source	
Cleaved Notch1 (NICD)	Rabbit polyclonal	1:50	Cell Signaling #4147S	
HES1	Rabbit polyclonal	1:100	Abcam #ab108937	
pS6	Rabbit monoclonal	1:300	Cell Signaling #2215S	

Supplementary Table 2.	. List of antibodies used for immunostaining.
------------------------	---

Antibody	Host Species	Dilution	Source
pS6	Rabbit monoclonal	1:1000	Cell Signaling #2215S
S6	Mouse monoclonal	1:1000	Cell Signaling #2317S
рАКТ	Rabbit polyclonal	1:1000	Cell Signaling #9271S
AKT	Mouse monoclonal	1:1000	Cell Signaling #2920S
P4EBP1	Rabbit monoclonal	1:1000	Cell Signaling #2855S
4EBP1	Rabbit monoclonal	1:1000	Cell Signaling #9644
Actin	Mouse	1:5000	Proteintech #60008-1

Supplementary Table 3. List of antibodies used for western blot analysis.

Supplementary Table 4. List of RT-qPCR primers.

Gene	Forward (5'-3')	Reverse (5'-3')	Amplicon Size (bp)	Reference
NOTCH1	GACAGCCTCAACGGGTACAA	CACACGTAGCCACTGGTCAT	137	1
NOTCH2	CAACCGCCAGTGTGTTCAAG	GAGCCATGCTTACGCTTTCG	240	1
NOTCH3	TCTTGCTGCTGGTCATTCTC	TGCCTCATCCTCTTCAGTTG	485	1
NOTCH4	TGAGGTGAATCCAGACAAC	ATACAGTCATCCAGGTTCTC	261	1
DLL1	GATTCTCCTGATGACCTCGCA	TCCGTAGTAGTGTTCGTCACA	168	
DLL3	CACTCCCGGATGCACTCAAC	GATTCCAATCTACGGACGAGC	78	
DLL4	CTGCGAGAAGAAGTGGACAGG	ACAGTCGCTGACGTGGAGTTCA	139	2
JAG1	GGGGCAACACCTTCAACCTC	CCAGGCGAAACTGAAAGGC	77	
JAG2	TGCAAAAACCTGATTGGCGG	CACACACTGGTACCCGTTCA	144	
GAPDH	GAGTCCACTGGCGTCTTCACC	GAGGCATTGCTGATGATCTTGAGG	164	1
ACTB	CATCGAGCACGGCATCGTCA	TAGCACAGCCTGGATAGCAAC	211	1

¹Gifford GB, Demitrack ES, Keeley TM, et al. Notch1 and Notch2 receptors regulate mouse and human gastric antral epithelial cell homeostasis. *Gut* 2017;66:1001-1011.

²Weidenbusch M, Rodler S, Song S et al. Gene expression profiling of the Notch-AhR-IL22 axis at homeostasis and in response to tissue injury. *Biosci Rep* 2017;37:1-14.

Supplementary Figure 1. Association of Notch pathway activation with molecular subtypes of human gastric cancer. Normalized RNAseq data from the 4 subtypes of gastric adenocarcinoma in The Cancer Genome Atlas (TCGA) database were examined for upregulated expression of Notch receptors (NOTCH1 and NOTCH3) and ligands (DLL1, DLL4, JAG1 and JAG2). This analysis included 35 normal stomach (white circles) compared to gastric adenocarcinomas (black circles), including: (A-C) 210 chromosomal instability (CIN), (D-F) 76 microsatellite instability (MSI), (G-I) 30 Epstein-Barr virus positive (EBV) and (J-L) 70 genomically stable (GS) subtypes. Data are presented as mean \pm SEM. *P<0.05, **P<0.01, ***P<0.001, ****P<0.001 vs. normal.

Supplementary Figure 2. Histology of non-cancer control tissues. Histological analysis of patientmatched non-cancer tissues to the 5 primary gastric adenocarcinoma samples used in the study assessed by H&E staining. Scale bars: 100 μ m.

Supplementary Figure 3. Gastric cancer growth response to Notch inhibition. Gastric cancer cell lines AGS (A,C,E) and MKN45 (B,D,F) were treated with 20, 30 or 40 μ M of the Notch inhibitor DAPT or vehicle (Veh) daily, as marked. Cell growth was measured using a colorimetric assay kit. Veh, open circles; DAPT, filled circles. N-4 technical replicates for each sample. Data are presented as mean \pm SEM. **P<0.001, ****P<0.001 vs. vehicle by 2-way ANOVA.