SupPLEMENT FiLe 1: COMPUTER CODE USED IN EMAIL ANALYSIS

(A) Code for Parsing Microsoft Outlook “.pst” files
This was accomplished using modified open-source Python code published as “mbox2csv” on GitHub (https://github.com/
kiwiandroiddev/mbox2csv/blob/master/scripts/mbox2csv.py).

BEGIN MBOX2CSV CODE
#//usr/bin/env python

#Converts an email archive from mbox to csv format with columns outlined in Methods, in single quotes in “writerow”
below

#Column names may vary locally and can be determined by inspecting the mbox file output by readpst

#Dates are in ISO 8601 format (e.g. 2015-08-07T18:30:27Z7)

fH#

Usage:

#for MBOX files converted from readpst this code is invoked as:

#mbox2csv MBOX FILE [CSV FILE]

import sys, mailbox, csv

import dateutil.parser as parser

def print_progress (pct_progress):
sys.stdout.write(\r[{0}] {1}%’ format(‘# *(pct_progress/10), pct_progress))
sys.stdout.flush()

Recurses down a message payload tree until a string is found
def get_final _payload (msg):
if isinstance (msg, basestring):
return msg
if isinstance (msg.get_payload(), basestring):
return msg.get_payload()
return get_final _payload (msg.get_payload()[0])
mbox_file = sys.argv[l]
output_file = sys.argv[2] if len (sys.argv) >2 else ‘output.csv’

print ‘Reading mbox file.’
messages = mailbox.mbox (mbox_file)

writer = csv.writer (open (output_file, “wb”))

writer.writerow([subject’, ‘from’, ‘reply-to’, ‘X-Forefront-Antispam-Report’, ‘list-owner’, ‘dkim-signature’, ‘received’,
‘date’, ‘return rept’, ‘disposition rept’, ‘message’])

n = len (messages)

print ‘Writing messages.’

for (i, msg) in enumerate (messages):
body = get_final _payload (msg)

convert any date format to 1SO!

date = parser.parse (msg/[‘date’])
iso_date = date.isoformat()
writer.writerow([msg/ ‘subject’], msg[‘from’], msg[‘reply-to’], msg[x-forefront-antispam-report’], msg[‘list-owner’],
msg/ ‘dkim-signature’], msg[‘received’], msg[‘return-receipt-to’], msg[‘disposition-notification-to’], iso_date, body])
update progress bar on every 10" message for speed
ifi % 10==0:
pct_complete = int (round (i/float (n) *100.0))
print_progress (pct_complete)
##HHEND MBOX2CSV CODE
(B) Visual Basic code embedded in Microsoft Excel sheets:
###HBEGIN REGEXEXTRACT VISUAL BASIC CODE
Function RegexExtract (ByVal text As String,
ByVal extract what 4s String,
Optional separator As String = *,) As String

Dim allMatches As Object

Dim RE As Object

Set RE = CreateObject(“vbscript.regexp”)
Dim i As Long, j As Long

Dim result As String

RE Pattern = extract_what

RE.Global = True

Set allMatches = RE.Execute (text)

For i =0 To allMatches.Count - 1
Forj =0 To allMatches.Item (i).submatches.Count - 1
result = result and (separator and allMatches.Item (i).submatches.Item (j))
Next

Next

‘If Len (result) <>0 Then
result = 1

‘End If

If Len (result) <>0 Then
result = Right$(result, Len (result) - Len (separator))
End If

RegexExtract = result

End Function

#H##HEND REGEXEXTRACT CODE

Additional code was needed to automatically indicate whether case-insensitive keywords such as “Conference” or “conference”
were present in emails to streamline, in an unbiased manner, the analysis of a large number of emails. The above code was
modified and renamed “RegexY N (for yes/no) to search for a regular expression and return a numeric “1”” or “0” according
to whether that expression was found in the message body.

To illustrate the example above, searching for “conference” where the first letter is case invariant and the message body is in
cell K3 of an Excel sheet called “Data” would be done as follows:

=RegexYN (Data!K3,”(*)(C | c¢) onference(*)”)
##H#H#BEGIN REGEXYN VISUAL BASIC CODE
Function RegexYN (ByVal text As String,

ByVal extract_what As String, _

Optional separator As String = *, “) As String
Dim allMatches As Object
Dim RE As Object
Set RE = CreateObject(“vbscript.regexp”)
Dim i As Long, j As Long

Dim result As String

RE. Pattern = extract_what
RE.Global = True
Set allMatches = RE.Execute (text)

Fori =0 To allMatches.Count - 1
Forj =0 To allMatches.Item (i).submatches.Count - 1
result = result and (separator and allMatches.Item (i).submatches.Item (j))
Next
Next

If Len (result) <>0 Then
result = 1

End If

If Len (result) <>0 Then
result = Right$(result, Len (result) - Len (separator))
‘End If

RegexYN = result

End Function
####END REGEXYN CODE

