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I. Methods and sample fabrication 

Our graphene heterostructure device consists of monolayer graphene on 20 nm thick 

hexagonal boron nitride (hBN) on 285 nm SiO2/Si. Details on this device and its 

assembly have been reported previously (22) using a transfer method described in 

Ref. (32). To summarize briefly, single crystals of hBN were exfoliated onto SiO2/Si 

substrates where a suitably thick flake (20 nm) was selected for further processing. 

Separately, monolayer graphene flakes were exfoliated onto a stack consisting of 

polymethyl methacrylate (PMMA)/polyvinyl alcohol (PVA)/Si. PVA is water-soluble 

and acts as a sacrificial layer for delaminating the graphene and allowing it to be 

transferred onto the target hBN/SiO2/Si using a micromanipulator. After transferring, 

Cr(1 nm)/Pd(10 nm)/Au(40 nm) electrical contacts, including two sets of radial guides 

for STM navigation, were deposited onto the sample using standard e-beam lithography 

processing. The final device is annealed for several hours in 5% H2/95% Ar at 350 °C to 

remove any processing residues. The sample was annealed one final time in an ultra-high 

vacuum chamber at 350 °C for several hours prior to STM measurements. 

The graphene quantum dots (QD) were made by ionizing impurities in the hBN 

substrate using the STM tip, as described in Ref. (20), creating a p-type QD embedded in 

an n-type background (see Fig. 1A of the main text). To achieve the specific nano-

patterning in our device, the global backgate voltage is first set to Vg = 30 V and the STM 

tip is retracted by 2 nm. Next, the sample voltage bias (relative to the grounded STM tip) 

is ramped to 5 V and held for t = 60 s. The strong electric field just beneath the STM tip 

during the 5 V pulse ionizes impurities in the hBN which redistribute themselves to 

cancel out the field of the global backgate. Finally, the external gate is lowered to Vg = 5 
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V (corresponding to global n-doping for our device), whence the ionized impurities in the 

pulsed region act as a negative local embedded gate, resulting in a local p-doped region in 

the graphene. For all measurements in this report, the global backgate voltage was held 

fixed at Vg = 5 V (after the QD was created).  

We probe the quantum states in the graphene QD by measuring the tunneling 

differential conductance, 𝑔𝑔�𝑉𝑉b,𝑉𝑉g, 𝑟𝑟,𝐵𝐵� = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑉𝑉b, as a function of tunneling bias,  𝑉𝑉b, 

back gate potential, 𝑉𝑉g, spatial position, 𝑟𝑟, and magnetic field, 𝐵𝐵.  𝑑𝑑𝑑𝑑/𝑑𝑑𝑉𝑉b measurements 

were recorded via lock-in detection using an AC voltage of 2 mV at a frequency of 383 

Hz with the STM feedback disengaged. All measurements were performed at T = 4.3 K. 

Raw differential conductance curves measured on graphene quantum dots feature 

fine resonator state peaks superimposed on a large dispersive graphene background (20, 

22) (Fig. S1, black curve). This superposition makes it difficult to image all the salient 

features in the data on the same color scale, for example in 2D radial maps in the main 

text (Fig. 2). We thus follow refs. (33, 34) and subtract a smoothly-varying background 

(red curve) from each 𝑑𝑑𝑑𝑑/𝑑𝑑𝑉𝑉b curve and plot the residual (blue curve), as shown in Fig. 

S1. The smoothly-varying background for each 𝑑𝑑𝑑𝑑/𝑑𝑑𝑉𝑉b curve is calculated by Gaussian 

smoothing the original data with a FWHM = 28.3 meV. 
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Figure S1: Original and background-subtracted differential conductance. Original 
𝑑𝑑𝑑𝑑/𝑑𝑑𝑉𝑉b spectra (black line) display a slowly-varying and dispersive graphene background 
(BG) (red line). In order to enhance the salient features in the LDOS, such as the QD 
states indicated by the arrows, the BG is subtracted from the original 𝑑𝑑𝑑𝑑/𝑑𝑑𝑉𝑉b producing 
the blue curve, which preserves the positions of the QD resonance peaks (black arrows).  
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II. Enhanced Fermi velocity measurements 

Close inspection of the LLs in Fig. 2J shows that the LL energy spacings are larger 

than expected from theory (Eq. S1) and increase with increasing magnetic field. From 

Eq. S1 we attribute this increase to an effective enhancement of the Fermi velocity, vF, 

which we extract from our experimental spectroscopic differential conductance maps 

using two methods: (1) At low fields (B < 2.5 T), we employ Fourier transforms of the 

radial dI/dV maps, 𝑔𝑔�(𝑞𝑞𝑥𝑥,𝑞𝑞𝑦𝑦,𝑉𝑉𝑏𝑏 ,𝑉𝑉g,𝐵𝐵), to analyze quasiparticle interference (QPI) patterns 

in order to extract the graphene dispersion; and (2) at higher fields (B > 1.5 T), we use the 

peak positions of the characteristic graphene Landau level energies. The result of the 

analysis shows the Fermi velocity increasing with increased applied magnetic field.   

1. QPI analysis  

Surface defects and potential boundaries act as scattering sites for 2D electron gases 

(2DEGs) (35, 36), whereby the scattered electrons interfere with each other and appear as 

standing waves in the local density of states (LDOS) with a characteristic scattering 

wavevector, q = kf - ki, that connects two points on a constant energy surface.  The Dirac 

fermions within our graphene QD form quasi-bound states due to Klein scattering at the 

walls of the potential boundary and appear as circular standing waves (18–22). At low 

energies, the graphene bandstructure is composed of linear Dirac cones at the K and K’ 

points in the first Brillouin zone (Fig. S2A). The constant energy contours (CECs) are 

circles of radius k(E), where the momentum k depends on energy E according to the 

graphene dispersion 𝐸𝐸(𝑘𝑘) = ℏ𝑣𝑣𝐹𝐹𝑘𝑘 + 𝐸𝐸𝐷𝐷, where ED is the Dirac point (Fig. S2A). The 
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maximum scattering wavevector, q, of the circular QPI patterns is then given by the 

diameter of the CEC, q = 2k (Fig. S2A, right). Figure S2B displays a tomographic slice of 

the fast Fourier transform (FFT) of the experimental dI/dV map, 𝑔𝑔�, recorded at B = 0.5 T. 

A linear dispersion is clearly observed, with a slope (red line, linear fit) given by ℏ𝑣𝑣𝐹𝐹/2. 

Note that the Fermi energy (Vb = 0) cuts through the graphene valence band, confirming 

that the graphene QD is p-doped at its center. 

2. Landau level analysis 

In graphene (and other Dirac materials), the Landau level energies, 𝜀𝜀𝑁𝑁, are unevenly 

spaced and given by the expression 

 𝜀𝜀𝑁𝑁 = 𝑣𝑣𝐹𝐹√2𝑒𝑒ℏ𝐵𝐵�sgn(𝑁𝑁)�|𝑁𝑁|�,𝑁𝑁 ∈ ℤ 

   

(S1) 

where N is the (integer) Landau level index, vF is the graphene Fermi velocity, e is the 

elementary charge, ℏ is Planck’s constant divided by 2𝜋𝜋, B is the magnetic field, and 

sgn(N) is the sign of the Landau level index. Figure S1C displays a dI/dV spectra 

recorded at the center of the GQD (r = 0 nm) at B = 3 T and displays strong peaks that 

correspond to the large density of states at the highly-degenerate Landau levels. The 

Fermi velocity is then calculated from linear fits of the LL energy, 𝜀𝜀𝑁𝑁, versus the 

bracketed term involving the LL index in Eq. S1 (Fig. S2C, inset).   

3. Discussion 

Combining the measured Fermi velocities using the two methods, we find that there 

is an enhancement of vF with increasing magnetic field (Fig. S2D). (The two data points 

at B = 4 T correspond to LL spectra measured inside and outside the graphene QD.) A 
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linear fit of the combined data yields 𝑣𝑣𝐹𝐹 = 𝑣𝑣0 + 𝛼𝛼𝐵𝐵, where 𝑣𝑣0 = (1.017 ± 0.022) ×

106 m/s and 𝛼𝛼 = 0.124 ± 0.011 ms−1T−1 (37). We note that Fermi velocity 

renormalization in graphene has been observed previously at low carrier densities (𝑛𝑛 <

1012cm−2) near the Dirac point and was attributed to electronic interactions (14, 38). 

This is in agreement with our observations of decreasing density, for example, at B = 4 T 

(Fig. 4E main text), the density is 𝑛𝑛 = 𝐸𝐸𝐷𝐷
2

𝜋𝜋ℏ2𝑣𝑣𝐹𝐹
2 ≈ 0.23 × 1012 cm−2 (for 𝐸𝐸𝐷𝐷 ≈ 92 meV, 

𝑣𝑣𝐹𝐹 ≈ 1.64 × 106 m/s).  This is also consistent with increased electron-electron (ee) 

interactions with applied magnetic fields, as evidenced by the increase in the observed 

Fermi velocity, the kinks in the ‘wedding cake’ spatial structure of the LLs (Fig. 2 and 

Fig. 4E main text), and the need for self-consistent potentials to accurately simulate the 

data in applied magnetic fields. 
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Figure S2: Magnetic field-dependence of the Fermi velocity. (A) Schematic of the 
low-energy band structure of graphene, displaying Dirac cones at the K/K’ points. Right 
panel: Side-view of a single Dirac cone with the Fermi energy, EF, crossing the valence 
band, signifying p-doping. The maximum scattering wavevector (red arrow) has a 
magnitude q = 2k. (B) Fourier transform scanning tunneling spectroscopy (FT-STS) map 
recorded at B = 0.5 T. A linear fit of the conical quasi-particle interference pattern (red 
line) yields a slope directly proportional to the graphene Fermi velocity. (C) dI/dV spectra 
recorded at B = 3 T, displaying sharp resonances at the graphene LLs. A slowly-varying, 
dispersive graphene background has been removed to highlight the salient features. Inset: 
A plot of the LL energies versus the LL index N and linear fit (red line) proportional to 
vF. (D) A combined plot of the measured Fermi velocities as a function of magnetic field 
using the two methods displayed in (B) and (C). The Fermi velocity is seen to increase 
with increasing field, coinciding with the decrease in density and increasing importance 
of electron-electron (ee) interactions in the quantum dot system. Error bars represent one 
standard deviation uncertainties from linear least-squares fits to the QPI and LL plots as 
shown in (B) and (C), respectively. 
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III. Modelling the Wedding Cake potential 

Here we describe the approach used to model the experimental data. Our analysis 

proceeds in two steps. First, an effective electrostatic potential which accounts for 

screening and Coulomb repulsion is calculated. Second, this potential is used as an input 

for the one-particle Dirac equation to produce LDOS maps shown in Fig. 4.  

1. Determining the self-consistent potential and charge density 

We consider graphene’s Dirac electrons in the quantum Hall regime and in the 

presence of an external electrostatic potential 𝑉𝑉ext(𝑟𝑟). We assume that the 𝑉𝑉ext(𝑟𝑟) spatial 

variation is slow on the scale of the magnetic length 𝑙𝑙𝐵𝐵. The total energy of the system is 

a sum of contributions from the kinetic energy due to the cyclotron motion, the potential 

energy due to  𝑉𝑉ext(𝑟𝑟), and the Coulomb energy due to electron-electron (ee) repulsion. 

As discussed in the main text, the wedding cake-like structure results from the 

competition between the kinetic energy (i.e. filling the lowest possible LL) and the 

potential energy due to ee repulsion and the external potential. These competing 

behaviors are captured by the energy functional introduced and discussed in the main text 

(also, see (4)): 

𝐸𝐸[𝑛𝑛] = ∫ d2𝑟𝑟 �𝐾𝐾[𝑛𝑛(𝑟𝑟)] + 𝑉𝑉ext(𝑟𝑟)𝑛𝑛(𝑟𝑟) +
1
2
∫ d2𝑟𝑟′𝑉𝑉ee(|𝒓𝒓 − 𝒓𝒓′|)𝑛𝑛(𝑟𝑟)𝑛𝑛(𝑟𝑟′)� . (S2) 

Here 𝑛𝑛(𝑟𝑟) is the graphene charge density at position 𝒓𝒓, and 𝐾𝐾[𝑛𝑛(𝑟𝑟)] is the kinetic energy 

due to the Landau levels: 

𝛿𝛿𝐾𝐾
𝛿𝛿𝑛𝑛(𝑟𝑟)

= 𝜀𝜀𝑁𝑁 , �𝑁𝑁 −
1
2
� 𝑛𝑛𝐿𝐿𝐿𝐿 < 𝑛𝑛(𝑟𝑟) < �𝑁𝑁 +

1
2
� 𝑛𝑛𝐿𝐿𝐿𝐿 . (S3) 
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Here 𝑛𝑛𝐿𝐿𝐿𝐿is the density of a filled LL 𝑛𝑛𝐿𝐿𝐿𝐿 = 𝑔𝑔/2𝜋𝜋𝑙𝑙𝐵𝐵2 , where 𝑔𝑔 = 4 is the LL spin-valley 

degeneracy. The energy of the Nth LL is: 

𝜀𝜀𝑁𝑁 = ℏ𝜔𝜔𝑐𝑐sgn(𝑁𝑁)�|𝑁𝑁|,    𝜔𝜔𝑐𝑐 = 𝑣𝑣𝐹𝐹�
2𝑒𝑒𝐵𝐵
ℏ

 . (S4) 

The ee interaction is given by 𝑉𝑉ee(𝑟𝑟) = �̃�𝑒2

𝑟𝑟
. Here �̃�𝑒 is the screened electron charge, �̃�𝑒2 =

𝑒𝑒2

4𝜋𝜋𝜖𝜖0𝜅𝜅ave
 with 𝜅𝜅𝑎𝑎𝑣𝑣𝑒𝑒 an average dielectric constant and 𝜖𝜖0 the vacuum permittivity. 

The quantum dot is defined by the potential induced by localized charges in the 

ionized region of the substrate 𝑉𝑉ext(𝑟𝑟), offset by an electrostatic potential induced by 

uniform charge distribution −𝑛𝑛g at the back gate, both of which contribute to the external 

potential 𝑉𝑉ext(𝑟𝑟) in Eq. S2. Naturally, the total charge at the gates is much greater than 

the total charge in the ionized region, and the graphene-gate distance is much smaller 

than the size of the graphene flake. As a result, we assume that graphene screens the 

charge at the gate. We therefore set 𝑛𝑛(𝑟𝑟) = 𝑛𝑛g + 𝛿𝛿𝑛𝑛(𝑟𝑟), where 𝛿𝛿𝑛𝑛 is the charge induced 

by 𝑉𝑉ext(𝑟𝑟). The functional can then be expressed in terms of 𝛿𝛿𝑛𝑛(𝑟𝑟) as: 

𝐸𝐸[𝛿𝛿𝑛𝑛] = ∫ d2𝑟𝑟 �𝐾𝐾�𝑛𝑛g + 𝛿𝛿𝑛𝑛(𝑟𝑟)� + 𝑉𝑉�ext(𝑟𝑟)𝛿𝛿𝑛𝑛(𝑟𝑟) +
1
2
∫ d2𝑟𝑟′𝑉𝑉ee(|𝒓𝒓 − 𝒓𝒓′|)𝛿𝛿𝑛𝑛(𝑟𝑟)𝛿𝛿𝑛𝑛(𝑟𝑟′)� , (S5) 

where we subtracted a constant that does not depend on 𝛿𝛿𝑛𝑛.  

For the localized charges in the ionized region, we use the potential corresponding to 

a point-like charge potential:  
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𝑉𝑉�ext(𝑟𝑟) =
𝑉𝑉�ext,0

�1 + 𝑟𝑟2
𝑟𝑟ext2

 (S6)
 

with parameters 𝑉𝑉�ext,0 = 1450 meV and 𝑟𝑟ext = 85 nm to reproduce the observed charge 

density and its spatial extent.  

To minimize Eq. S5, we first note that the term 𝐾𝐾[𝛿𝛿𝑛𝑛(𝑟𝑟)] introduces non-linearity 

to the functional 𝐸𝐸[𝛿𝛿𝑛𝑛]. Nevertheless, 𝐸𝐸[𝛿𝛿𝑛𝑛] is a concave function of 𝛿𝛿𝑛𝑛(𝑟𝑟) and, as such, 

is amenable to gradient descent. We begin by using a trial solution 𝛿𝛿𝑛𝑛0(𝑟𝑟) = 0. For each 

𝑟𝑟, we compute the direction of ascending 𝐸𝐸: 

𝛿𝛿𝐸𝐸
𝛿𝛿𝑛𝑛(𝑟𝑟)

=
𝛿𝛿𝐾𝐾
𝛿𝛿𝑛𝑛

�𝑛𝑛g + 𝛿𝛿𝑛𝑛𝑘𝑘(𝑟𝑟)� + 𝑉𝑉�ext(𝑟𝑟) + ∫ 𝑑𝑑2𝑟𝑟′𝑉𝑉ee(|𝒓𝒓 − 𝒓𝒓′|)𝛿𝛿𝑛𝑛𝑘𝑘(𝑟𝑟′). (S7) 

The density profile is then updated using 

𝛿𝛿𝑛𝑛𝑘𝑘+1(𝑟𝑟) = 𝛿𝛿𝑛𝑛𝑘𝑘(𝑟𝑟) −
𝛿𝛿𝐸𝐸

𝛿𝛿𝑛𝑛(𝑟𝑟)
[𝛿𝛿𝑛𝑛𝑘𝑘]ℎ, (S8) 

 

where ℎ is a small step size in the direction of descending energy. The procedure is 

continued until the minimum of the functional in Eq.(S5) is reached: 

𝛿𝛿𝐾𝐾
𝛿𝛿𝑛𝑛

�𝑛𝑛g + 𝛿𝛿𝑛𝑛(𝑟𝑟)� + 𝑉𝑉�ext(𝑟𝑟) + ∫ 𝑑𝑑2𝑟𝑟′𝑉𝑉ee(|𝒓𝒓 − 𝒓𝒓′|)𝛿𝛿𝑛𝑛(𝑟𝑟′) = 0. (S9) 

From the solution of Eq. S7, we define the effective potential 𝑉𝑉𝐵𝐵(𝑟𝑟): 

𝑉𝑉𝐵𝐵(𝑟𝑟) = 𝑉𝑉ext(𝑟𝑟) + ∫ 𝑑𝑑2𝑟𝑟′𝑉𝑉ee(|𝒓𝒓 − 𝒓𝒓′|)𝛿𝛿𝑛𝑛(𝑟𝑟′), (S10) 

which is used as the input of the one-particle Dirac equation (see next section).  
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The charge density 𝑛𝑛(𝑟𝑟) is shown in Fig. 4B and the effective potential 𝑉𝑉𝐵𝐵(𝑟𝑟) for 

several magnetic field values is presented in Fig. 4A of the main text. In Fig. 4C we plot 

the effective potential 𝑉𝑉𝐵𝐵(𝑟𝑟) displaced by consecutive LLs energies, Eq.(S4), for 𝑁𝑁 =

−14,−13, … ,10. The compressible and incompressible regions corresponding to the 

plateaus and concave elements of the screened potential are described in the main text. 

2. Solving the Dirac equation 

We consider the Dirac equation for radially confined electrons in the presence of a 

uniform magnetic field:  

[𝑣𝑣 𝝈𝝈 ∙ 𝒒𝒒 + 𝑉𝑉𝐵𝐵(𝑟𝑟)] Ψ(𝒓𝒓) = 𝜀𝜀 Ψ(𝒓𝒓) (S11) 

Here 𝒒𝒒 is the kinematic momentum with components 𝑞𝑞𝑥𝑥,𝑦𝑦 = −𝑖𝑖ℏ𝜕𝜕𝑥𝑥,𝑦𝑦 − 𝑒𝑒𝐴𝐴𝑥𝑥,𝑦𝑦 and 𝑞𝑞𝑧𝑧 =

0. The approach presented here follows the same reasoning as given in Ref. (24), but we 

reproduce and expand the discussion here for completeness. 

Due to the rotational symmetry of the potential 𝑉𝑉B(𝑟𝑟) we use the axial gauge 𝐴𝐴𝑥𝑥 =

−𝐵𝐵𝐵𝐵/2,𝐴𝐴𝑦𝑦 = 𝐵𝐵𝐵𝐵/2. The eigenstates of Eq. S11 can be then expressed using the polar 

decomposition ansatz, 

𝛹𝛹𝑚𝑚(𝑟𝑟,𝜃𝜃) =
𝑒𝑒𝑖𝑖𝑚𝑚𝜃𝜃

√𝑟𝑟
�𝑢𝑢1

(𝑟𝑟)𝑒𝑒−
𝑖𝑖𝜃𝜃
2

𝑖𝑖𝑢𝑢2(𝑟𝑟)𝑒𝑒
𝑖𝑖𝜃𝜃
2
� (S12) 

with 𝑚𝑚 a half-integer number. This decomposition allows to rewrite Eq. (S11) as 

� 𝑉𝑉𝐵𝐵(𝑟𝑟) − 𝜖𝜖 𝜕𝜕𝑟𝑟 + 𝑚𝑚 𝑟𝑟⁄ − 𝐵𝐵𝑟𝑟 2⁄
−𝜕𝜕𝑟𝑟 + 𝑚𝑚 𝑟𝑟⁄ − 𝐵𝐵𝑟𝑟 2⁄ 𝑉𝑉𝐵𝐵(𝑟𝑟) − 𝜖𝜖 � �

𝑢𝑢1
𝑢𝑢2� = 0 (S13) 
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 Connection with an experimental measurement of conductance 𝑔𝑔 = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑉𝑉 is 

provided via a local density of states (LDOS) 𝑔𝑔 ∝ 𝐷𝐷(𝜖𝜖, 𝑟𝑟). The quantity 𝐷𝐷(𝜖𝜖, 𝑟𝑟) can be 

conveniently written as the sum of 𝑚𝑚-state contributions 𝐷𝐷(𝜖𝜖, 𝑟𝑟) = ∑ 𝐷𝐷𝑚𝑚(𝜖𝜖, 𝑟𝑟)𝑚𝑚 , with 

𝐷𝐷𝑚𝑚(𝜖𝜖, 𝑟𝑟) = �
|𝑢𝑢𝛼𝛼(𝑟𝑟)|2

𝑟𝑟
𝛿𝛿(𝜖𝜖 − 𝜖𝜖𝛼𝛼)

𝛼𝛼

. (S14) 

Here 𝛼𝛼 labels the radial eigenstates of Eq. S13 for fixed 𝑚𝑚.  

When discretizing a Dirac equation on a lattice one encounters the problem of 

Fermion doubling. One standard approach is to use a forward-backward difference 

scheme (39, 40) for approximating the partial derivatives in Eq. (S13) 

𝜕𝜕𝑟𝑟𝑢𝑢1 ≈
𝑢𝑢1(𝑟𝑟) − 𝑢𝑢1(𝑟𝑟 − ℎ)

ℎ
, 𝜕𝜕𝑟𝑟𝑢𝑢2 ≈

𝑢𝑢2(𝑟𝑟 + ℎ) − 𝑢𝑢2(𝑟𝑟)
ℎ

(S15) 

where ℎ = 𝐿𝐿
𝑁𝑁−1

 corresponds to the discretization step size for a system of size 𝐿𝐿 and 𝑁𝑁 

lattice sites. This requires us to specify boundary conditions on 𝑢𝑢1(0) and 𝑢𝑢2(𝐿𝐿), which, 

to preserve the hermiticity of the Hamiltonian, are taken as 𝑢𝑢1(0) = 0 and 𝑢𝑢2(𝐿𝐿) = 0. 

The latter boundary condition does not carry any consequence in context of the LDOS 

maps. On the other hand, the vanishing of 𝑢𝑢1(0) does matter as it forces the LDOS to 

vanish at the origin – an unphysical condition. As a remark, we note that this does not 

impact the local density of states a few step sizes away from the origin.   

In order to produce spectral maps free of this artifact, while preserving hermiticity 

of the discretized Hamiltonian and avoiding the fermion doubling problem, we employ a 

simple trick: we compute the local density of states using both forward-backward and 
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backward-forward difference schemes and combine the two results. In the backward-

forward scheme the partial derivatives from Eq. S13 take the form: 

𝜕𝜕𝑟𝑟𝑢𝑢1 ≈
𝑢𝑢1(𝑟𝑟 + ℎ) − 𝑢𝑢1(𝑟𝑟)

ℎ
, 𝜕𝜕𝑟𝑟𝑢𝑢2 ≈

𝑢𝑢2(𝑟𝑟) − 𝑢𝑢2(𝑟𝑟 − ℎ)
ℎ

(S16) 

The simulation was run on a lattice consisting of 𝑁𝑁 = 600 sites and a system size 𝐿𝐿 =

430 nm. Level broadening was chosen as 𝛾𝛾 = 2.4  meV. The range of angular momenta 

summed was estimated as to include all states that give rise to physical features in the 

LDOS of region of interest. As in earlier works, the contribution of spurious states 

present due to a finite system size were excluded. 

IV. Estimating the width of the incompressible region 

The width of the observed incompressible ring can be estimated from the functional 

in Eq. S5 following the approach of Ref. (5). In the absence of the kinetic energy term, 

𝐾𝐾[𝑛𝑛(𝑟𝑟)], the system is fully compressible and Eq. S5 predicts a smooth charge density 

profile that spans the entire QD (the dashed line in Fig. 4B). Once 𝐾𝐾[𝑛𝑛(𝑟𝑟)] is restored, 

Eq. S5 predicts flat regions as illustrated in Fig. 4B, with the charge density profile 

shown as the solid line. These regions correspond to incompressible rings in 𝑛𝑛(𝑟𝑟), 

formed between LLs crossings with the Fermi level. The incompressible region size can 

be estimated by considering a dipolar strip of width 𝑙𝑙 and optimizing 𝑙𝑙 to minimize 

Coulomb repulsion between graphene electrons. Qualitatively the resulting value of 𝑙𝑙 is 

such that the built-in electric field within the strip,  �̃�𝑒𝐸𝐸𝐸𝐸~�̃�𝑒2 𝑑𝑑𝑑𝑑
𝑑𝑑𝑟𝑟
𝑙𝑙2 matches the LL 

separation, ∆𝜀𝜀LL. Here we provide a derivation of the Eq. 4 used in the main text, which 

provides a quantitative estimate of the dipolar strip width.  
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Following Ref. (5), we write an electric potential of a two-dimensional electron 

system (2DES) containing the incompressible region in terms of suitably chosen 

harmonic functions: 

𝜙𝜙(𝑧𝑧) = 𝑑𝑑𝑚𝑚 �
𝑢𝑢1
𝜋𝜋

ln �(𝑧𝑧2 − 𝐸𝐸2)
1
2 + 𝑧𝑧� + 𝑢𝑢2(𝑧𝑧2 − 𝐸𝐸2)1/2𝑧𝑧 + 𝑢𝑢3𝑧𝑧� , 𝐵𝐵 ≥ 0 (S17) 

where z is a complex variable 𝑧𝑧 = 𝐵𝐵 + 𝑖𝑖𝐵𝐵 with x replacing r and y denoting the 

vertical coordinate perpendicular to the 2D layer. Here, following (5), we consider a 

quasi-1D linear geometry in which potential and density depend on one of the Cartesian 

coordinates in the plane but do not depend on the other coordinate. This corresponds to 

the limit of the incompressible ring in our QHE droplet being much narrower than the 

droplet radius. We assume that the incompressible region occurs at −𝐸𝐸 < 𝐵𝐵 < 𝐸𝐸. 

We note that, while the main ingredients in our problem are the same as in that 

analyzed in Ref. (5) , there is a slight difference in the geometry that leads to extra 

numerical factors in the final result. Namely, Ref. (5) considers a 2DES with proximal 

top gates parallel to it and a dielectric beneath it, and obtains an incompressible strip of 

width greater than the distance to the gates. Here, in contrast, the incompressible strip 

width is small compared to the distance to the back-gate, and therefore we have to 

analyze a 2DES with dielectric beneath it and vacuum above it. This problem is 

equivalent to a more symmetric problem with a dielectric on both sides of the 2DES of an 

effective dielectric constant 𝜅𝜅𝑎𝑎𝑣𝑣𝑒𝑒 = (𝜅𝜅 + 1)/2 , where 𝜅𝜅 is the permittivity beneath the 

2DES. In this case, the potential of a charge plane 𝜎𝜎(𝐵𝐵) representing 2DES has mirror 

symmetry with respect to the plane, given by Eq. S17 at 𝐵𝐵 > 0 and by an identical 

function beneath the plane such that the potential is overall 𝐵𝐵/−𝐵𝐵 symmetric. For clarity 
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in what follows we perform the calculation in terms of a screened electron charge �̃�𝑒2 =

𝑒𝑒2

4𝜋𝜋𝜖𝜖0𝜅𝜅𝑎𝑎𝑎𝑎𝑎𝑎
. 

The charge density 𝜎𝜎(𝐵𝐵) is related to 𝜙𝜙(𝐵𝐵,𝐵𝐵) by the Gauss’ law: 

𝜎𝜎(𝐵𝐵) = −
1

2𝜋𝜋
𝜕𝜕𝜙𝜙
𝜕𝜕𝐵𝐵
�
𝑦𝑦=0+

. (S18) 

In the incompressible region the contribution to charge density due to the first two 

terms of Eq. (S17) vanishes. This fixes the relation 𝑢𝑢3 in terms of the LL density as:  

𝑢𝑢3 = 2𝜋𝜋�̃�𝑒𝑛𝑛LL. (S19) 

Next, the condition that the tangential electric field must vanish at the boundary of 

the incompressible region yields a relation between coefficients 𝑢𝑢1 and 𝑢𝑢2: 

𝑢𝑢1 = −𝜋𝜋𝑢𝑢2𝐸𝐸2. (S20) 

Combining Eq. S20 with Eq. S18 gives the charge density: 

𝜎𝜎(𝐵𝐵) = �̃�𝑒𝑛𝑛LL +
𝑢𝑢2
𝜋𝜋
�

�𝐵𝐵2 − 𝐸𝐸2 for  𝐵𝐵 > 𝐸𝐸
                0             for − 𝐸𝐸 < 𝐵𝐵 < 𝐸𝐸

−�𝐵𝐵2 − 𝐸𝐸2 for − 𝐸𝐸 < 𝐵𝐵
 . (S21) 

Finally, since the dependence at 𝐵𝐵 ≫ 𝐸𝐸 is linear with 𝐵𝐵, we can express 𝑢𝑢2 in terms 

of the charge density gradient 𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

   in the compressible region outside the incompressible 

strip: 

𝑑𝑑𝜎𝜎
𝑑𝑑𝐵𝐵
�
𝑥𝑥≫𝑎𝑎

=
𝑢𝑢2
𝜋𝜋

. (S22) 
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This expression allows us to relate 𝑢𝑢2 to the  𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

 value, which was calculated 

numerically for a compressible droplet (see dashed line in Fig. 4B): 

�̃�𝑒
𝑑𝑑𝑛𝑛
𝑑𝑑𝐵𝐵
�
𝑥𝑥=0

=
𝑢𝑢2
𝜋𝜋

. (S23) 

Using the fact that the drop of the electrostatic potential across the dipolar 

incompressible strip is ∆𝜀𝜀𝐿𝐿𝐿𝐿/�̃�𝑒, we get: 

�̃�𝑒𝑢𝑢1 = −∆𝜀𝜀𝐿𝐿𝐿𝐿, (S24) 

where ∆𝜀𝜀𝐿𝐿𝐿𝐿 = ℏ𝑣𝑣𝐹𝐹√2/𝑙𝑙𝐵𝐵 is the average LL energy spacing.  

Combining Eqs. S21, S23 and S24, we obtain the width of the incompressible region 

𝑙𝑙 = �
4𝛥𝛥𝜖𝜖𝐿𝐿𝐿𝐿

𝜋𝜋2�̃�𝑒2 𝑑𝑑𝑛𝑛𝑑𝑑𝐵𝐵�𝑥𝑥=0

�

1
2

≈ 34 𝑛𝑛𝑚𝑚, (S25) 

as quoted in Eq. 4 in the main text and �̃�𝑒2 = 𝑒𝑒2

4𝜋𝜋𝜖𝜖0𝜅𝜅𝑎𝑎𝑎𝑎𝑎𝑎
. Here we used the average dielectric 

constant of the substrate and vacuum 𝜅𝜅ave = (𝜅𝜅SiO + 1)/2, the Landau level spacing 

∆𝜀𝜀LL = ℏ𝑣𝑣F√2/𝑙𝑙𝐵𝐵 for the observed levels N=0 and -1, and the density gradient 𝑑𝑑𝑑𝑑
𝑑𝑑𝑟𝑟
≈

3.9 × 1022m-3 for the compressible droplet in the middle of the would-be incompressible 

region (dashed line in Fig. 4B). We note that Eq. 20 in Ref. (5) has a similar form, except 

for a numerical prefactor 2 instead of the prefactor 4. The two expressions are in 

agreement in the limit of the substrate’s dielectric constant being much greater than that 

of vacuum as assumed in Ref. (5). In the case that the substrate’s dielectric constant is 

comparable to that of the vacuum, then Eq. S25 is more accurate.  
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The estimate in Eq. S25 is slightly greater than the width inferred from our 

measurement results shown in Fig.4E of the main text. The small discrepancy can be 

attributed to the result of Ref. (5), derived for LL spacing ∆𝜀𝜀LL much smaller than the 

external potential, being used in the regime when ∆𝜀𝜀LL is not small on the 𝑉𝑉𝐵𝐵(𝑟𝑟) scale. In 

this case, in contrast to Ref. (5), the incompressible strip width 𝑙𝑙 is not small compared to 

the QHE droplet radius. These estimates may also be affected by renormalization of 𝜅𝜅ave 

due to interband polarization, which will be discussed elsewhere. 

 

 

 

Movie S1. Experimental differential conductance, 𝒈𝒈�𝑽𝑽𝐛𝐛,𝑽𝑽𝐠𝐠, 𝒓𝒓,𝑩𝑩�, maps of the local 

density of states of the graphene QD in the x-y plane as a function of sample bias, Vb, 

indicated in the top center of the movie. The movie has four quadrants showing four 

different magnetic fields, 0, 1, 2, and 3 T.  Various QD states are seen coming in at 

different bias, corresponding to the states observed in Fig. 2 of the main text. A smooth 

background was subtracted from each dI/dV spectra to remove the graphene dispersion in 

order to visualize all features on a single color scale. 

 
 


