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eFigure 1. Deep Neural Network Architecture  
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eMethods.  
 
Deep Learning Model/Deep Neural Network  

The DLM consisted of a convolutional deep neural network (DNN) with 11 layers, with the first 10 layers 
being convolutional and the last fully-connected (eFigure 1).  A RELU activation function was used.  Skip 
connections, dropout, batch normalization and max pooling were all utilized to improve generalization and 
convergence properties. All ECGs signals were resampled to 300 Hz and processed through an existing digital filter 
system designed to remove noise and artifact.  The DNN was designed as a binary classifier that receives a 10-
second ECG signal from any number of simultaneously-acquired ECG leads and produces as output a number from 
0 to 1, representing the probability that hyperkalemia was detected from the ECG. An algorithm was implemented 
that trains an ensemble of 7 networks independently on the same data and then generates the final output by 
averaging results of each network on the same input. (1)  The ensemble neural network was implemented in Python 
and TensorFlow using standard tools (2) and trained on the development dataset.   
 
Hyperkalemia Labeling in Development Dataset 

There were several challenges posed by the use of a blood test to train a deep learning model to classify 
hyperkalemia at the time of an ECG recording. First, given the mean absolute time to potassium from ECG 
recording was 2.2 hours (SD 2.5), the patient’s potassium concentration could have changed between the time of the 
ECG and the time blood was drawn; repeat potassium blood draws over 30-minute periods can yield mean 
percentage differences of 5% (SD 5%) (3), and potassium concentration may change over time due to diet, fluid 
status, medications and other treatments.  Second, serum potassium results may also be affected by handling or 
processing errors of the test itself (4). With the low prevalence of hyperkalemia in the development dataset 
population (2% all ECGs paired with serum potassium  5.5	mmol/L), lab error may account for some of the 
elevated potassium values in the dataset.  

In order to reduce error associated with serum potassium labels, for the 371,681 (23.6%) ECGs linked with 
more than one serum potassium, a Gaussian process model was used to estimate potassium at the time of ECG 
recording.  

All ECGs in the development set were labeled as “hyperkalemia” or “not hyperkalemia” according to the 
serum potassium or, if applicable, the Gaussian process model.  We defined hyperkalemia as a serum potassium 
value 5.5 mmol/L, as this is a commonly used cut-off to prompt treatment for hyperkalemia (5-7). Several studies 
have shown a rapid increase in the risk of death as serum potassium levels exceed 5.5 mmol/L (8).   
 
Validation Dataset Creation 

To validate the DLM, we identified ECG-potassium pairs in CKD patients with from Mayo Clinic’s 
Rochester, Minnesota; Jacksonville, Florida; and Scottdale, Arizona clinics. The validation datasets were created as 
followed. First, for the Florida and Arizona datasets, any 12-lead ECG recorded from January 1, 2013 through 
March 31, 2018 was obtained. The Minnesota dataset was comprised of the previously partitioned original dataset 
(30%). Next, all ECGs within 4 hours before a serum potassium draw were identified. The 4-hour time frame was 
selected based on prior work estimating potassium from the ECG (9).  

We included patients with stage 3 or greater CKD, defined as an estimated glomerular filtration rate 
(eGFR) < 60 ml/min/1.73 m2. We calculated eGFR by taking the average of serum creatinine values in the 12 hours 
prior to the ECG and up to the time of the serum potassium draw of interest, then imputing that value, along with 
race, age, and gender, into the CKD-EPI equation. We did not have race available for the Minnesota dataset, so that 
adjustment factor was not included in the eGFR calculation.  

ECGs with left bundle branch block (LBBB) were excluded because of the concern that the peaking of T 
waves and the widening of the QRS complex that occurs with hyperkalemia could be masked with a baseline LBBB. 

If multiple ECGs were recorded within 4 hours of a potassium draw, the ECG closest in time to potassium 
was selected. Patients in the Florida or Arizona datasets who were also identified in the Minnesota dataset, were 
excluded. 

If there was more than one ECG-potassium pair per patient, only the most chronologically recent pair was 
selected (for Arizona and Florida datasets); a random ECG-potassium pair was selected for Minnesota dataset.   

The algorithm was trained to classify serum potassium of  5.5 mmol/L or < 5.5 mmol/L. To avoid 
potentially irrelevant misclassification rates around this threshold, an analysis of patients with either  5.3 mmol/L 
or 	5.7 mmol/L was the focus of the analysis. The exclusion of potassium levels near the threshold is similar to a 
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phase II biomarker design (10). The േ 0.2 mmol/L potassium lab draw error rate was estimated based upon our prior 
work (3).  
 
Validation Dataset Sample Size Estimation  

The Florida and Arizona validation datasets’ sample size was based on desired precision of the width of the 
exact binomial confidence interval for sensitivity and specificity to be 10 percentage points. For the area under the 
curve (AUC), we set the precision to be 6 percentage points. Assuming 90% sensitivity, 85% specificity and an .90 
AUC (at 3% prevalence of hyperkalemia), a target sample size of 6,133 cases was determined based on the maximal 
sample size needs of the AUC. The calculation was considered stratified by site. A total of 12,732 records were 
identified for retrieval. The final number of records reviewed was slightly lower on account of removal of cases 
where they were previously seen in Rochester, Minnesota (n=413).  
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eFigure 2. Performance for Hyperkalemia from Lead I and II of Electrocardiogram, 
Deep Learning Modela Versus Patient Demographicsb  
 

 
 
ROC curves were generated from the combined Arizona and Florida validation datasets.  
 

a. Algorithm refers to deep learning model to predict hyperkalemia.  
b. Patient demographic variables to predict hyperkalemia include age, race, gender, body mass index, and estimated 

glomerular filtration rate. 
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eTable 1. Association of Deep Learning Modela and Patient Demographics with 
Hyperkalemiab  

 
 

Independent 
Variables 

(continuous or 
categorical) 

Logistic 
Regression 
Coefficient, 
Univariate 
Analysis P value 

Logistic 
Regression 
Coefficient, 

Multivariable 
Analysis P value 

DLM output 
(continuous 
variable)  

5.31 < 0.0001 4.78 <0.0001 

Age (continuous)   0.0137 <0.0001 

White/Not White 
(categorical) 

  0.1659 0.15 

Male/Not Male 
(categorical) 

  0.2552 0.003 

BMI (continuous)   -0.0037 0.34 

eGFR 
(continuous 
variable) 

  -0.0285 <0.0001 

Abbreviations: DLM, deep learning model; BMI, body mass index; eGFR, estimated glomerular filtration rate  

 
a. Model using ECG leads I and II, at 90% sensitivity operating point.    
b. Hyperkalemia defined as serum potassium of  5.5 mmol/L. 
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eTable 2. Sensitivity Analysis: Validation Dataset Performance for Hyperkalemia 
from the ECG, Excluding Patients with End-Stage Renal Disease  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: AUC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive predictive 
value.  

End-stage renal disease defined as estimated GFR < 15 ml/min/1.73 m2. 

 
a. 2-lead ECG using leads I and II.  
b. 4-lead ECG using leads I, II, V3, and V5. 
c. Operating point at sensitivity of 90%, from the ROC from training on the development dataset.  

 

 

 

 

 

 

 

 

 2-lead ECGa 4-lead ECGb 

 
Sensitivity= 
Specificity High Sensitivityc Sensitivity= 

Specificity 
High  

Sensitivity 
Validation 
Dataset 

Value (95% CI) Value (95% CI) Value (95% CI) Value (95% CI) 

Minnesota 
(n=48,119)   

  
  

   AUC 0.863 (0.849-0.876) 0.883 (0.869-0.895) 

   Sensitivity, % 75.8 (72.7-78.6) 87.2 (84.8-89.4) 76.6 (73.6-79.4) 86.2 (83.6-88.4) 

   Specificity, % 82.0 (81.7-82.4) 63.8 (63.4-64.3) 85.0 (84.7-85.3) 70.8 (70.4-71.2) 

   NPV, % 99.5 (99.4-99.5) 99.6 (99.6-99.7) 99.5 (99.4-99.6) 99.7 (99.6-99.7) 

   PPV, %  6.9 (6.4-7.5) 4.1 (3.8-4.4) 8.3 (7.7-8.9) 5.0 (4.6-5.3) 

Site 1 (n=5,283)     

   AUC 0.864 (0.837-0.890) 0.890 (0.865-0.915) 

   Sensitivity, % 79.5 (73.2-84.9) 91.5 (86.7-95.0) 82.0 (76.0-87.1) 91.0 (86.1-94.6) 

   Specificity, % 76.6 (75.4-77.7) 56.0 (54.6-57.3) 79.1 (77.9-80.2) 62.4 (61.1-63.8) 

   NPV, % 99.0 (98.6-99.3) 99.4 (99.1-99.7) 99.1 (98.8-99.4) 99.4 (99.1-99.7) 

   PPV, %  11.8 (10.1-13.6) 7.6 (6.5-8.7) 13.4 (11.5-15.4) 8.7 (7.5-10.0) 

Site 2 (n=5,215)     

   AUC 0.850 (0.822-0.879) 0.884 (0.859-0.908) 

   Sensitivity, % 76.1 (69.2-82.1) 87.8 (82.1-92.2) 82.8 (76.5-88.0) 92.2 (87.3-95.7) 

   Specificity, % 76.4 (75.2-77.6) 55.8 (54.5-57.2) 78.4 (77.2-79.5) 61.4 (60.0-62.8) 

   NPV, % 98.9 (98.5-99.2) 99.2 (98.8-99.5) 99.2 (98.9-99.5) 99.5 (99.2-99.8) 

   PPV, %  10.3 (8.7-12.1) 6.6 (5.7-7.7) 12.0 (10.3-14.0) 7.9 (6.8-9.1) 
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eTable 3. Sensitivity Analysis: Validation Dataset Performance for Hyperkalemia 
from the ECG, no ECG-Potassium Pairs Excluded 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: AUC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive predictive 
value.  

Given inherent error in potassium values and concern for misclassification, original analysis excluded ECG-potassium data if serum 
potassium was > 5.3 mmol/L or < 5.7 mmol/L.  

a. 2-lead ECG using leads I and II.  

b. 4-lead ECG using leads I, II, V3, and V5. 

c. Operating point at sensitivity of 90%, from the ROC from training on the development dataset.  

 
 
 
 
 
 
 
 
 
 
 

 2-lead ECGa 4-lead ECGb 

 
Sensitivity= 
Specificity 

High 
Sensitivityc 

Sensitivity= 
Specificity 

High  
Sensitivity 

Validation 
Dataset 

Value (95% CI) Value (95% CI) Value (95% CI) Value (95% CI) 

Minnesota 
(n=51,247)   

    

   AUC 0.837 (0.828-0.846) 0.858 (0.848-0.867) 

   Sensitivity, % 70.7 (68.7-72.6) 85.0 (83.4-86.5) 72.8 (70.9-74.7) 83.6 (82.0-85.2) 

   Specificity, % 80.9 (80.5-81.2) 62.7 (62.3-63.2) 83.7 (83.4-84.0) 69.5 (69.1-69.9) 

   NPV, % 98.5 (98.3-98.6) 99.0 (98.9-99.1) 98.6 (98.5-98.7) 99.0 (98.9-99.1) 

   PPV, %  13.8 (13.2-14.5) 9.0 (8.6-9.4) 16.3 (15.5-17.0) 10.6 (10.2-11.1) 

Florida (n=6,242)     

   AUC 0.840 (0.820-0.860) 0.860 (0.840-0.880) 

   Sensitivity, % 77.5 (73.2-81.4) 90.3 (87.1-92.9) 80.1 (76.0-83.8) 88.9 (85.5-91.7) 

   Specificity, % 74.5 (73.4-75.7) 54.1 (52.8-55.4) 76.3 (75.2-77.4) 59.8 (58.5-61.1) 

   NPV, % 97.9 (97.4-98.3) 98.7 (98.3-99.1) 98.1 (97.7-98.5) 98.7 (98.2-99.0) 

   PPV, %  18.1 (16.3-19.9) 12.5 (11.3-13.7) 19.7 (17.8-21.6) 13.8 (12.5-15.2) 

Arizona (n=6,077)     

   AUC 0.816 (0.794-0.839) 0.840 (0.819-0.861) 

   Sensitivity, % 73.2 (68.5-77.5) 86.0 (82.1-89.3) 77.3 (72.8-81.4) 87.2 (83.5-90.4) 

   Specificity, % 74.6 (73.5-75.8) 54.4 (53.1-55.7) 76.3 (75.4-77.6) 59.7 (58.4-60.9) 

   NPV, % 97.6 (97.1-98.0) 98.3 (97.7-98.7) 98.0 (97.5-98.4) 98.5 (98.1-98.9) 

   PPV, %  16.6 (14.9-18.4) 11.5 (10.4-12.7) 18.4 (16.6-20.3) 13.0 (11.7-14.3) 
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eFigure 3. Deep Neural Network Feature Visualization  
 
To try to understand how the deep neural network (DNN) builds up its understanding of images for hyperkalemia 
over many layers, we performed feature visualization on the average ECG beat.(11, 12)  Since the DNN is 
differentiable end-to-end, we can ask “what changes in the input X would cause the probability p to increase”?  By 
repeatedly modifying the input X to increase the probability p, we can gradually modify an input ECG in a way that 
causes the network to output progressively higher values of p.  This enables us to visualize the changes in ECG 
morphology which result in a hyperkalemia prediction. 
 
Here is average ECG beat with low probability (p) of hyperkalemia:  
 

 
 
There are multiple morphologies the neural network detects that indicate high probability of hyperkalemia:  
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In the first two examples, we see expected changes in QRS width, and T wave amplitude and morphology. 
However, the third average ECG beat does not appear to have the morphology changes humans expect to see. 
 
This last example underscores the value of deep learning and the limits of human visualization in the detection of 
hyperkalemia from the ECG: there are ECG features that the network identifies as important, that we cannot easily 
comprehend.  
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