

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Statistical tools used for analyses of frequent users of emergency department: A scoping review

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-027750
Article Type:	Research
Date Submitted by the Author:	06-Nov-2018
Complete List of Authors:	Chiu, Yohann; Université de Sherbrooke, Department of family medicine and emergency medicine Racine-Hemmings, François; Universite de Sherbrooke, Department of family medicine and emergency medicine Vanasse, Alain; University of Sherbrooke, Department of family medicine and emergency medicine Chouinard, Maud-Christine; Universite du Quebec a Chicoutimi, Département des sciences de la santé Bisson, Mathieu; Universite de Sherbrooke, Department of family medicine and emergency medicine Hudon, Catherine; Université de Sherbrooke, Department of family medicine and emergency medicine
Keywords:	STATISTICS & RESEARCH METHODS, ACCIDENT & EMERGENCY MEDICINE, FREQUENT USERS

1 2 3 4 1 5 6 2 7 8 3	Statistical tools used for analyses of frequent users of emergency department: A scoping review
9 10 11 4	Yohann M. Chiu ^{1*} , François Racine-Hemmings ¹ , Alain Vanasse ¹ ,
12 13 5 14	Maud-Christine Chouinard ² , Mathieu Bisson ¹ , Catherine Hudon ¹
15 16 17 6	¹ Département de médecine de famille et de médecine d'urgence, Université
18 19 7 20	de Sherbrooke, Sherbrooke, Québec, Canada
21 22 23 8	² Département des sciences de la santé, Université du Québec à Chicoutimi,
24 25 9 26	Chicoutimi, Québec, Canada
27 28 29 10	* Correspondence: Yohann.Chiu@USherbrooke.ca
30 31 32 11 33 34 35 36 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 56	
57 58 59 60	1 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

12 Abstract

Objective: Frequent users represent a small proportion of emergency department users, but they account for a disproportionately large number of visits. Their ED use is often considered suboptimal, as it would be more optimal to identify those patients earlier in their health problem trajectory, in order to treat them more efficiently. It is therefore essential to describe their characteristics and to predict their emergency department use. In order to do so, adequate statistical tools are needed. The objective of this study was to determine the statistical tools used in identifying variables associated with frequent use or predicting the risk of becoming a frequent user.

Methods: We performed a scoping review following an established 5-stage methodological framework. We searched PubMed, Scopus, and CINAHL databases in September 2017 using search strategies defined with the help of an information specialist. Out of 3 228 potential abstracts, we selected 85 articles based on defined criteria and presented in a content analysis.

Results: We identified four classes of statistical tools. Regression models were found to be the most common practice, followed by hypothesis testing. The logistic regression was found to be the most used statistical tool, followed by chi-square test and t-test of associations between variables. Other tools were marginally used.

Conclusions: This scoping review lists common statistical tools used for analyzing 31 frequent users in emergency departments. It highlights the fact that some are well 32 established while others are much less so. More research is needed to apply appropriate 33 techniques to health data or to diversify statistical point of views.

2		
3 4 5	34	Article summary
6 7 8	35	Strengths and limitations of this study
9 10	36	• First overview of statistical tools used in frequent users analysis
11 12 13	37	• Follows a well-defined methodological framework in an extensive body of
14 15	38	literature
16 17	39	• Quality assessment is not performed in a scoping review
18 19 20	40	• Studies in other languages than English or French might have been missed
21 22 23 24 25 26 27 28	41	• Studies in other languages than English or French might have been missed
29 30 31 32 33 34 35 36		
37 38 39 40 41		
42 43 44 45 46		
47 48 49 50		
51 52 53 54 55 56		
57 58 59		3
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1. Background

Emergency department (ED) "frequent users" are a sub-group of ED users that make repeated, multiple visits during a given amount of time. Though there is no consensual definition for frequent users, thresholds in the literature range from two to more than ten ED visits per year [1, 2], while the most common one is more than four ED visits per year [1, 2]. Frequent users represent a small proportion of ED users but account for a large number of visits [3-5]. They often display complex characteristics such as low socioeconomic status combined with physical and mental health issues [6]. As such, their ED use is considered suboptimal [7], as the best strategy would be to identify those patients at an earlier stage in their health problem trajectory, in order to treat them more efficiently [8]. Furthermore, frequent users' visits may lead to overcrowding in EDs and decreased quality of care [2]. Identifying factors that best describe those users and predict their ED use is therefore an essential task to improve ED care as well as frequent users' health problems. Adequate statistical tools are needed to that end. Although they are numerous, no literature review has been published yet about statistical tools used for analyzing ED frequent users. Therefore, the aim of our study was to draw up a list of statistical tools used in identifying variables associated with frequent use or predicting the risk of becoming a frequent user.

2. Methods

In order to list the statistical tools used in describing variables associated with and prediction of frequent ED use, we conducted a scoping review. We followed the 5-stage methodology of Arksey and O'Malley [9] adapted by Levac *et al.* [10]. The methodological

BMJ Open

framework of a scoping review allows "mapping rapidly the key concepts underpinning a
research area and the main sources and types of evidence available" [11], thus allowing us
to identify gaps in the literature and future research opportunities.

67 Stage 1: Identifying the research question

68 We defined our research question as follows: What statistical tools are used in the 69 identification of variables associated with frequent ED users and in their prediction?

70 Stage 2: Identifying relevant studies

We searched PubMed, CINAHL, and Scopus databases in September 2017, using search
strategies developed with the help of an information specialist (see the supplementary
appendix for the complete search strategy). Keywords included variants of "frequent
users", "emergency departments" and "statistical tools".

75 There were no restrictions regarding the population age or sex, health conditions, study76 period or country.

77 Stage 3: Study selection

78 Articles written in French or in English were included using the following criteria:

- The study must focus on frequent users of EDs (studies focusing on re-visits or on frequent visits other than in EDs were excluded);
- The study must have an explicit definition of frequent users, such as four visits in one year (reviews were excluded);

• The study must use at least one statistical tool that is classified as inferential (not descriptive, as defined by The Cambridge Dictionary of Statistics [12]), such as hypothesis tests, regression models, decision trees, or others;

• The study's objectives must include identifying variables associated with frequent use or predicting the risk of becoming a frequent user.

We collected 3 228 potential abstracts (Fig 1). Of those, 32 were duplicates, and 3 087 were excluded by an investigator (YC) after reading the title and the abstract. YC and CH independently evaluated the remaining 109 full-text articles, of which 80 matched the above criteria. Those were included by consensus between YC and CH while FRH acted as third reviewer in case of discrepancy. Reasons for exclusion were: duplicate (one), not in French or English (one), no inferential statistics (three), focus not on ED (four), systematic review (four), no explicit definition of frequent users (five), no description or prediction of frequent users (eleven). A reference search yielded five relevant articles. Thus, 85 articles were included in this study, of which the full texts were examined by YC, CH. and MB.

98 Fig 1. PRISMA flow diagram.

99 Stage 4: Charting the data

YC and MB independently extracted the corresponding data. Reported characteristics were the first (two) author(s), the publication year, the study location, the population, the frequent users' definition, the objectives, the sample size, and the statistical tools used concerning the research question.

BMJ Open

104 Stage 5: Collating, summarizing and reporting the results

105 The results are reported via a content analysis [13].

Patient and public involvement

107 Patients or public were not involved in this study.

3. Results

The studies main characteristics are presented in Table 1. Out of 85 studies, 47 were conducted in the USA, 13 in Canada and 5 in Australia (Fig 2). The various statistical tools were classified into four main categories: regression, hypothesis testing, machine learning, and other tools.

Authors, year, and country	Population	Frequent user definition	Study objectives	Sample size	Statistical tools used
Aagaard, J. et al. 2013 Denmark	Psychiatric	≥5 visits per year	To identify predictors of frequent use of a psychiatric emergency room	8 034	Logistic regression
Adams, R.J. et al. 2000 Australia	Adults with asthma	≥2 visits per year	To identify whether factors other than severity and low socioeconomic status were associated with this disproportionate use	293	Logistic regression
Alghanim, S.A. & Alomar, B.A. 2015 Saudi Arabia	All	≥3 visits per year	To determine the prevalence of frequent use of EDs in public hospitals, to determine factors associated with such use, and to identify patients' reasons for frequent use	666	Chi-square test Logistic regression
Alpern, E.R. et al. 2014 United States	All	≥4 visits per year	To describe the epidemiology of and risk factors for recurrent and high frequency use of the ED by children	695 188	Negative binomial regression Logistic regression Generalized estimatin equations
Andren, K.G. & Rosenqvist, U.	All	≥4 visits per year	To follow a cohort of heavy ED users with regard to changes in	232	Decision trees Linear regression

113 Table 1. Main characteristics of the 86 included studies.

1987			medical and psycho-social		
Sweden			profiles and ED use and to		
Sweden			identify predictors for a		
			maintained high use of ED		
			services and the		
			relationship between		
			changes in access to social		
			networks and utilization of		
			medical care services		
Arfken, C.L. et al.			To identify risk factors for		
· , · · · · · · ·	D 11.1	≥6 visits per	people who use psychiatric	= 4	
2004	Psychiatric	year	emergency services	74	Logistic regression
United States		J	repeatedly and to estimate		
			their financial charges		
			To statistically identify		
			characteristics associated		
Beck, A. et al.			with a shorter time to		Cox regression
	Mental	\geq 3 visits in 3	re-attendance and a higher	24 010	Negative binomial
2016	health	months	number of overall ED	24 010	regression
United Kingdom			admissions with a Mental		regression
C			Health Liaison Service		
			referral		
			To identify the social and		
			medical factors associated		
Bieler, G. et al.			with frequent ED use and		Wilcoxon rank-sum
	All	≥4 visits per year	to determine if frequent	719	
2012			users were more likely to		test
Switzerland			have a combination of		Logistic regression
			these factors in a universal		
			health insurance system		
		\geq 3 visits per	To examine whether it is		
Billings, J. &		year	possible to predict who		
U v		\geq 5 visits per	will become a frequent ED		
Raven, M.C.	A 11	year	user with predictive	212 250	I agintia manana'
2012	All	≥8 visits per	modeling and to compare	212 259	Logistic regression
2013 United States		year	ED expenditures to total		
United States		≥ 10 visits per	Medicaid services		
		year	expenditures		
		,	To identify patient-level		
			factors associated with ED		
Blonigen, D.M. et			use among veteran		-
al.	Veteran	≥5 visits per	psychiatric patients and to		Zero-truncated
a ~ 4 -	psychiatric	year	examine factors associated	226 122	negative binomial
2017	r-Jonatio	, em	with different subgroups of		regression
United States			ED users including "high		
			utilizers"		
			To examine characteristics		
Boyer, L. et al.			of frequent visitors to a		
Doyor, D. et al.		≥6 visits per	psychiatric emergency		
2011	Psychiatric	-	service in a French public	1 285	Logistic regression
France		year			
гтансе			teaching hospital over six		
Duannan II 1			years		Variation W-11:- + +
Brennan, J.J. et al.	Darrahirt	≥4 visits per	To assess the incidence of	700 007	Kruskal-Wallis test
2014	Psychiatric	year	psychiatric visits among	788 005	Mann-Whitney U tes
2014		5	frequent ED users and		Logistic regression

Page	9	of 3	7
rayc	~	01.27	·

United States			utilization among frequent psychiatric users		
Buhumaid, R. et al. 2015 United States	Psychiatric	≥4 visits per year	To evaluate demographic factors associated with increased ED use among people with psychiatric conditions	569	Logistic regression
Cabey, W.V. et al. 2014 United States	All	90th percentile	To define the threshold and population factors associated with pediatric ED use above the norm during the first 36 months of life	16 664	Nonparametric distribution fit Logistic regression Bootstrap Clopper-Pearson method
Castner, J. et al. 2015 United States	People with psychiatric and substance abuse diagnoses	≥3 visits per year	To stratify individuals by overall health complexity and examine the relationship of behavioral health diagnoses (psychiatric and substance abuse) as well as frequent treat-and-release ED utilization in a cohort of Medicaid recipients	56 491	Logistic regression
Chambers, C. et al. 2013 Canada	Homeless	90th percentile	To identify predictors of ED use among a population-based prospective cohort of homeless adults in Toronto, Ontario	1 165	Logistic regression
Chang, G. et al. 2014 United States	Psychiatric	≥4 visits per year or ≥3 visits during 2 consecutive months	To identify the patient characteristics associated with frequent ED use and develop a tool to predict risk for returning in the next month	863	Chi-square test Logistic regression
Christensen, E.W. et al. 2017 United States	All	≥4 visits per year	To determine the patient characteristics and health care utilization patterns that predict frequent ED use (≥4 visits per year) over time to assist health care organizations in targeting patients for care management	13 265	Zero-inflated Poisso regression Receiver operating characteristic curve
Chukmaitov, A.S. et al. 2012 United States	People with ambulatory care-sensitiv e conditions	≥4 visits per year	To study characteristics of all, occasional, and frequent ED visits due to ambulatory care-sensitive conditions	4 914 933 (number of visits)	Logistic regression
Colligan, E.M. et al. 2016 United States	All	≥4 visits per year	To examine factors associated with persistent frequent ED use during a 2-year period among Medicare beneficiaries	5 400 237	Logistic regression

					Wilcoxon rank-sum test
Das, L.T. et al. 2017 United States	Children with asthma	≥2 visits per year	To explore the predictability of frequent ED use among children with asthma using data from an EHR from one medical center	2 691	Chi-square test LASSO logistic regression Regularized logistic regression Decision trees Random forests Support vector machines
Doran, K.M. et al. 2013 United States	All	2-4 visits per year 5-10 visits per year 11-25 visits per year ≥25 visits	To identify sociodemographic and clinical factors most strongly associated with frequent ED use within the Veterans Health Administration nationally	930 712	Logistic regression
Doran, K.M. et al. 2014 United States	All	≥3 visits per year	To examine patients' reasons for using the ED for low-acuity health complaints, and determine whether reasons differed for frequent ED users versus non-frequent ED users	940	Logistic regression
Doupe, M.B. et al. 2012 Canada	All	≥7 visits per year	To identify factors that define frequent and highly frequent ED users	105 687	Logistic regression Receiver operating characteristic curve
Fernandes, A.K. et al. 2003 Brazil	All	≥3 visits per year	To identify characteristics related to poor disease control and frequent visits to the ED to apply appropriate clinical management	86	Chi-square test Logistic regression
Freitag, F.G. et al. 2005 United States	People with chronic daily headache	≥3 visits per year	To examine the characteristics of chronic daily headache sufferers who use EDs and identify factors predictive of ED visits	785	Wilcoxon rank-sum test t-test Chi-square test Poisson regression Negative binomial regression Logistic regression
Friedman, B.W. et al. 2009 United States	People with severe headache	≥4 visits per year	To determine frequency of ED use and risk factors for use among patients suffering severe headache	13 451	Markov chain Mont Carlo imputation Logistic regression
Frost, D.W. et al. 2017 Canada	All	≥3 visits per year	To determine whether machine learning techniques using text from a family practice electronic medical record can be used to predict future high ED	43 111	Logistic regression

			use and total costs by patients who are not yet high ED users or high cost to the healthcare system		
Girts, T.K. et al. 2002 United States	People with a diagnosis of psychosis	≥2 visits per 6 months	To develop a predictive model of ED utilization for patients where a diagnosis of psychosis could be identified from a claim associated with a medical service provider visit	764	t-test Linear regression
Grinspan, Z.M. et al. 2015 United States	People with epilepsy	≥4 visits per year	To describe (1) the predictability of frequent ED use (a marker of inadequate disease control and/or poor access to care), and (2) the demographics, comorbidities, and use of health services of frequent ED users, among people with epilepsy	8 041	Chi-square test Logistic regression Regularized logistic regression Elastic net logistic regression Decision trees Random forests AdaBoost Support vector machines Receiver operating characteristic curv
Hardie, T.L. et al. 2015 United States	All	≥4 visits per year	To describe frequent users of ED services in a rural community setting and the association between counts of patient's visits and discrete diagnoses	1 652	Poisson regression
Hasegawa, K. et al. 2014 United States	People with acute asthma	≥2 visits per year	To examine the proportion and patient characteristics of adult patients with multiple ED visits for acute asthma and the associated hospital charges	86 224	Chi-square test Kruskal-Wallis tes Logistic regression
Hasegawa, K. et al. 2014 United States	People with acute heart failure syndrome	≥2 visits per year	To examine the proportion and characteristics of patients with frequent ED visits for acute heart failure syndrome and associated healthcare utilization	113 033	Chi-square test Kruskal-Wallis tes Negative binomia regression Linear regression
Hasegawa, K. et al. 2014 United States	People with chronic obstructive pulmonary disease	≥2 visits per year	To quantify the proportion and characteristics of patients with frequent ED visits for acute exacerbation of chronic obstructive pulmonary disease and associated healthcare utilization	98 280	Chi-square test Kruskal-Wallis tes Logistic regression Negative binomia regression Linear regression
Huang, J.A. et al. 2003 Taiwan	All	≥4 visits per year	To characterize frequent ED users and to identify the factors associated with	800	Chi-square test Logistic regressio

			frequent ED use in a		
			hospital in Taiwan		
Hudon, C. et al.			To identify prospectively personal characteristics		
2016	All	≥3 visits per year	and experience of organizational and relational dimensions of	1 769	Mixed effect logistic regression
Canada			primary care that predict frequent use of ED		
Hudon, C. et al.	People with	\geq 3 visits for	To explore the factors associated with chronic		Logistic regression
2017 Canada	diabetes	3 consecutive years	frequent ED utilization in a population with diabetes	62 316	Decision trees
Hunt, K.A. et al.			To identify frequent users		
2006 United States	All	≥4 visits per year	of the ED and determine the characteristics of these patients	49 603	Logistic regression
			To assess the		
			characteristics of		
Huynh, C. et al.			individuals with substance use disorders according to		Chi-square test Analysis of variance
Huyini, C. et al.	People with	≥4 visits per	their frequency of ED	1.500	Negative binomial
2016 Canada	substance use disorders	year	utilization, and to examine	4 526	regression
	use disorders		which variables were		Generalized estimating
			associated with an increase		equations
			in ED visits using Andersen's model		
			To examine rates of		
Kerr, T. et al.			primary care and		Chi-square test
• • • •	Injection	\geq 3 visits during	emergency room use among injection drug users	883	Wilcoxon rank sign te
2004 Canada	drug users	the 2 past years	and to identify correlates		t-test Logistic regression
Callada			of frequent emergency department use		Logistic regression
Kirby SE at al			To explore the link		
Kirby, S.E. et al.	People with	\geq 3 visits per	between frequent	1 = 0.0 <	Chi-square test
2010	chronic disease	year	readmissions in chronic disease and patient-related	15 806	Logistic regression
Australia	uisease		factors		
			To identify the factors		
Kirby, S.E. et al.		≥4 visits per	associated with frequent re-attendances in a		Kruskal-Wallis test
2011	All	≥4 visits per year	regional hospital thereby	15 806	Chi-square test
Australia		2	highlighting possible		Logistic regression
			solutions to the problem To describe the		
			distribution of the		
Ko, M. et al.			frequency of ED visits		
2015	All	≥4 visits per	among ED users in 2010	170 457	Logistic regression
2015 Taiwan		year	and to evaluate the association of frequent ED		
Tatwall			use with various patient		
			characteristics		
Ledoux, Y. &	Psychiatric	\geq 4 visits per	(1) To provide a	2 470	Mantel-Haenszel test
Minner, P.	J	year	naturalistic evaluation of		Analysis of variance

2006 Belgium			patients repeating admissions in a psychiatric emergency ward (distinguishing between		Logistic regression
			occasional repeaters and frequent repeaters), (2) to identify		
			patients' characteristics that predict repeated use of a psychiatric emergency		
			room and (3) to propose adapted treatment models		
Legramante, J.M. et al.		``````````````````````````````````````	To evaluate and characterize hospital visits of older patients (age 65 or greater) to the ED of a		
2016 Italy	All	≥4 visits per year	university teaching hospital in Rome, in order to identify clinical and social characteristics	38 016	t-test Logistic regression
			potentially associated with "elderly frequent users"		
Leporatti, L. et al. 2016	All	90th percentile ≥3 visits per year	To describe the characteristics of patients who frequently accessed accident and emergency	147 864	Zero-truncated negative binomial regression
Italy			departments located in the metropolitan area of Genoa		Logistic regression
Lim. S.F. et al. 2014 Singapore	People with asthma	≥4 visits per year	To describe the characteristics of frequent attenders who present themselves multiple times to the ED for asthma	155	t-test Chi-square test Mann-Whitney U tes Logistic regression
Limsrivilai, J. et al. 2017 United States	People with inflammator y bowel diseases	75th percentile of the annual medical charges	exacerbations To identify predictive factors readily available in a standard electronic medical record to develop a multivariate model to predict the probability of inflammatory bowel diseases-related hospitalization, ED visit, and high total charges in the subsequent year	1 430	Receiver operating characteristic curve Logistic regression
Lin, W.C. et al. 2015 United States	Homeless	≥3 visits per year	To examined factors associated with frequent hospitalizations and ED visits among Medicaid members who were homeless	6 494	Chi-square test Analysis of variance Negative binomial regression
Liu, S.W. et al. 2013 United States	People with mental health, alcohol or	≥4 visits per year	To determine whether frequent ED users are more likely to make at least one and a majority of visits for mental health,	65 201	t-test Chi-square test Logistic regression

	drug-related diagnoses		alcohol, or drug-related complaints compared to non-frequent users		
Mandelberg, J.H. et al. 2000 United States	All	≥5 visits per year	To determine how the demographic, clinical, and utilization characteristics of frequent ED users differ from those of other ED patients	43 383	Logistic regression Survival analysis
Mann, E.G. et al. 2016 Canada	People with chronic pain	90th percentile	To investigate the role of chronic pain in healthcare visits and to document the frequency of healthcare visits and to identify characteristics associated with frequent visits	1 274	Logistic regression
McMahon, C.G. et al. 2016 Ireland	All	≥4 visits per year	To examine the characteristics of the frequent ED attenders by age (under 65 and over 65 years)	19 310	Chi-square test Logistic regression
Meyer, J.P. et al. 2013 United States	Prisoners with Human Immunodefi ciency Virus	≥2 visits per year	To characterize the medical, social, and psychiatric correlates of frequent ED use among released prisoners with human immunodeficiency virus	151	t-test Chi-square test Poisson regression
Milani, S.A. et al. 2016 United States	People with multimorbid chronic diseases	≥4 visits per year	To examine the association between multimorbid chronic disease and frequency ED visits in the past 6 months, by sex, in a community sample of adults from northern Florida	7 143	Breslow-Day test Logistic regression
Milbrett, P. & Halm, M. 2009 United States	All	≥6 visits per year	To describe the characteristics of patients who frequently use ED services and to determine factors most predictive of frequent ED use	201	Chi-square test Mann-Whitney U tes Poisson regression
Moe, J. et al. 2013 Canada	All	95th percentile	To develop uniform definitions, quantify ED burden, and characterize adult frequent users of a suburban community ED	14 223	Chi-square test Mann-Whitney U tes
Mueller, E.L. et al. 2016 United States	Children with cancer	90th percentile ≥4 visits per year	To (a) evaluate patient and ED encounter characteristics of frequent ED utilizers among children with cancer and (b) quantify healthcare services for frequent ED utilizers	17 943	Chi-square test Logistic regression

Nambiar, D. et al. 2017 Australia	Injection drug users	≥3 visits per year	To describe demographic factors, patterns of substance use and previous health service use associated with frequent use of EDs in people who inject drugs	612	Negative binomial regression Logistic regression
Neufeld, E. et al. 2016 Canada	All	≥4 visits per year	To describe factors predicting frequent ED use among rural older adults receiving home care services in Ontario, Canada	12 118	Chi-square test Logistic regression
Neuman, M.I. et al. 2014 United States	All	≥4 visits per year	To compare the characteristics and ED health services of children by their ED visit frequency	1 896 547	Mantel-Haenszel test Receiver operating characteristic curve Generalized linear mixed-effects models
Ngamini-Ngui, A. et al. 2014 Canada	Patients with schizophreni a and a co-occurring substance use disorder	≥5 visits per year	To assess factors associated over time with high use of EDs by Quebec patients who had schizophrenia and a co-occurring substance use disorder	2 921	Generalized estimating equations
Norman, C. et al. 2016 United States	All	≥4 visits per year	To clearly define and describe characteristics of frequent emergency medical services users in order to provide suggestions for efficient and cost-effective interventions that address the healthcare needs of these users	539	Logistic regression
O'Toole, T.P. et al. 2007 United States	Substance users	≥3 visits per year	To identify factors associated with 12-month high frequency utilization of ambulatory care, ED, and inpatient medical care in a substance-using population	326	t-test Chi-square test Logistic regression
Palmer, E. et al. 2014 Canada	All	≥4 visits per year	To determine if having a primary care provider is an important factor in frequency of ED use	59 803	Chi-square test Wilcoxon rank-sum test Logistic regression
Panopalis, P. et al. 2010 United States	People with systemic lupus erythematos us	≥3 visits per year	To describe characteristics of systemic lupus erythematosus patients who are frequent users of the ED and to identify predictors of frequent ED use	807	One-way analysis of variance Logistic regression

Pasic, J. et al. 2005 United States	Psychiatric	2 SD above the mean number of visits ≥6 visits per year ≥4 visits in a quarter	To examine the sociodemographic and clinical characteristics of high utilizers of psychiatric emergency services	17 481	Chi-square test Logistic regression
Paul, P. et al. 2010 Singapore	All	≥5 visits per year	To determine factors associated with frequent ED attendance at an acute general hospital in Singapore.	82 172	Chi-square test Logistic regression
Pereira, M. et al. 2016 United States	All	≥5 visits per year	To develop machine learning models that can predict future ED utilization of individual patients, using only information from the present and the past	4 604 252	Decision trees AdaBoost Logistic regression
Pines, J.M. & Buford, K. 2006 United States	People with asthma	90th percentile ≥3 visits per year	To determine socioeconomic and demographic factors that predict frequent ED use among asthmatics in southeastern Pennsylvania	1 799	t-test Chi-square test Logistic regression
Quilty, S. et al. 2016 Australia	People without chronic health conditions	≥6 visits per year	To determine the clinical and environmental variables associated with frequent presentations by adult patients to a remote Australian hospital ED for reasons other than chronic health conditions	273	t-test Chi-square test Logistic regression
Rask, K.J. et al. 1998 United States	All	≥10 visits per 2 years	To describe primary care clinic use and emergency ED use for a cohort of public hospital patients seen in the ED, identify predictors of frequent ED use, and ascertain the clinical diagnoses of those with high rates of ED use	351	Chi-square test t-test Logistic regression
Samuels-Kalow, M.E. et al. 2017 United States	All	≥4 visits per year	To derive and test a predictive model for high frequency (4 or more visits per year), low-acuity (emergency severity index 4 or 5) utilization of the pediatric ED	60 799 (number of visits)	Likelihood ratio test Chi-square test Receiver operating characteristic curve Logistic regression
Schmoll, S. et al. 2015 France	Psychiatric	\geq 9 visits during the 6 past years	To describe demographic and clinical characteristics of frequent visitors to a psychiatric emergency ward in a French Academic hospital over 6	8 800	t-test Chi-square test Logistic regression

			years in comparison to non-frequent visitors		
Soler, J.J. et al. 2004 Spain	People with chronic obstructive pulmonary disease	≥3 visits per year	To identify factors associated with frequent use of hospital services (emergency care and admissions) in patients with chronic obstructive pulmonary disease	64	t-test Chi-square test Kolmogorov-Smirno test Mann-Whitney U te Logistic regression
Sun, B.C. et al. 2003 United States	All	≥4 visits per year	To identify predictors and outcomes associated with frequent ED users	2 333	Likelihood ratio tes Chi-square test Hosmer-Lemeshow t Logistic regressior Bootstrap
Tangherlini, N. et al. 2010 United States	All	≥4 visits per year	To identify the factors that lead to increased use of emergency medical services (EMS) by patients ≥65 years of age in an urban EMS system	10 918	Kruskal-Wallis tes Chi-square test Logistic regressior
Thakarar, K. et al. 2015 United States	Homeless	≥2 visits per year	To identify risk factors for frequent emergency room (ER) visits and to examine the effects of housing status and HIV serostatus on ER utilization	412	Chi-square test Logistic regression
Vandyk, A.D. et al. 2014 Canada	Mental health	≥5 visits per year	To explore the population profile and associated socio demographic, clinical, and service use factors of individuals who make frequent visits (5+annually) to hospital EDs for mental health complaints	536	Hosmer-Lemeshow Logistic regressio
Vinton, V.T. et al. 2014 United States	Chronic diseases and mental health	≥4 visits per year	To compare the characteristics of US adults by frequency of ED utilization, specifically the prevalence of chronic diseases and outpatient primary care and mental health utilization	157 818	Logistic regression
Vu, F. et al. 2015 Switzerland	Mental health and substance users	≥4 visits per year	To determine the proportions of psychiatric and substance use disorders suffered by EDs' frequent users compared to the mainstream ED population, to evaluate how effectively these disorders were diagnosed in both groups of patients by ED physicians, and to determine if these	389	Fisher exact test Chi-square test Logistic regression

		disorders were predictive of a frequent use of ED services		
All	≥4 visits over 6 months	To determine factors associated with frequent ED utilization by older adults	5 718	Chi-square test t-test
Adults with asthma	≥2 visits per year	To characterise the adult patients who frequently presented to the ED for asthma exacerbation in Japan	1 002	One-way analysis o variance Chi-square test Kruskal-Wallis test Logistic regression Negative binomial regression
All	≥4 visits per year	To understand whether the findings about frequent ED users in prior studies in the US healthcare system would be replicated in the Korean population, and whether these findings are independent of insurance status or ethnicity	156 246	t-test Chi-square test Linear regression Logistic regression
All	≥16 visits during the 2 past years	To assess the feasibility of using routinely gathered registration data to predict patients who will visit EDs with high frequency	1 272 367	Logistic regression Receiver operating characteristic curve
_	Adults with asthma All	All $\stackrel{-}{_{6}}$ monthsAdults with asthma ≥ 2 visits per yearAll ≥ 4 visits per yearAll ≥ 16 visits during the 2 past	All ≥ 4 visits over 6 monthsTo determine factors associated with frequent ED utilization by older adultsAdults with asthma ≥ 2 visits per yearTo characterise the adult patients who frequently presented to the ED for asthma exacerbation in JapanAll ≥ 4 visits per yearTo understand whether the findings about frequent ED users in prior studies in the US healthcare system would be replicated in the Korean population, and whether these findings are independent of insurance status or ethnicityAll ≥ 16 visits during the 2 past yearsTo assess the feasibility of using routinely gathered registration data to predict patients who will visit EDs	All ≥ 4 visits over 6 monthsTo determine factors associated with frequent ED utilization by older adults5 718Adults with asthma ≥ 2 visits per yearTo characterise the adult patients who frequently presented to the ED for asthma exacerbation in Japan1 002All ≥ 2 visits per yearTo understand whether the findings about frequent ED users in prior studies in the US healthcare system would be replicated in the Korean population, and whether these findings are independent of insurance status or ethnicity156 246All ≥ 16 visits yearsTo assess the feasibility of using routinely gathered registration data to predict patients who will visit EDs1 272 367

Fig 2. Number of studies by country.

Regression

Regression tools consist of a set of processes aimed at quantifying the relationships between a dependent variable and other explanatory variables [14]. They are useful for description and prediction. Some regression models may be *regularized*, which in this case means avoiding overfitting with too many explanatory variables, or zero-truncated, which means that the model is not allowed to take null values.

Out of the four categories (regression, hypothesis testing, machine learning, and other tools), the most reported tool was the logistic regression (70 studies [3-5, 15-81], two of which are regularized by LASSO or elastic net techniques), followed by the binomial

Page 19 of 37

BMJ Open

regression (11 studies [18, 46, 55, 73, 76, 77, 82-86], 2 of which are zero-truncated). To a lesser extent, the linear regression (five studies [74, 76, 83, 87, 88]), the analysis of variance (five studies [44, 59, 73, 84, 85]), the Poisson regression (five studies [77, 89-92], one of which is zero-truncated), and the Cox regression (one study [86]) were also used. In those studies, the results are often associated with odds-ratio. The mixed-effects models were mentioned twice [39, 93]. Regression parameters were estimated by generalized estimating equations in three studies [18, 84, 94] while parameter confidence intervals were estimated by the bootstrap procedure (two studies [25, 67]) and the Clopper-Pearson method (one study [25]). The receiver operating characteristic curve (ROC), or equivalently the sensitivity, specificity, or area under the curve ("c-statistic"), was computed in seven studies [4, 36, 48, 63, 75, 89, 93]. Finally, one study performed Markov chain Monte Carlo imputation to account for missing data [78].

137 Hypothesis testing

Statistical tests aim at testing a specific hypothesis about data and rely on probability
distributions [95]. In the selected studies, the tests aimed mainly at comparing two samples
(frequent users and non-frequent users).

The most common statistical tests were the chi-square test (40 studies [17, 28, 31, 34, 36-38, 40-42, 47, 49, 52, 54, 56, 58, 60, 62-69, 72-74, 76, 77, 79-81, 83-85, 91, 92, 96, 97]) and the t-test (15 studies [40, 45, 47, 49, 62, 63, 65, 66, 74, 77, 79, 81, 88, 91, 97]), which measured associations between variables and goodness-of-fit. As an alternative to the chi-square test for association, one study used the Fisher exact test [72]. Sample mean differences were assessed by 17 studies with the Mann-Whitney U test (also called the Wilcoxon rank-sum test [20, 23, 31, 47, 58, 66, 77, 92, 96]), its variant for dependent

samples the Wilcoxon signed rank test [40], or the Kruskal-Wallis test [23, 37, 42, 68, 73,
76, 83]. The Mantel-Haenszel test (test for differences in contingency tables, two studies
[44, 93]), the likelihood ratio test (significance test for nested models, two studies [64, 67]),
the Hosmer-Lemeshow test (goodness-of-fit for logistic regression, two studies [67, 70]),
and the Breslow-Day test (test for homogeneity in contingency tables odds ratio [53]) were
also used to a lesser degree. Finally, one study checked the assumption of normality with
the Kolmogorov-Smirnov test [66].

155 Machine learning

Machine learning tools are a set of algorithms that can learn and adapt to data in order to classify or predict, for instance [98]. In the selected studies, the machine learning tools aimed mainly at classifying users (frequent versus non-frequent).

Two studies used random forests [31, 36] along with support vector machines. Decision trees, which include classification and regression trees, were implemented by five studies [5, 31, 36, 61, 87]. Adaptive boosting, or AdaBoost, is a meta-algorithm that combines with other algorithms and helps for better performances. It was computed in two studies [36, 61].

Other tools

165 One study fitted a nonparametric distribution to their data [25], while another one used 166 survival analysis [50]. Page 21 of 37

The most exploited statistical tools arguably came from regression analysis. This may be because regression is well established in medical statistics or also because it is the most natural tool when trying to find significant variables to explain a dependent variable (in this case, to be a frequent user). Moreover, it allows predicting easily the risk of a new user becoming a frequent user, depending on its covariates. Other tools from hypothesis testing or machine learning also proved to be popular, albeit to a much lesser extent. Combining these statistical techniques may help in discovering significant patterns compared to using tools from one class only. In our scoping review, only two studies mixed statistical tools from regression, hypothesis testing, and machine learning [31, 36].

The analysis of frequent ED users could benefit from using more machine learning techniques. Those were found to be not as common as regression or hypothesis testing, although they are especially appropriate when dealing with classification, prediction, or big data. Tools such as support vector machines (which were used by two studies in this scoping review [31, 36]), artificial neural networks, or Bayesian networks are common classifiers and predictors in the artificial intelligence community [99]. They are popular for instance in cancer diagnostic and prognosis, which strongly rely on classification and prediction [100-102]. In particular, support vector machines, decision trees or self-organizing maps can deal with binary outcomes, which is usually the case for frequent use outcomes. They require large datasets, but this is becoming less and less of an issue in the medical field [103]. Nevertheless, machine learning tools often use a black box approach. This means that intermediary steps leading to the final solution can be difficult

to interpret, although in the end they display good performances in classifying andpredicting. Those methods would thus turn out to be less useful in data exploration [104].

Other tools exist that may also be suitable for describing the associated variables or the prediction of frequent ED users but were not reported in the literature. Among those, principal component analysis (PCA) is a dimensional reduction and visualization technique, sometimes used with cluster or discriminant analysis [105]. Based on all the original explanatory variables, PCA constructs new ones by summing and weighing them differently. More weight is given to relevant variables so that those latter become dominant in the new constructions while still including all variables. For instance, Burgel *et al.* (2010) built chronic obstructive pulmonary disease clinical phenotypes by constructing new relevant variables with PCA and by grouping similar subjects in this new space with cluster analysis [106]. Moreover, PCA has already been used for the construction of questionnaires and diagnosis tools in a medical context [107, 108], both of which can prove useful in the identification of frequent users.

As mentioned, regression techniques were common in the selected studies. Yet, quantile regression (QR, [109]) was not mentioned. QR is a generalization of mean regression in the sense that its focus is not only the mean of the dependent variable distribution (such as in classical linear regression) but any quantile of it. QR thus represents an alternative to define frequent users by the high quantiles of ED visit distribution (e.g. the 90th quantile). Eight studies [25, 27, 46, 48, 51, 54, 62, 96] defined frequent users with quantiles, but they did not use QR. QR would allow for finer investigations in the different quantiles of ED users in relationship to the explanatory variables. For instance, the association between age and the number of ED visits may be significantly different across the 10th (low users) and

BMJ Open

90th (frequent users) quantiles. Such a heterogeneous association would be uncovered by QR, while usually unseen with a classical mean regression. Ding et al. (2010) used QR to characterize waiting room and treatment times in EDs [110]. They explored the lowest, median and highest of those times and highlighted predictors that were significant only in particular quantiles. Usually, QR requires a continuous dependent variable as opposed to a logistic regression, though it is possible to combine these two regressions [111]. Furthermore, defining frequent users by quantiles would allow for better comparison between studies.

Strengths and limitations

To the best of our knowledge, this scoping review is the first to list statistical tools that are used in the identification of variables associated with frequent ED use and the prediction of frequent users. Besides, it was conducted following a well-defined methodological framework. The search strategies were designed with an information specialist in three different databases. Two independent evaluators selected the articles and extracted the data while a third independent evaluator settled disagreements, ensuring that all included studies were relevant. One limitation of our study is that quality assessment is not performed in a scoping review. However, this should not alter the results, since the aim was to list which statistical tools have been applied in the literature. Moreover, the majority of articles were in English, which may introduce a selection bias (for instance, one excluded article was in Spanish). More than half of the reviewed studies were indeed conducted in the USA, making the results difficult to compare to other countries.

5. Conclusions

Frequent ED users represent a complex issue, and their analysis require adequate statistical tools. In this context, this scoping review shows that some tools are well established, such as logistic regression and chi-square test, while others such as support vector machines are less so, though they would deserve to get more attention. It also outlines some research opportunities with other tools not yet explored.

239 Acknowledgments

We would like to thank information specialist Josée Toulouse for her help in defining the search strategies and Tina Wey (PhD) for revising the text.

242 Authors contributions

YC and CH designed the study with FRH and AV. YC, CH, and MB collected and analysed
the data. In case of disagreement, FRH acted as third reviewer. YC and CH wrote the first
draft of the manuscript. FRH, AV, MCC, and MB contributed to the writing of the
manuscript. All authors read and approved the final manuscript.

247 Funding

This work was financed by grants from the *Fonds de recherche du Québec – Santé* and the *Centre de recherche du Centre hospitalier universitaire de Sherbrooke*. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

4 5 6

11 12 13

14 15 16

17

18 19 20

21

22

23

24

25

26 27

252 Competing interests

253 The authors declare that they have no competing interests.

254 Data sharing statement

255 No additional data are available.

256 **References**

Kumar GS, Klein R. Effectiveness of case management strategies in reducing
 emergency department visits in frequent user patient populations: a systematic review. J
 Emerg Med. 2013;44(3):717-29. Epub 2012/12/04. doi: 10.1016/j.jemermed.2012.08.035.
 PubMed PMID: 23200765.

261 2. LaCalle E, Rabin E. Frequent users of emergency departments: the myths, the data,
262 and the policy implications. Ann Emerg Med. 2010;56(1):42-8. Epub 2010/03/30. doi:
263 10.1016/j.annemergmed.2010.01.032. PubMed PMID: 20346540.

28
264
265
265
266
266
266
267
268
269
269
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
<

31 267 Doupe MB, Palatnick W, Day S, Chateau D, Soodeen RA, Burchill C, et al. 4. 32 268 Frequent users of emergency departments: Developing standard definitions and defining 33 34 269 prominent risk factors. ANN EMERG MED. 2012;60(1):24-32. doi: 35 270 10.1016/j.annemergmed.2011.11.036.

271 5. Hudon C, Courteau J, Krieg C, Vanasse A. Factors associated with chronic frequent
 272 emergency department utilization in a population with diabetes living in metropolitan
 areas: A population-based retrospective cohort study. BMC Health Serv Res. 2017;17(1).
 274 doi: 10.1186/s12913-017-2453-3.

41 275 6. Krieg C, Hudon C, Chouinard MC, Dufour I. Individual predictors of frequent
42 276 emergency department use: A scoping review. BMC Health Serv Res. 2016;16(1). doi:
43 277 10.1186/s12913-016-1852-1.

44 278 Ruger JP, Richter CJ, Spitznagel EL, Lewis LM. Analysis of costs, length of stay, 7. 45 279 and utilization of emergency department services by frequent users: implications for health 46 Emerg 280 policy. Acad Med. 2004;11(12):1311-7. Epub 2004/12/04. doi: 47 10.1197/j.aem.2004.07.008. PubMed PMID: 15576522. 281 48

282 8. Bodenheimer T, Berry-Millett R. Care management of patients with complex health
283 care needs. Policy. 2009;1:6.

284
 284
 285
 285
 285
 286
 286
 287
 288
 288
 289
 289
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280
 280

286 10. Levac D, Colquhoun H, O'Brien KK. Scoping studies: advancing the methodology.
 287 Implement Sci. 2010;5(1):69. Epub 2010/09/22. doi: 10.1186/1748-5908-5-69. PubMed
 288 PMID: 20854677; PubMed Central PMCID: PMCPMC2954944.

57 58

Mays N, Roberts E, Popay J. Synthesising research evidence. Studying the 11. organisation and delivery of health services: Research methods. 2001:188-220. Everitt BS, Skrondal A. The Cambridge Dictionary of Statistics. 4th ed. Cambridge: 12. Cambridge University Press Cambridge; 2010. Vaismoradi M, Turunen H, Bondas T. Content analysis and thematic analysis: 13. Implications for conducting a qualitative descriptive study. Nurs Health Sci. 2013;15(3):398-405. Epub 2013/03/14. doi: 10.1111/nhs.12048. PubMed PMID: 23480423. 14. Harrell FE, Jr. Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. 2 ed. New York: Springer International Publishing; 2015. Aagaard J, Aagaard A, Buus N. Predictors of frequent visits to a psychiatric 15. emergency room: a large-scale register study combined with a small-scale interview study. Int J Nurs Stud. 2014;51(7):1003-13. Epub 2013/12/10. doi: 10.1016/j.ijnurstu.2013.11.002. PubMed PMID: 24315543. Adams RJ, Smith BJ, Ruffin RE. Factors associated with hospital admissions and 16. repeat emergency department visits for adults with asthma. Thorax. 2000;55(7):566-73. doi: 10.1136/thorax.55.7.566. Alghanim SA, Alomar BA, Frequent use of emergency departments in Saudi public 17. hospitals: Implications for primary health care services. Asia-Pac J Public Health. 2015;27(2):NP2521-NP30. doi: 10.1177/1010539511431603. Alpern ER, Clark AE, Alessandrini EA, Gorelick MH, Kittick M, Stanley RM, et 18. al. Recurrent and high-frequency use of the emergency department by pediatric patients. Academic Emergency Medicine. 2014;21(4):365-73. doi: 10.1111/acem.12347. Arfken CL, Zeman LL, Yeager L, White A, Mischel E, Amirsadri A. Case-control 19. study of frequent visitors to an urban psychiatric emergency service. Psychiatr Serv. 2004;55(3):295-301. Epub 2004/03/06. doi: 10.1176/appi.ps.55.3.295. PubMed PMID: 15001731. Bieler G, Paroz S, Faouzi M, Trueb L, Vaucher P, Althaus F, et al. Social and 20. medical vulnerability factors of emergency department frequent users in a universal health insurance system. Acad Emerg Med. 2012;19(1):63-8. Epub 2012/01/10. doi: 10.1111/j.1553-2712.2011.01246.x. PubMed PMID: 22221292. 21. Billings J, Raven MC. Dispelling an urban legend: frequent emergency department users have substantial burden of disease. Health Aff (Millwood). 2013;32(12):2099-108. Epub 2013/12/05. doi: 10.1377/hlthaff.2012.1276. PubMed PMID: 24301392; PubMed Central PMCID: PMCPMC4892700. Boyer L, Dassa D, Belzeaux R, Henry JM, Samuelian JC, Baumstarck-Barrau K, et 22. al. Frequent visits to a French psychiatric emergency service: diagnostic variability in psychotic disorders. Psychiatr Serv. 2011;62(8):966-70. Epub 2011/08/03. doi: 10.1176/ps.62.8.pss6208 0966. PubMed PMID: 21807840. Brennan JJ, Chan TC, Hsia RY, Wilson MP, Castillo EM. Emergency department 23. utilization among frequent users with psychiatric visits. Acad Emerg Med. 2014;21(9):1015-22. Epub 2014/10/02. doi: 10.1111/acem.12453. PubMed PMID: 25269582.

59

60

BMJ Open

2 3 333 Buhumaid R, Riley J, Sattarian M, Bregman B, Blanchard J. Characteristics of 24. 4 334 frequent users of the emergency department with psychiatric conditions. J Health Care Poor 5 335 Underserved. 2015;26(3):941-50. 6 336 25. Cabey WV, Macneill E, White LN, Norton HJ, Mitchell AM. Frequent pediatric 7 337 emergency department use in infancy and early childhood. Pediatr Emerg Care. 8 2014;30(10):710-7. doi: 10.1097/PEC.00000000000233. 9 338 10 339 Castner J, Wu YWB, Mehrok N, Gadre A, Hewner S. Frequent emergency 26. 11 340 department utilization and behavioral health diagnoses. Nurs Res. 2015;64(1):3-12. doi: 12 341 10.1097/NNR.000000000000065. 13 342 Chambers C, Chiu S, Katic M, Kiss A, Redelmeier DA, Levinson W, et al. High 27. 14 343 Utilizers of Emergency Health Services in a Population-Based Cohort of Homeless Adults. 15 344 journal of public health. 2013;103(S2):S302-10. American doi: 16 17 345 10.2105/AJPH.2013.301397. PubMed PMID: 104161876. Language: English. Entry Date: 18 346 20131126. Revision Date: 20150711. Publication Type: Journal Article. 19 347 Chang G, Weiss AP, Orav EJ, Rauch SL. Predictors of frequent emergency 28. 20 348 department use among patients with psychiatric illness. Gen Hosp Psychiatry. 21 349 2014;36(6):716-20. Epub 2014/10/15. doi: 10.1016/j.genhosppsych.2014.09.010. PubMed 22 350 PMID: 25312277. 23 351 Chukmaitov AS, Tang A, Carretta HJ, Menachemi N, Brooks RG. Characteristics 24 29. 25 352 of all, occasional, and frequent emergency department visits due to ambulatory care-26 sensitive conditions in Florida. J Ambul Care Manage. 2012;35(2):149-58. doi: 353 27 354 10.1097/JAC.0b013e318244d222. 28 355 Colligan EM, Pines JM, Colantuoni E, Howell B, Wolff JL. Risk Factors for 30. 29 Persistent Frequent Emergency Department Use in Medicare Beneficiaries. Ann Emerg 356 30 Med. 2016;67(6):721-9. Epub 2016/03/08. doi: 10.1016/j.annemergmed.2016.01.033. 357 31 32 358 PubMed PMID: 26947801. 33 359 Das LT, Abramson EL, Stone AE, Kondrich JE, Kern LM, Grinspan ZM. 31. 34 Predicting frequent emergency department visits among children with asthma using EHR 360 35 361 data. Pediatr Pulmonol. 2017;52(7):880-90. doi: 10.1002/ppul.23735. 36 362 Doran KM, Colucci AC, Wall SP, Williams ND, Hessler RA, Goldfrank LR, et al. 32. 37 Reasons for emergency department use: do frequent users differ? Am J Manag Care. 363 38 2014;20(11):e506-e14. 364 39 40 365 33. Doran KM, Raven MC, Rosenheck RA. What drives frequent emergency 41 department use in an integrated health system? National data from the veterans health 366 42 367 administration. ANN EMERG MED. 2013;62(2):151-9. doi: 43 368 10.1016/j.annemergmed.2013.02.016. 44 Fernandes AK, Mallmann F, Steinhorst AMP, Nogueira FL, Ávila EM, Saucedo 369 34. 45 370 DZ, et al. Characteristics of Acute Asthma Patients Attended Frequently Compared with 46 47 371 Those Attended Only Occasionally in an Emergency Department. J Asthma. 48 2003;40(6):683-90. doi: 10.1081/JAS-120023487. 372 49 373 Frost DW, Vembu S, Wang J, Tu K, Morris Q, Abrams HB. Using the Electronic 35. 50 374 Medical Record to Identify Patients at High Risk for Frequent Emergency Department 51 375 Visits and High System Costs. Am J Med. 2017;130(5):601.e17-.e22. doi: 52 376 10.1016/j.amjmed.2016.12.008. 53 54 55 56 57 58

3 377 Grinspan ZM, Shapiro JS, Abramson EL, Hooker G, Kaushal R, Kern LM. 36. 4 378 Predicting frequent ED use by people with epilepsy with health information exchange data. 5 379 Neurology. 2015;85(12):1031-8. doi: 10.1212/WNL.000000000001944. 6 380 37. Hasegawa K, Tsugawa Y, Brown DFM, Camargo Jr CA. A population-based study 7 381 of adults who frequently visit the emergency department for acute asthma: California and 8 9 382 Thorac Florida, 2009-2010. Ann Am Soc. 2014;11(2):158-66. doi: 10 383 10.1513/AnnalsATS.201306-166OC. 11 384 Huang JA, Tsai WC, Chen YC, Hu WH, Yang DY. Factors associated with frequent 38. 12 385 use of emergency services in a medical center. J Formos Med Assoc. 2003;102(4):222-8. 13 386 39. Hudon C, Sanche S, Haggerty JL. Personal Characteristics and Experience of 14 387 Primary Care Predicting Frequent Use of Emergency Department: A Prospective Cohort 15 2016;11(6):e0157489. 388 PLoS One. Epub 2016/06/15. Study. doi: 16 17 389 10.1371/journal.pone.0157489. PubMed PMID: 27299525; PubMed Central PMCID: 18 390 PMCPMC4907452. 19 391 40. Kerr T, Wood E, Grafstein E, Ishida T, Shannon K, Lai C, et al. High rates of 20 392 primary care and emergency department use among injection drug users in Vancouver. 21 393 Journal of Public Health. 2005;27(1):62-6. doi: 10.1093/pubmed/fdh189. 22 394 Kirby SE, Dennis SM, Jayasinghe UW, Harris MF. Patient related factors in 41. 23 395 frequent readmissions: The influence of condition, access to services and patient choice. 24 25 396 BMC Health Serv Res. 2010;10. doi: 10.1186/1472-6963-10-216. 26 397 Kirby SE, Dennis SM, Jayasinghe UW, Harris MF. Frequent emergency attenders: 42. 27 398 Is there a better way? Aust Health Rev. 2011;35(4):462-7. doi: 10.1071/AH10964. 28 399 43. Ko M, Lee Y, Chen C, Chou P, Chu D. Prevalence of and predictors for frequent 29 utilization of emergency department: A population-based study. Medicine. 2015;94(29). 400 30 401 doi: 10.1097/MD.00000000001205. 31 32 402 44. Ledoux Y. Minner P. Occasional and frequent repeaters in a psychiatric emergency 33 403 room. Soc Psychiatry Psychiatr Epidemiol. 2006;41(2):115-21. Epub 2006/03/02. doi: 34 404 10.1007/s00127-005-0010-6. PubMed PMID: 16508721. 35 405 Legramante JM, Morciano L, Lucaroni F, Gilardi F, Caredda E, Pesaresi A, et al. 45. 36 406 Frequent use of emergency departments by the elderly population when continuing care is 37 not well established. PLoS ONE. 2016;11(12). doi: 10.1371/journal.pone.0165939. 407 38 408 Leporatti L, Ameri M, Trinchero C, Orcamo P, Montefiori M. Targeting frequent 39 46. 409 40 users of emergency departments: Prominent risk factors and policy implications. Health 41 Policy. 2016;120(5):462-70. doi: 10.1016/j.healthpol.2016.03.005. 410 42 411 Lim SF, Wah W, Pasupathi Y, Yap S, Koh MS, Tan KL, et al. Frequent attenders 47. 43 to the ED: patients who present with repeated asthma exacerbations. Am J Emerg Med. 412 44 2014;32(8):895-9. Epub 2014/06/13. doi: 10.1016/j.ajem.2014.04.052. PubMed PMID: 413 45 414 24919775. 46 47 415 48. Limsrivilai J, Stidham RW, Govani SM, Waljee AK, Huang W, Higgins PDR. 48 416 Factors That Predict High Health Care Utilization and Costs for Patients With 49 Inflammatory Bowel Diseases. Clin Gastroenterol Hepatol. 2017;15(3):385-92.e2. doi: 417 50 418 10.1016/j.cgh.2016.09.012. 51 419 Liu SW, Nagurney JT, Chang Y, Parry BA, Smulowitz P, Atlas SJ. Frequent ED 49. 52 420 users: Are most visits for mental health, alcohol, and drug-related complaints? AM J 53 421 EMERG MED. 2013;31(10):1512-5. doi: 10.1016/j.ajem.2013.08.006. 54 55 56 57

58

1 2

BMJ Open

Mandelberg JH, Kuhn RE, Kohn MA. Epidemiologic analysis of an urban, public 50. emergency department's frequent users. Academic Emergency Medicine. 2000;7(6):637-46. 51. Mann EG, Johnson A, VanDenKerkhof EG. Frequency and characteristics of healthcare visits associated with chronic pain: results from a population-based Canadian study. Can J Anesth. 2016;63(4):411-41. doi: 10.1007/s12630-015-0578-6. McMahon CG, Power Foley M, Robinson D, O'Donnell K, Poulton M, Kenny RA, 52. et al. High prevalence of frequent attendance in the over 65s. Eur J Emerg Med. 2016. Epub 2016/05/04. doi: 10.1097/mej.0000000000000406. PubMed PMID: 27139928. Milani SA, Crooke H, Cottler LB, Striley CW. Sex differences in frequent ED use 53. among those with multimorbid chronic diseases. AM J EMERG MED. 2016;34(11):2127-31. doi: 10.1016/j.ajem.2016.07.059. Mueller EL, Hall M, Carroll AE, Shah SS, Macy ML. Frequent Emergency 54. Department Utilizers Among Children with Cancer. Pediatr Blood Cancer. 2016;63(5):859-64. Epub 2016/02/04. doi: 10.1002/pbc.25929. PubMed PMID: 26841193. Nambiar D, Stoové M, Dietze P. Frequent emergency department presentations 55. among people who inject drugs: A record linkage study. Int J Drug Policy. 2017;44:115-20. doi: 10.1016/j.drugpo.2017.03.010. Neufeld E, Viau KA, Hirdes JP, Warry W. Predictors of frequent emergency 56. department visits among rural older adults in Ontario using the Resident Assessment Instrument-Home Care. Austr J Rural Health. 2016;24(2):115-22. doi: 10.1111/ajr.12213. Norman C, Mello M, Choi B. Identifying Frequent Users of an Urban Emergency 57. Medical Service Using Descriptive Statistics and Regression Analyses. West J Emerg Med. 2016;17(1):39-45. Epub 2016/01/30. doi: 10.5811/westjem.2015.10.28508. PubMed PMID: 26823929; PubMed Central PMCID: PMCPMC4729417. 58. Palmer E, Leblanc-Duchin D, Murray J, Atkinson P. Emergency department use: Is frequent use associated with a lack of primary care provider? Can Fam Phys. 2014;60(4):e223-e9. 59. Panopalis P, Gillis JZ, Yazdany J, Trupin L, Hersh A, Julian L, et al. Frequent use of the emergency department among persons with systemic lupus erythematosus. Arthritis Care Res (Hoboken). 2010;62(3):401-8. Epub 2010/04/15. doi: 10.1002/acr.20107. PubMed PMID: 20391487; PubMed Central PMCID: PMCPMC3759153. 60. Paul P, Heng BH, Seow E, Molina J, Tay SY. Predictors of frequent attenders of emergency department at an acute general hospital in Singapore. Emerg Med J. 2010;27(11):843-8. doi: 10.1136/emj.2009.079160. Pereira M, Singh V, Hon CP, Greg McKelvey T, Sushmita S, De Cock M, editors. 61. Predicting future frequent users of emergency departments in California state2016: Association for Computing Machinery, Inc. 62. Pines JM, Buford K. Predictors of frequent emergency department utilization in 2006;43(3):219-23. Southeastern Pennsylvania. J Asthma. doi: 10.1080/02770900600567015. 63. Quilty S, Shannon G, Yao A, Sargent W, McVeigh MF. Factors contributing to frequent attendance to the emergency department of a remote Northern Territory hospital. Med J Aust. 2016;204(3):111.e1-7.

466 64. Samuels-Kalow ME, Bryan MW, Shaw KN. Predicting Subsequent High467 Frequency, Low-Acuity Utilization of the Pediatric Emergency Department. Acad Pediatr.
468 2017;17(3):256-60. doi: 10.1016/j.acap.2016.11.008.

469
45. Schmoll S, Boyer L, Henry JM, Belzeaux R. [Frequent visitors to psychiatric
470
471
471
471
472
473
474
474
474
475
475
476
476
477
477
478
478
479
479
479
470
470
470
470
470
470
470
471
471
471
471
471
472
473
474
474
474
474
474
474
475
474
474
475
474
475
474
475
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
474
<l

472 66. Soler JJ, Sanchez L, Roman P, Martinez MA, Perpina M. Risk factors of emergency
 473 care and admissions in COPD patients with high consumption of health resources. Respir
 474 Med. 2004;98(4):318-29. Epub 2004/04/10. PubMed PMID: 15072172.

13 475 Sun BC, Burstin HR, Brennan TA. Predictors and outcomes of frequent emergency 67. 14 476 department users. Academic Emergency Medicine. 2003;10(4):320-8. doi: 15 477 10.1197/aemj.10.4.320. 16

478
 478
 478
 479
 479
 479
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480

All and a probability of the probability o

- 485 70. Vandyk AD, VanDenKerkhof EG, Graham ID, Harrison MB. Profiling Frequent
 486 Presenters to the Emergency Department for Mental Health Complaints: Socio487 Demographic, Clinical, and Service Use Characteristics. Arch Psychiatr Nurs.
 488 2014;28(6):420-5. doi: 10.1016/j.apnu.2014.09.001.
- 489
 489
 489
 490
 490
 490
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 492
 491
 492
 491
 492
 491
 492
 491
 491
 491
 492
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
- 493
 493
 493
 494
 494
 494
 494
 494
 494
 495
 495
 496
 496
 497
 498
 498
 499
 499
 490
 490
 490
 491
 491
 491
 492
 493
 494
 495
 495
 496
 496
 497
 497
 498
 498
 498
 499
 499
 499
 490
 490
 490
 490
 490
 490
 490
 491
 491
 491
 492
 493
 494
 495
 496
 496
 497
 498
 498
 498
 498
 499
 498
 498
 498
 499
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
- 497 Watase H, Hagiwara Y, Chiba T, Camargo CA, Jr., Hasegawa K. Multicentre 73. 39 40 498 observational study of adults with asthma exacerbations: who are the frequent users of the 41 499 emergency department in Japan? BMJ Open. 2015;5(4):e007435. Epub 2015/04/30. doi: 42 500 10.1136/bmjopen-2014-007435. PubMed PMID: 25922104; PubMed Central PMCID: 43 PMCPMC4420980. 501 44

502 74. Woo JH, Grinspan Z, Shapiro J, Rhee SY. Frequent Users of Hospital Emergency 45 503 Departments in Korea Characterized by Claims Data from the National Health Insurance: 46 47 504 А Cross Sectional Study. PloS one. 2016;11(1):e0147450. doi: 48 505 10.1371/journal.pone.0147450. 49

506 507 50. Wu J, Grannis SJ, Xu H, Finnell JT. A practical method for predicting frequent use of emergency department care using routinely available electronic registration data. BMC 508 Emerg Med. 2016;16:12. Epub 2016/02/11. doi: 10.1186/s12873-016-0076-3. PubMed 509 PMID: 26860825; PubMed Central PMCID: PMCPMC47484445.

59 60

1 2 3

4

5

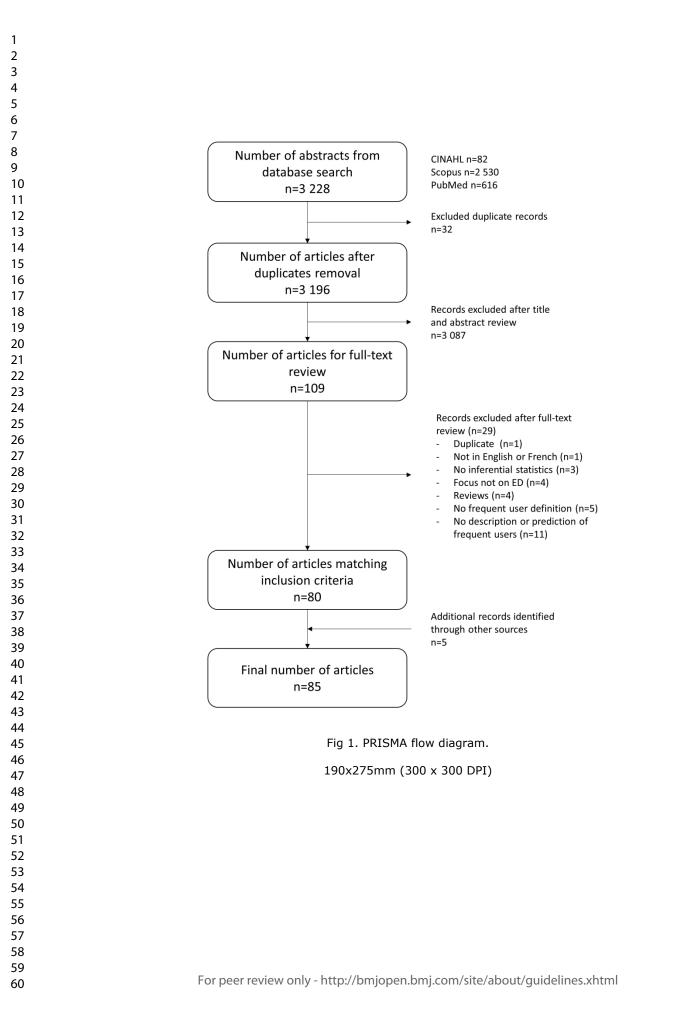
6

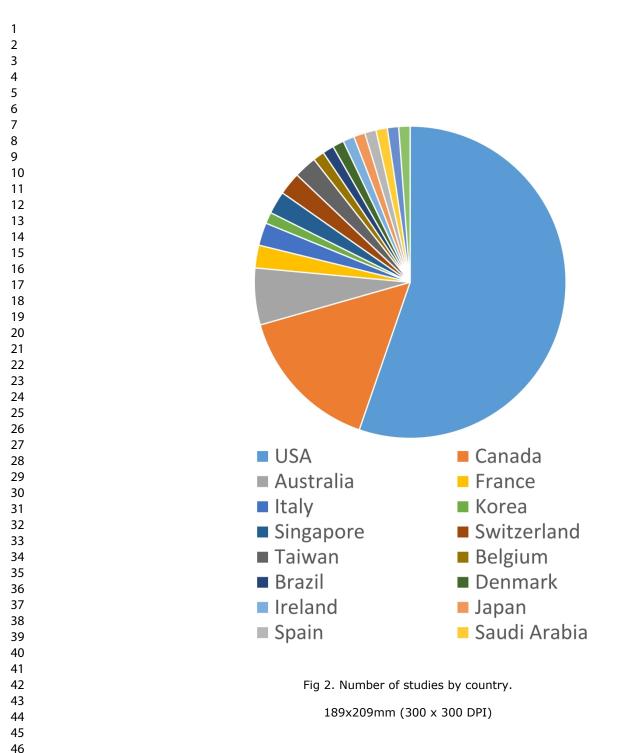
7

59

60

BMJ Open


2 3 510 Hasegawa K, Tsugawa Y, Tsai CL, Brown DFM, Camargo Jr CA. Frequent 76. 4 511 utilization of the emergency department for acute exacerbation of chronic obstructive 5 pulmonary disease. Respir Res. 2014;15(1). doi: 10.1186/1465-9921-15-40. 512 6 513 77. Freitag FG, Kozma CM, Slaton T, Osterhaus JT, Barron R. Characterization and 7 prediction of emergency department use in chronic daily headache patients. Headache: The 514 8 515 Journal of Head and Face Pain. 2005;45(7):891-8. 9 10 Friedman BW, Serrano D, Reed M, Diamond M, Lipton RB. Use of the Emergency 516 78. 11 517 Department for Severe Headache. A Population-Based Study. Headache: The Journal of 12 518 Head and Face Pain. 2009;49(1):21-30. 13 519 79. O'Toole TP, Pollini R, Gray P, Jones T, Bigelow G, Ford DE. Factors identifying 14 520 high-frequency and low-frequency health service utilization among substance-using adults. 15 521 J Subst Abuse Treat. 2007;33(1):51-9. 16 17 522 Pasic J, Russo J, Roy-Byrne P. High utilizers of psychiatric emergency services. 80. 18 523 Psychiatr Serv. 2005;56(6):678-84. Epub 2005/06/09. doi: 10.1176/appi.ps.56.6.678. 19 524 PubMed PMID: 15939943. 20 525 81. Rask KJ, Williams MV, McNagny SE, Parker RM, Baker DW. Ambulatory health 21 526 care use by patients in a public hospital emergency department. J Gen Intern Med. 22 527 1998;13(9):614-20. 23 528 Blonigen DM, Macia KS, Bi X, Suarez P, Manfredi L, Wagner TH. Factors 24 82. 25 529 associated with emergency department useamong veteran psychiatric patients. Psychiatr 26 530 Q. 2017:1-12. doi: 10.1007/s11126-017-9490-2. 27 531 Hasegawa K, Tsugawa Y, Camargo CA, Jr., Brown DF. Frequent utilization of the 83. 28 532 emergency department for acute heart failure syndrome: a population-based study. Circ 29 533 Cardiovasc Qual Outcomes. 2014;7(5):735-42. Epub 2014/08/21. doi: 30 10.1161/circoutcomes.114.000949. PubMed PMID: 25139183. 534 31 Huvnh C, Ferland F, Blanchette-Martin N, Ménard JM, Fleury MJ. Factors 32 535 84. 33 Influencing the Frequency of Emergency Department Utilization by Individuals with 536 34 537 Substance Use Disorders. Psychiatr Q. 2016;87(4):713-28. doi: 10.1007/s11126-016-35 538 9422-6. 36 539 85. Lin WC, Bharel M, Zhang J, O'Connell E, Clark RE, Frequent emergency 37 540 department visits and hospitalizations among homeless people with medicaid: Implications 38 541 for medicaid expansion. American journal of public health. 2015;105:S716-S22. doi: 39 40 542 10.2105/AJPH.2015.302693. 41 543 Beck A, Sanchez-Walker E, Evans LJ, Harris V, Pegler R, Cross S. Characteristics 86. 42 544 of people who rapidly and frequently reattend the emergency department for mental health 43 545 needs. Eur J Emerg Med. 2016:23(5):351-5. Epub 2015/12/03. doi: 44 10.1097/mej.000000000000349. PubMed PMID: 26629766. 546 45 547 Andrén KG, Rosenqvist U. Heavy users of an emergency department-A two year 87. 46 47 548 follow-up study. Soc Sci Med. 1987;25(7):825-31. doi: 10.1016/0277-9536(87)90040-2. 48 Girts TK, Crawford AG, Goldfarb NI, Bachleda M, Grogg A. Predicting high 549 88. 49 550 utilization of emergency department services among patients with a diagnosis of psychosis 50 551 in a medicaid managed care organization. Dis Manage. 2002;5(4):189-96. 51 552 89. Christensen EW, Kharbanda AB, Velden HV, Payne NR. Predicting Frequent 52 Emergency Department Use by Pediatric Medicaid Patients. Popul Health Manag. 553 53 554 2017;20(3):208-15. doi: 10.1089/pop.2016.0051. 54 55 56 57 58 31


Hardie TL, Polek C, Wheeler E, McCamant K, Dixson M, Gailey R, et al. 90. Characterising emergency department high-frequency users in a rural hospital. Emerg Med J. 2015;32(1):21-5. doi: 10.1136/emermed-2013-202369. 91. Meyer JP, Qiu J, Chen NE, Larkin GL, Altice FL. Frequent emergency department use among released prisoners with human immunodeficiency virus: Characterization including a novel multimorbidity index. Academic Emergency Medicine. 2013;20(1):79-88. doi: 10.1111/acem.12054. 92. Milbrett P, Halm M. Characteristics and predictors of frequent utilization of emergency services. J Emerg Nurs. 2009;35(3):191-8; guiz 273. Epub 2009/05/19. doi: 10.1016/j.jen.2008.04.032. PubMed PMID: 19446122. 93. Neuman MI, Alpern ER, Hall M, Kharbanda AB, Shah SS, Freedman SB, et al. Characteristics of recurrent utilization in pediatric emergency departments. Pediatrics. 2014;134(4):e1025-e31. doi: 10.1542/peds.2014-1362. Ngamini-Ngui A, Fleury MJ, Moisan J, Grégoire JP, Lesage A, Vanasse A. High 94. users of emergency departments in quebec among patients with both schizophrenia and a substance use disorder. Psychiatr Serv. 2014;65(11):1389-91. 95. Altman DG. Practical statistics for medical research. London: CRC press; 1990. 96. Moe J, Bailey AL, Oland R, Levesque L, Murray H. Defining, quantifying, and characterizing adult frequent users of a suburban Canadian emergency department. Can J Emerg Med. 2013;15(4):214-26. doi: 10.2310/8000.2013.130936. Wajnberg A, Hwang U, Torres L, Yang S. Characteristics of frequent geriatric users 97. of an urban emergency department. J Emerg Med. 2012;43(2):376-81. Epub 2011/11/02. doi: 10.1016/j.jemermed.2011.06.056. PubMed PMID: 22040771. Kononenko I. Machine learning for medical diagnosis: history, state of the art and 98. perspective. Artif Intell Med. 2001;23(1):89-109. Epub 2001/07/27. PubMed PMID: 11470218. Liao S-H, Chu P-H, Hsiao P-Y. Data mining techniques and applications-A decade 99. review from 2000 to 2011. Expert systems with applications. 2012;39(12):11303-11. Wang S, Summers RM. Machine learning and radiology. Med Image Anal. 100. 2012;16(5):933-51. Epub 2012/04/03. doi: 10.1016/j.media.2012.02.005. PubMed PMID: 22465077; PubMed Central PMCID: PMCPMC3372692. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine 101. learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2015;13:8-17. Epub 2015/03/10. doi: 10.1016/j.csbj.2014.11.005. PubMed PMID: 25750696; PubMed Central PMCID: PMCPMC4348437. Ramos-Pollan R, Guevara-Lopez MA, Suarez-Ortega C, Diaz-Herrero G, Franco-102. Valiente JM, Rubio-Del-Solar M, et al. Discovering mammography-based machine learning classifiers for breast cancer diagnosis. J Med Syst. 2012;36(4):2259-69. Epub 2011/04/12. doi: 10.1007/s10916-011-9693-2. PubMed PMID: 21479624. Murdoch TB, Detsky AS. The inevitable application of big data to health care. 103. JAMA. 2013;309(13):1351-2. Epub 2013/04/04. doi: 10.1001/jama.2013.393. PubMed PMID: 23549579. 104. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. New York: Springer; 2009. 105. Jolliffe IT. Principal Component Analysis and Factor Analysis. Principal component analysis: Springer; 1986. p. 115-28.

60

BMJ Open

1 2 3 4 5	601 602 603	106. Burgel PR, Paillasseur JL, Caillaud D, Tillie-Leblond I, Chanez P, Escamilla R, et al. Clinical COPD phenotypes: a novel approach using principal component and cluster analyses. European Respiratory Journal. 2010;36(3):531-9.
6 7 8 9 10 11 12	604 605 606 607 608	107. Gordon DB, Polomano RC, Pellino TA, Turk DC, McCracken LM, Sherwood G, et al. Revised American Pain Society Patient Outcome Questionnaire (APS-POQ-R) for quality improvement of pain management in hospitalized adults: preliminary psychometric evaluation. J Pain. 2010;11(11):1172-86. Epub 2010/04/20. doi: 10.1016/j.jpain.2010.02.012. PubMed PMID: 20400379.
13 14 15 16 17	609 610 611 612 613	108. Gasquet I, Villeminot S, Estaquio C, Durieux P, Ravaud P, Falissard B. Construction of a questionnaire measuring outpatients' opinion of quality of hospital consultation departments. Health Qual Life Outcomes. 2004;2(1):43. Epub 2004/08/06. doi: 10.1186/1477-7525-2-43. PubMed PMID: 15294020; PubMed Central PMCID: PMCPMC516447.
18 19 20 21 22 23	614 615 616 617 618	 109. Koenker R. Quantile regression: Cambridge university press; 2005. 110. Ding R, McCarthy ML, Desmond JS, Lee JS, Aronsky D, Zeger SL. Characterizing waiting room time, treatment time, and boarding time in the emergency department using quantile regression. Academic Emergency Medicine. 2010;17(8):813-23. 111. Bottai M, Cai B, McKeown RE. Logistic quantile regression for bounded outcomes.
24 25 26	619 620	Stat Med. 2010;29(2):309-17. Epub 2009/11/27. doi: 10.1002/sim.3781. PubMed PMID: 19941281
27 28 29 30	621	
31 32 33 34		
35 36 37 38 39		
40 41 42 43		
44 45 46 47		
48 49 50 51		
52 53 54 55		
56 57 58 50		33

Research strategies used in:

- CINAHL: ("revolving door" OR (frequen* OR high OR heavy OR repeat) N3 (hospital* OR utili?ation OR attend* OR consult* OR visit* OR flyer* OR use* OR patient*)) AND "emergency department" AND ((statistic* OR predict* OR *variate OR model* OR "regression")
- Scopus: TITLE-ABS-KEY ("revolving door" OR (frequen* OR high OR heavy OR repeat) W/3 (hospital* OR utili?ation OR attend* OR consult* OR visit* OR flyer* OR use* OR patient*)) AND TITLE-ABS-KEY ("emergency department") AND (TITLE-ABS-KEY (predict* OR "univariate" OR "multivariate" OR model* OR "regression") OR KEY ({statistics and numerical data})) AND (EXCLUDE (EXACTKEYWORD , "Controlled Study ") OR EXCLUDE (EXACTKEYWORD , " Comparative Study ") OR EXCLUDE (EXACTKEYWORD , "Clinical Trial") OR EXCLUDE (EXACTKEYWORD , "Clinical Trial") OR EXCLUDE (EXACTKEYWORD , "Controlled Clinical Trial"))
- PUBMED: ((("Emergency Medical Services"[Mesh] OR emergency OR emergencies)) AND ("repeat use" OR "heavy user" OR "heavy users" OR "high attender" OR "high attenders" OR "high attendere" OR "high user" OR "high attenders" OR "high users" OR "high user" OR "high users" OR "high utilisation" OR "high utilization" OR "frequent consultation" OR "frequent consultant" OR "frequent consultants" OR "frequent consults" OR "frequent consults" OR "frequent attender" OR "frequent attenders" OR "frequent attenders" OR "frequent visit" OR "frequent visits" OR "frequent visitor" OR "frequent visitors" OR "frequent visitors" OR "frequent visit" OR "frequent visits" OR "frequent visitor" OR "frequent visitors" OR "frequent visitor

user" OR "frequent users" OR "frequent utilisation" OR "frequent utilization" OR "high consultation" OR "high consultations" OR "high consultant" OR "high consultants" OR "high consult" OR "high consults" OR "frequent hospitalisation" OR "frequent hospitalisations" OR "frequent hospitalization" OR "frequent hospitalizations" OR "repeat hospitalisation" OR "repeat hospitalisations" OR "repeat hospitalization" OR "repeat hospitalizations" OR "revolving door")) AND ("Statistics" [Mesh] OR "predictive" OR "univariate" OR "multivariate" OR "prediction" OR "model" OR "models" OR "modeling" OR "modelization" OR "modelling" OR "modelisation" OR "regression")

BMJ Open

Statistical tools used for analyses of frequent users of emergency department: A scoping review

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-027750.R1
Article Type:	Research
Date Submitted by the Author:	22-Mar-2019
Complete List of Authors:	Chiu, Yohann; Université de Sherbrooke, Department of family medicine and emergency medicine Racine-Hemmings, François; Université de Sherbrooke, Department of family medicine and emergency medicine Dufour, Isabelle; Universite de Sherbrooke, Department of family medicine and emergency medicine Vanasse, Alain; Université de Sherbrooke, Department of family medicine and emergency medicine Chouinard, Maud-Christine; Université du Québec à Chicoutimi, Department of Health Sciences Bisson, Mathieu; Université de Sherbrooke, Department of family medicine and emergency medicine Hudon, Catherine; Université de Sherbrooke, Department of family medicine and emergency medicine
Primary Subject Heading :	Health services research
Secondary Subject Heading:	Research methods, Emergency medicine
Keywords:	STATISTICS & RESEARCH METHODS, FREQUENT USERS, ACCIDENT & EMERGENCY MEDICINE

SCHOLARONE[™] Manuscripts

2 3

1	
2	
3 4	
4	
5	
6	
7	
8	
9	
) 10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
26 27	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50 57	
58	
59	
60	

11

Statistical tools used for analyses of frequent users of emergency department: A scoping review

Yohann M. Chiu^{1*}, François Racine-Hemmings¹, Isabelle Dufour¹, Alain 4

Vanasse¹, Maud-Christine Chouinard², Mathieu Bisson¹, Catherine Hudon¹ 5

¹ Département de médecine de famille et de médecine d'urgence, Université 6

de Sherbrooke, Sherbrooke, Québec, Canada 7

² Département des sciences de la santé, Université du Québec à Chicoutimi, 8

- Chicoutimi, Québec, Canada 9
- * Correspondence: yohann.chiu@usherbrooke.ca 10

12 Abstract

Objective: Frequent users represent a small proportion of emergency department users, but they account for a disproportionately large number of visits. Their use of emergency departments is often considered suboptimal. It would be more efficient to identify and treat those patients earlier in their health problem trajectory. It is therefore essential to describe their characteristics and to predict their emergency department use. In order to do so, adequate statistical tools are needed. The objective of this study was to determine the statistical tools used in identifying variables associated with frequent use or predicting the risk of becoming a frequent user.

Methods: We performed a scoping review following an established 5-stage methodological framework. We searched PubMed, Scopus, and CINAHL databases in February 2019 using search strategies defined with the help of an information specialist. Out of 4,534 potential abstracts, we selected 114 articles based on defined criteria and presented in a content analysis.

Results: We identified four classes of statistical tools. Regression models were found to 27 be the most common practice, followed by hypothesis testing. The logistic regression was 28 found to be the most used statistical tool, followed by chi-square test and t-test of 29 associations between variables. Other tools were marginally used.

Conclusions: This scoping review lists common statistical tools used for analyzing 31 frequent users in emergency departments. It highlights the fact that some are well 32 established while others are much less so. More research is needed to apply appropriate 33 techniques to health data or to diversify statistical point of views.

2		
3 4 5	34	Article summary
6 7 8	35	Strengths and limitations of this study
9 10	36	• First overview of statistical tools used in frequent users analysis
11 12 13	37	• Follows a well-defined methodological framework in an extensive body of
14 15	38	literature
16 17	39	• Quality assessment is not performed in a scoping review
18 19 20	40	• Studies in other languages than English or French might have been missed
21 22 23 24 25 26 27 28	41	• Studies in other languages than English or French might have been missed
29 30 31 32 33 34 35 36		
37 38 39 40 41		
42 43 44 45 46		
47 48 49 50		
51 52 53 54 55 56		
57 58 59		3
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1. Background

Emergency department (ED) "frequent users" are a sub-group of ED users that make repeated, multiple visits during a given amount of time. Though there is no consensus about definition for frequent users, thresholds in the literature range from two to more than ten ED visits per year [1, 2], while the most common one is more than four ED visits per year [1, 2]. Frequent users represent a small proportion of ED users but account for a large number of visits [3-5]. They often display complex characteristics such as low socioeconomic status combined with physical and mental health issues [6]. As such, their ED use is considered suboptimal [7], as the best strategy would be to identify those patients at an earlier stage in their health problem trajectory, in order to treat them more efficiently [8]. Furthermore, frequent users' visits may lead to overcrowding in EDs and decreased quality of care [2]. Identifying factors that best describe those users and predict their ED use is therefore an essential task to improve ED care as well as frequent users' health problems. Adequate statistical tools are needed to that end. Although they are numerous, no literature review has been published yet about statistical tools used for analyzing ED frequent users. Therefore, the aim of our study was to draw up a list of statistical tools used in identifying variables associated with frequent use or predicting the risk of becoming a frequent user.

2. Methods

In order to list the statistical tools used in describing variables associated with and prediction of frequent ED use, we conducted a scoping review. We followed the 5-stage methodology of Arksey and O'Malley [9] adapted by Levac *et al.* [10]. The methodological

BMJ Open

framework of a scoping review allows "mapping rapidly the key concepts underpinning a
research area and the main sources and types of evidence available" [11], thus allowing us
to identify gaps in the literature and future research opportunities.

67 Stage 1: Identifying the research question

68 We defined our research question as follows: What statistical tools are used in the 69 identification of variables associated with frequent ED users and in their prediction?

70 Stage 2: Identifying relevant studies

We searched PubMed, CINAHL, and Scopus databases in February 2019, using search
strategies developed with the help of an information specialist (see the supplementary
appendix for the complete search strategy). Keywords included variants of "frequent
users", "emergency departments" and "statistical tools".

75 There were no restriction regarding the population age or sex, health conditions, study76 period or country.

77 Stage 3: Study selection

78 Articles written in French or in English were included using the following criteria:

- The study must focus on frequent users of EDs (studies focusing on re-visits or on frequent visits other than in EDs were excluded);
- The study must have an explicit definition of frequent users, such as four visits in one year (reviews were excluded);

• The study must use at least one statistical tool that is classified as inferential (not descriptive, as defined by The Cambridge Dictionary of Statistics [12]), such as hypothesis tests, regression models, decision trees, or others;

• The study's objectives must include identifying variables associated with frequent use or predicting the risk of becoming a frequent user.

We collected 4,534 potential abstracts (Fig 1). Of those, 32 were duplicates, and 4,344 were excluded by an investigator (YC) after reading the title and the abstract. At this stage, studies were discarded if it was explicit from the title and the abstract that they were unfit for the scoping review (for instance studies about frequent use of inpatient services, systematic reviews, etc.). In case of uncertainty, studies were kept for complete reading. Then, YC and FRH or ID independently evaluated the remaining 158 full text articles, of which 109 matched the above criteria. A third evaluator was consulted in case of discrepancy. Reasons for exclusion were: not in French or English (one), duplicate (three), systematic review (four), no inferential statistics (five), no explicit definition of frequent users (five), focus not on ED (fourteen), no description or prediction of frequent users (seventeen). A reference search among the references of the 109 included articles yielded five relevant articles. Thus, 114 articles were included in this study, of which YC, ID, and MB examined the full texts.

101 Fig 1. PRISMA flow diagram.

102 Stage 4: Charting the data

YC, MB and ID independently extracted the corresponding data. Reported characteristics
 were the first (two) author(s), the publication year, the study location, the population, the

3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
16
17
18
19
20
21
22
22 23
24
25
25
26
27
28
29
30
31
31 32 33
33
34
24 27
35
36 37
37
38
39
40
41
42
43
44
44 45
46
47
48
49
50
51
52
53
55 54
56
57
58
59
60

105 frequent users' definition, the objectives, the sample size, and the statistical tools used 106 concerning the research question.

107 Stage 5: Collating, summarizing and reporting the results

108 The results are reported via a content analysis [13].

109 Patient and public involvement

110 Patients or public were not involved in this study.

3. Results

The studies main characteristics are presented in Table 1. Out of 114 studies, 65 were conducted in the United States, 17 in Canada and 8 in Australia (Fig 2). The various statistical tools were classified into four main categories: regression, hypothesis testing,

115 machine learning, and other tools.

116 Table 1. Main characteristics of the 86 included studies.

Authors, year, and country	Population	Frequent user definition	Study main objectives	Study cohort size	Statistical tools used
Aagaard, J. <i>et al.</i> 2013 Denmark	Psychiatric	≥5 visits per year	To identify predictors of frequent use of a psychiatric emergency room	8,034	Logistic regression
Adams, R.J. <i>et al.</i> 2000 Australia	Adults with asthma	≥2 visits per year	To identify whether factors other than severity and low socioeconomic status were associated with this disproportionate use	293	Logistic regression
Ahn, E. <i>et al.</i> 2018 Australia	General population aged ≤70 years	≥4 visits per year	To examine the characteristics of frequent visitors to EDs and develop a predictive model to identify those with high risk of a future representations to ED among younger and general population	170,134	Maximum likelihood monotone coarse classifier algorithm Logistic regression Mixed-effects mode

Alghanim, S.A. & Alomar, B.A. 2015 Saudi Arabia	All	≥3 visits per year	To determine the prevalence of frequent use of EDs in public hospitals, to determine factors associated with such use, and to identify patients'	666	Chi-square test Logistic regression
Alpern, E.R. <i>et al.</i> 2014 United States	All	≥4 visits per year	reasons for frequent use To describe the epidemiology of and risk factors for recurrent and high frequency use of the ED by children	695,188	Negative binomial regression Logistic regression Generalized estimating equations
Andren, K.G. & Rosenqvist, U. 1987 Sweden	All	≥4 visits per year	To follow a cohort of heavy ED users with regard to changes in medical and psycho-social profiles and ED use and to identify predictors for a maintained high use of ED services and the relationship between changes in access to social networks and utilization of medical care services	232	Decision trees Linear regression
Andrews, C.M. <i>et al.</i> 2018 United States	Medicaid enrollees with addiction	≥2 visits during a 2 year-period	To examine whether the number of outpatient addiction programs accepting Medicaid in South Carolina counties is linked to repeat use of the emergency department for addiction-related conditions	2,401	Logistic regression
Arfken, C.L. <i>et al.</i> 2004 United States	Psychiatric	≥6 visits per year	To identify risk factors for people who use psychiatric emergency services repeatedly and to estimate their financial charges	74	Logistic regression
Batra, P. <i>et al.</i> 2017 United States	Women	≥3 visits per 3 months	To use population data to identify patient characteristics associated with a postpartum maternal emergency department visit within 90 days of discharge after birth	1,071,232	Logistic regression Receiver operating characteristic curve
Beck, A. <i>et al.</i> 2016 United Kingdom	Mental health	≥3 visits in 3 months	To statistically identify characteristics associated with a shorter time to re-attendance and a higher number of overall ED admissions with a Mental Health Liaison Service referral	24,010	Cox regression Negative binomial regression
Bieler, G. et al.	All	≥4 visits per year	To identify the social and medical factors associated	719	Wilcoxon rank-sum test

2012 Switzerland			with frequent ED use and to determine if frequent users were more likely to have a combination of these factors in a universal health insurance system		Logistic regression
Billings, J. & Raven, M.C. 2013 United States	All	 ≥3 visits per year ≥5 visits per year ≥8 visits per year ≥10 visits per year 	To examine whether it is possible to predict who will become a frequent ED user with predictive modeling and to compare ED expenditures to total Medicaid services expenditures	212,259	Logistic regression
Birmingham, L.E. <i>et al.</i> 2017 United States	All	≥4 visits per year	To characterize frequent ED users, including their reason for presenting to the ED and to identify perceived barriers to care from the users' perspective	1,523	t-test Chi-square test Wilcoxon rank-sum test
Blair, M. <i>et al.</i> 2017 United-Kingdom	Children	≥4 visits per year	To describe the sociodemographic and clinical characteristics of preschoolers who attend ED a large District General Hospital	10,169	Chi-square test Poisson regression Mann-Whitney U tes
Blonigen, D.M. <i>et al.</i> 2017 United States	Veteran psychiatric	≥5 visits per year	To identify patient-level factors associated with ED use among veteran psychiatric patients and to examine factors associated with different subgroups of ED users including "high utilizers"	226,122	Chi-square test Zero-truncated negative binomial regression Logit regression
Boyer, L. <i>et al.</i> 2011 France	Psychiatric	≥6 visits per year	To examine characteristics of frequent visitors to a psychiatric emergency service in a French public teaching hospital over six years	1,285	Logistic regression
Brennan, J.J. <i>et al.</i> 2014 United States	Psychiatric	≥4 visits per year	To assess the incidence of psychiatric visits among frequent ED users and utilization among frequent psychiatric users	788,005	Kruskal-Wallis test Mann-Whitney U tes Logistic regression
Buhumaid, R. <i>et al.</i> 2015 United States	Psychiatric	≥4 visits per year	To evaluate demographic factors associated with increased ED use among people with psychiatric conditions	569	Logistic regression
Burner, E. <i>et al.</i> 2018 United States	People with diabetes	≥3 visits per 6 months	To describe characteristics of patients with poorly controlled diabetes who have high ED utilization, and compare them with	108	Logistic regression

			patients with lower ED utilization		
Cabey, W.V. <i>et al.</i> 2014 United States	All	90th percentile	To define the threshold and population factors associated with pediatric ED use above the norm during the first 36 months of life	16,664	Nonparametric distribution fit Logistic regression Bootstrap Clopper-Pearson method
Castner, J. <i>et al.</i> 2015 United States	People with psychiatric and substance abuse diagnoses	≥3 visits per year	To stratify individuals by overall health complexity and examine the relationship of behavioral health diagnoses (psychiatric and substance abuse) as well as frequent treat-and-release ED utilization in a cohort of Medicaid recipients	56,491	Logistic regression
Chambers, C. <i>et al.</i> 2013 Canada	Homeless	90th percentile	To identify predictors of ED use among a population-based prospective cohort of homeless adults in Toronto, Ontario	1,165	Logistic regression
Chang, G. <i>et al.</i> 2014 United States	Psychiatric	≥4 visits per year or ≥3 visits during 2 consecutive months	To identify the patient characteristics associated with frequent ED use and develop a tool to predict risk for returning in the next month	863	Chi-square test Logistic regression
Christensen, E.W. <i>et al.</i> 2017 United States	All	≥4 visits per year	To determine the patient characteristics and health care utilization patterns that predict frequent ED use (≥4 visits per year) over time to assist health care organizations in targeting patients for care management	13,265	Zero-inflated Poisso regression Receiver operating characteristic curve
Chukmaitov, A.S. <i>et al.</i> 2012 United States	People with ambulatory care-sensitiv e conditions	≥4 visits per year	To study characteristics of all, occasional, and frequent ED visits due to ambulatory care-sensitive conditions	4,914,933 (number of visits)	Logistic regression
Colligan, E.M. <i>et al.</i> 2016 United States	Medicare beneficiaries	≥4 visits per year	To examine factors associated with persistent frequent ED use during a 2-year period among Medicare beneficiaries	5,400,237	Logistic regression Wald test
Colligan, E.M. <i>et al.</i> 2017 United States	Medicare beneficiaries	≥4 visits per year	To examine factors related to frequent ED use in a large, nationally representative sample of Medicare beneficiaries	5,778,038	Chi-square test Analysis of variance Logistic regression Wald test

Cunningham, A. <i>et al.</i> 2017 United States	All	95th percentile ≥10 visits per year	To compare frequent and infrequent ED visitors' primary care utilization and perceptions of primary care access, continuity, and connectedness and to examine primary care utilization and perceptions as predictors of ED use	1,113	t-test Chi-square test Logistic regression
Das, L.T. <i>et al.</i> 2017 United States	Children with asthma	≥2 visits per year	To explore the predictability of frequent ED use among children with asthma using data from an EHR from one medical center	2,691	Wilcoxon rank-sun test Chi-square test LASSO logistic regression Regularized logistic regression Decision trees Random forests Support vector machines
Doran, K.M. <i>et al.</i> 2013 United States	All	2-4 visits per year 5-10 visits per year 11-25 visits per year ≥25 visits	To identify sociodemographic and clinical factors most strongly associated with frequent ED use within the Veterans Health Administration nationally	930,712	Logistic regression
Doran, K.M. <i>et al</i> . 2014 United States	All	≥3 visits per year	To examine patients' reasons for using the ED for low-acuity health complaints, and determine whether reasons differed for frequent ED users versus non-frequent ED users	940	Logistic regressior
Doupe, M.B. <i>et al.</i> 2012 Canada	All	≥7 visits per year	To identify factors that define frequent and highly frequent ED users	105,687	Logistic regression Receiver operating characteristic curve
Fernandes, A.K. <i>et al.</i> 2003 Brazil	All	≥3 visits per year	To identify characteristics related to poor disease control and frequent visits to the ED to apply appropriate clinical management	86	Chi-square test Logistic regressior
Flood, C. <i>et al.</i> 2017 United States	Children	≥4 visits per year	To identify factors associated with high ED utilization among children in vulnerable families	2,631	Chi-square test t-test Logistic regressior
Freitag, F.G. <i>et al.</i> 2005 United States	People with chronic daily headache	≥3 visits per year	To examine the characteristics of chronic daily headache sufferers who use EDs and identify	785	Wilcoxon rank-sun test t-test Chi-square test Poisson regression

			factors predictive of ED visits		Negative binomial regression Logistic regression
Friedman, B.W. <i>et al.</i> 2009 United States	People with severe headache	≥4 visits per year	To determine frequency of ED use and risk factors for use among patients suffering severe headache	13,451	Markov chain Monte Carlo imputation Logistic regression
Frost, D.W. <i>et al.</i> 2017 Canada	All	≥3 visits per year	To determine whether machine learning techniques using text from a family practice electronic medical record can be used to predict future high ED use and total costs by patients who are not yet high ED users or high cost to the healthcare system	43,111	Logistic regression
Girts, T.K. <i>et al.</i> 2002 United States	People with a diagnosis of psychosis	≥2 visits per 6 months	To develop a predictive model of ED utilization for patients where a diagnosis of psychosis could be identified from a claim associated with a medical service provider visit	764	t-test Linear regression
Grinspan, Z.M. et al. 2015 United States	People with epilepsy	≥4 visits per year	To describe (1) the predictability of frequent ED use (a marker of inadequate disease control and/or poor access to care), and (2) the demographics, comorbidities, and use of health services of frequent ED users, among people with epilepsy	8,041	Chi-square test Logistic regression Regularized logistic regression Elastic net logistic regression Decision trees Random forests AdaBoost Support vector machines Receiver operating characteristic curve
Gruneir, A. <i>et al.</i> 2018 Canada	Nursing home residents	≥3 visits per year	To describe repeat ED visits over one year, identify risk factors for repeat use, and characterize "frequent" ED visitors	25,653	Logistic regression Andersen-Gill mode
Hardie, T.L. <i>et al.</i> 2015 United States	All	≥4 visits per year	To describe frequent users of ED services in a rural community setting and the association between counts of patient's visits and discrete diagnoses	1,652	Poisson regression
Hasegawa, K. <i>et al.</i> 2014 United States	People with acute asthma	≥2 visits per year	To examine the proportion and patient characteristics of adult patients with multiple ED visits for	86,224	Chi-square test Kruskal-Wallis test Logistic regression

			acute asthma and the
			associated hospital charges
			To examine the proportion
Hasegawa, K.	People with		and characteristics of
et al.	acute heart	≥ 2 visits per	patients with frequent ED
	failure	year	visits for acute heart
2014	syndrome	J	failure syndrome and
United States	29		associated healthcare
			utilization
			To quantify the proportion
Hasegawa, K.	People with		and characteristics of
<i>et al.</i>	chronic		patients with frequent ED
	obstructive	≥ 2 visits per	visits for acute
2014	pulmonary	year	exacerbation of chronic
United States	disease		obstructive pulmonary
			disease and associated
			healthcare utilization
Huang, J.A. et al.			To characterize frequent
0,	A 11	≥4 visits per	ED users and to identify
2003	All	year	the factors associated with
Taiwan			frequent ED use in a
			hospital in Taiwan
			To identify prospectively
Hudon, C. et al.			personal characteristics and experience of
	All	≥3 visits per	organizational and
2016	All	year	relational dimensions of
Canada			primary care that predict
			frequent use of ED
Hudon, C. et al.			To explore the factors
fiudoli, C. et ut.	People with	≥ 3 visits for	associated with chronic
2017	diabetes	3 consecutive	frequent ED utilization in a
Canada	undoctes	years	population with diabetes
Hunt, K.A. et al.			To identify frequent users
11011, 11.11. Cl Ul.		≥4 visits per	of the ED and determine
2006	All	year	the characteristics of these
United States		jeu	patients
			To assess the
			characteristics of
			individuals with substance
Huynh, C. et al.	D. 1 14		use disorders according to
, ,	People with	≥4 visits per	their frequency of ED
2016	substance	year	utilization, and to examine
Canada	use disorders	2	which variables were
			associated with an increase
			in ED visits using
			Andersen's model
			To examine the persistence
Kanzaria, H.K.			of frequent ED use over an
et al.	A .l. 14 - 1	NA	eleven-year period,
	Adults aged	\geq 4 visits per	describe characteristics of
2017	18-55 years	year	persistent versus non
United States			persistent frequent ED
			users, and identify

59

60

Chi-square test Kruskal-Wallis test

Negative binomial

regression

Linear regression

Chi-square test

Kruskal-Wallis test Logistic regression

Negative binomial

regression Linear regression

Chi-square test

Logistic regression

Mixed-effects logistic

regression

Logistic regression

Decision trees

Logistic regression

Chi-square test

Analysis of variance

Negative binomial

regression

Generalized estimating

equations

Logistic regression

113,033

98,280

800

1,769

62,316

49,603

4,526

173,273

			predictors of persistent		
			frequent ED use		
			To examine rates of		
Kerr, T. et al.			primary care and		Chi-square test
11011, 1. <i>et ut</i> .	Injection	\geq 3 visits during	emergency room use		Wilcoxon signed-rar
2004	drug users	the 2 past years	among injection drug users	883	test
Canada		ine - past years	and to identify correlates		t-test
			of frequent emergency		Logistic regression
			department use		
			To evaluate healthcare		
Kidane, B. et al.	Patients who		resource utilization,		t-test
,	received	\geq 3 visits per	specifically ED visits	2 2 4 4	Wilcoxon rank-sun
2018	oesophagect	year	within 1 year of	3,344	test Figher august to sta
Canada	omy		oesophagectomy, and to		Fisher exact tests
			identify risk factors for ED visits and frequent ED use		Logistic regression
			To describe patient and		
			visit characteristics for		
Kim, J.J. et al.			Canadian ED highly		t-test
	All	99th percentile	frequent users and patient	261	Wilcoxon rank-sum
2018		sour percentine	subgroups with mental	201	test
Canada			illness, substance misuse,		
			or \geq 30 yearly ED visits.		
			To explore the link		
Kirby, S.E. et al.	People with		between frequent		C1 · · · · ·
2010	chronic	\geq 3 visits per	readmissions in chronic	15,806	Chi-square test
Australia	disease	year	disease and patient-related	,	Logistic regression
Australia			factors		
			To identify the factors		
Kirby, S.E. et al.			associated with frequent		Kruskal-Wallis test
	All	\geq 4 visits per	re-attendances in a	15,806	Chi-square test
2011	2 111	year	regional hospital thereby	15,000	Logistic regression
Australia			highlighting possible		Logistic regression
			solutions to the problem		
	Adults who		To describe for most FD		
Klein, LR. et al.	present to		To describe frequent ED		
	the ED	≥20 visits per	users who present to the ED repeatedly for acute	325	Difference in
2018	repeatedly for acute	year	alcohol intoxication and	525	proportions test
United States	alcohol		their ED encounters		
	intoxication		then LD encounters		
	intoAlcution		To describe the		
			distribution of the		
Ko, M. et al.			frequency of ED visits		
- ,	. 11	\geq 4 visits per	among ED users in 2010	170 455	т · .• ·
2015	All	year	and to evaluate the	170,457	Logistic regression
Taiwan		2	association of frequent ED		
			use with various patient		
			characteristics		
Ladow V e			(1) To provide a		
Ledoux, Y. & Minner P			naturalistic evaluation of		Mantel-Haenszel tes
Minner, P.	Psychiatric	≥4 visits per	patients repeating	2,470	Analysis of variance
2006	r sychiatric	year	admissions in a psychiatric	2,470	Logistic regression
			emergency ward		Logistic regression
Belgium			(distinguishing between		

			occasional repeaters and frequent repeaters), (2) to identify patients' characteristics that predict repeated use of		
	D '4		a psychiatric emergency room and (3) to propose adapted treatment models		
Lee, J. <i>et al.</i> 2018 United States	Persons with systemic lupus erythematos us	≥3 visits per year	To identify lupus erythematosus patients who persistently frequented the ED over four years	129	t-test Chi-square test Fisher exact test Logistic regression
Legramante, J.M. <i>et al.</i> 2016 Italy	All	≥4 visits per year	To evaluate and characterize hospital visits of older patients (age 65 or greater) to the ED of a university teaching hospital in Rome, in order to identify clinical and social characteristics potentially associated with "elderly frequent users"	38,016	t-test Logistic regression
Leporatti, L. <i>et al.</i> 2016 Italy	All	90th percentile ≥3 visits per year	To describe the characteristics of patients who frequently accessed accident and emergency departments located in the metropolitan area of Genoa	147,864	Zero-truncated negative binomial regression Logistic regression
Lim. S.F. <i>et al.</i> 2014 Singapore	People with asthma	≥4 visits per year	To describe the characteristics of frequent attenders who present themselves multiple times to the ED for asthma exacerbations	155	t-test Chi-square test Mann-Whitney U te Logistic regression
Limsrivilai, J. <i>et al.</i> 2017 United States	People with inflammator y bowel diseases	75th percentile of the annual medical charges	To identify predictive factors readily available in a standard electronic medical record to develop a multivariate model to predict the probability of inflammatory bowel diseases-related hospitalization, ED visit, and high total charges in the subsequent year	1,430	Receiver operating characteristic curve Logistic regression
Lin, W.C. <i>et al.</i> 2015 United States	Homeless people	≥3 visits per year	To examined factors associated with frequent hospitalizations and ED visits among Medicaid members who were homeless	6,494	Chi-square test Analysis of variance Negative binomial regression
Liu, S.W. <i>et al.</i> 2013	People with mental health,	≥4 visits per year	To determine whether frequent ED users are more likely to make at	65,201	t-test Chi-square test Logistic regression

United States	alcohol or drug-related diagnoses		least one and a majority of visits for mental health, alcohol, or drug-related complaints compared to non-frequent users		
Mandelberg, J.H. <i>et al.</i> 2000 United States	All	≥5 visits per year	To determine how the demographic, clinical, and utilization characteristics of frequent ED users differ from those of other ED patients	43,383	Logistic regression Survival analysis
Mann, E.G. <i>et al.</i> 2016 Canada	People with chronic pain	90th percentile	To investigate the role of chronic pain in healthcare visits and to document the frequency of healthcare visits and to identify characteristics associated with frequent visits	1,274	Logistic regression
Mann, E.G. <i>et al.</i> 2017 Canada	People with chronic pain	90th percentile	To describe factors associated with high clinic and emergency room use among individuals with chronic pain	702	t-test Logistic regression
McMahon, C.G. <i>et al.</i> 2016 Ireland	All	≥4 visits per year	To examine the characteristics of the frequent ED attenders by age (under 65 and over 65 years)	19,310	Chi-square test Logistic regression
Meyer, J.P. <i>et al.</i> 2013 United States	Prisoners with Human Immunodefi ciency Virus	≥2 visits per year	To characterize the medical, social, and psychiatric correlates of frequent ED use among released prisoners with human immunodeficiency virus	151	t-test Chi-square test Poisson regression
Milani, S.A. <i>et al.</i> 2016 United States	People with multimorbid chronic diseases	≥4 visits per year	To examine the association between multimorbid chronic disease and frequency ED visits in the past 6 months, by sex, in a community sample of adults from northern Florida	7,143	Breslow-Day test Logistic regression
Milbrett, P. & Halm, M. 2009 United States	All	≥6 visits per year	To describe the characteristics of patients who frequently use ED services and to determine factors most predictive of frequent ED use	201	Chi-square test Mann-Whitney U tes Poisson regression
Moe, J. <i>et al.</i> 2013 Canada	All	95th percentile	To develop uniform definitions, quantify ED burden, and characterize adult frequent users of a suburban community ED	14,223	Chi-square test Mann-Whitney U tes

Mueller, E.L. <i>et al.</i> 2016 United States	Children with cancer	90th percentile ≥4 visits per year	To (a) evaluate patient and ED encounter characteristics of frequent ED utilizers among children with cancer and (b) quantify healthcare services for frequent ED utilizers	17,943	Chi-square test Logistic regression
Nambiar, D. <i>et al.</i> 2017 Australia	Adults who inject drugs	≥3 visits per year	To describe demographic factors, patterns of substance use and previous health service use associated with frequent use of EDs in people who inject drugs	612	Negative binomial regression Logistic regression
Nambiar, D. <i>et al.</i> 2018 Australia	Adults who inject drugs	≥3 visits per year	To describe characteristics of state-wide ED presentations in a cohort of people who inject drugs, compare presentation rates to the general population, and to examine characteristics associated with frequent ED use	678	Negative-binomial regression Generalized estimating equations
Naseer, M. <i>et al.</i> 2018 Sweden	Older adults	≥4 visits during a 4 year-period	To assess the association of health related quality of life with time to first ED visit and/or frequent ED use in older adults during four-year period and if this association differs in 66-80 and 80+ age groups	673	Cox proportional hazard model Logistic regression
Neufeld, E. <i>et al.</i> 2016 Canada	All	≥4 visits per year	To describe factors predicting frequent ED use among rural older adults receiving home care services in Ontario, Canada	12,118	Chi-square test Logistic regression
Neuman, M.I. <i>et al.</i> 2014 United States	All	≥4 visits per year	To compare the characteristics and ED health services of children by their ED visit frequency	1,896,547	Mantel-Haenszel test Receiver operating characteristic curve Generalized linear mixed-effects models
Ngamini-Ngui, A. <i>et al.</i> 2014 Canada	Patients with schizophreni a and a co-occurring substance use disorder	≥5 visits per year	To assess factors associated over time with high use of EDs by Quebec patients who had schizophrenia and a co-occurring substance use disorder	2,921	Generalized estimating equations
Norman, C. <i>et al.</i> 2016 United States	All	≥4 visits per year	To clearly define and describe characteristics of frequent emergency medical services users in order to provide	539	Logistic regression

			suggestions for efficient and cost-effective interventions that address the healthcare needs of these users		
O'Toole, T.P. <i>et al.</i> 2007 United States	Substance users	≥3 visits per year	To identify factors associated with 12-month high frequency utilization of ambulatory care, ED, and inpatient medical care in a substance-using population	326	t-test Chi-square test Logistic regressior
Palmer, E. <i>et al.</i> 2014 Canada	All	≥4 visits per year	To determine if having a primary care provider is an important factor in frequency of ED use	59,803	Chi-square test Wilcoxon rank-sun test Logistic regressior
Panopalis, P. <i>et al.</i> 2010 United States	People with systemic lupus erythematos us	≥3 visits per year	To describe characteristics of systemic lupus erythematosus patients who are frequent users of the ED and to identify predictors of frequent ED use	807	One-way analysis o variance Logistic regression
Pasic, J. <i>et al.</i> 2005 United States	Psychiatric	2 SD above the mean number of visits ≥6 visits per year ≥4 visits in a quarter	To examine the sociodemographic and clinical characteristics of high utilizers of psychiatric emergency services	17,481	Chi-square test Logistic regression
Paul, P. <i>et al.</i> 2010 Singapore	All	≥5 visits per year	To determine factors associated with frequent ED attendance at an acute general hospital in Singapore.	82,172	Chi-square test Logistic regression
Peltz, A. <i>et al.</i> 2017 United States	Medicaid- insured children	≥4 visits per year	To describe the characteristics of children who sustain high-frequency ED use over the following 2 years	470,449	Chi-square test Wilcoxon signed-rat test Logistic regressior
Pereira, M. <i>et al.</i> 2016 United States	All	≥5 visits per year	To develop machine learning models that can predict future ED utilization of individual patients, using only information from the present and the past	4,604,252	Decision trees AdaBoost Logistic regression
Pines, J.M. & Buford, K. 2006 United States	People with asthma	90th percentile ≥3 visits per year	To determine socioeconomic and demographic factors that predict frequent ED use among asthmatics in southeastern Pennsylvania	1,799	t-test Chi-square test Logistic regression
Quilty, S. et al.	People without	≥6 visits per year	To determine the clinical and environmental	273	t-test Chi-square test

2016 Australia	chronic health conditions		variables associated with frequent presentations by adult patients to a remote Australian hospital ED for reasons other than chronic health conditions		Fisher exact tests Logistic regression
Rask, K.J. <i>et al.</i> 1998 United States	All	≥10 visits per 2 years	To describe primary care clinic use and emergency ED use for a cohort of public hospital patients seen in the ED, identify predictors of frequent ED use, and ascertain the clinical diagnoses of those with high rates of ED use	351	Chi-square test t-test Logistic regression
Rauch, J. <i>et al</i> . 2017 Germany	All	≥3 visits per year	To examine (1) what ambulatory care sensitive conditions are linked to frequent use, (2) how frequent users can be clustered into subgroups with respect to their diagnoses, acuity and admittance, and (3) whether frequent use is related to higher acuity or admission rate	23,364	Chi-square test t-test Linear regression Non-negative matrix factorization
Sacamo, P. <i>et al.</i> 2018 United States	Persons with substance use	≥2 visits per 6 months	To examine associations of individuals and their social networks with high frequency ED use among persons reporting substance use	653	Poisson regression
Samuels-Kalow, M.E. <i>et al.</i> 2017 United States	All	≥4 visits per year	To derive and test a predictive model for high frequency (4 or more visits per year), low-acuity (emergency severity index 4 or 5) utilization of the pediatric ED	60,799 (number of visits)	Likelihood ratio tes Chi-square test Receiver operating characteristic curve Logistic regression
Samuels-Kalow, M.E. <i>et al.</i> 2018 United States	Patients with asthma exacerbation	≥4 visits per year	To create a predictive model to prospectively identify patients at risk of high-frequency ED utilization for asthma and to examine how that model differed using state wide versus single-center data	254,132	Chi-square test Fisher exact tests Wilcoxon rank-sun test Hosmer-Lemeshow t Receiver operating characteristic curve Logistic regression
Samuels-Kalow, M.E. <i>et al.</i> 2018 United States	Children	≥3 visits per year	To develop a population-based model for predicting Medicaid- insured children at risk for high frequency of low- resource-intensity ED visits	743,016	Chi-square test Receiver operating characteristic curve Logistic regressior

Schlichting, L.E. <i>et al.</i> 2018 United States	Children	≥2 visits per year	To examine the utilization of the ED by children with different forms of insurance and describe factors associated with repeat ED use and high reliance on the ED in a nationally representative sample of children in the United States	47,926	Logistic regression
Schmoll, S. <i>et al</i> . 2015 France	Psychiatric	≥9 visits during the 6 past years	To describe demographic and clinical characteristics of frequent visitors to a psychiatric emergency ward in a French Academic hospital over 6 years in comparison to non-frequent visitors	8,800	t-test Chi-square test Logistic regression
Soler, J.J. <i>et al.</i> 2004 Spain	People with chronic obstructive pulmonary disease	≥3 visits per year	To identify factors associated with frequent use of hospital services (emergency care and admissions) in patients with chronic obstructive pulmonary disease	64	t-test Chi-square test Kolmogorov-Smirnov test Mann-Whitney U test Logistic regression
Street, M. <i>et al.</i> 2018 Australia	Adults aged ≥65 years	≥4 visits per year	To characterise older people who frequently use ED and compare patient outcomes with older non-frequent ED attenders	21,073	Chi-square test Wilcoxon rank-sum test Ordinal regression
Sun, B.C. <i>et al.</i> 2003 United States	All	≥4 visits per year	To identify predictors and outcomes associated with frequent ED users	2,333	Likelihood ratio test Chi-square test Hosmer-Lemeshow tes Logistic regression Bootstrap
Supat, B. <i>et al.</i> 2018 United States	Children	≥6 visits per year	To assess pediatric ED utilization in California and to describe those identified as frequent ED users	690,130	Logistic regression
Tangherlini, N. <i>et al.</i> 2010 United States	All	≥4 visits per year	To identify the factors that lead to increased use of emergency medical services (EMS) by patients ≥65 years of age in an urban EMS system	10,918	Kruskal-Wallis test Chi-square test Logistic regression
Thakarar, K. <i>et al.</i> 2015 United States	Homeless	≥2 visits per year	To identify risk factors for frequent emergency room (ER) visits and to examine the effects of housing status and HIV serostatus on ER utilization	412	Chi-square test Logistic regression
Vandyk, A.D. et al.	Mental health	≥5 visits per year	To explore the population profile and associated socio demographic,	536	Hosmer-Lemeshow tes Logistic regression

2014 Canada			clinical, and service use factors of individuals who make frequent visits (5+annually) to hospital EDs for mental health complaints		
Vinton, V.T. <i>et al.</i> 2014 United States	Chronic diseases and mental health	≥4 visits per year	To compare the characteristics of US adults by frequency of ED utilization, specifically the prevalence of chronic diseases and outpatient primary care and mental health utilization	157,818	Logistic regressio
Vu, F. <i>et al.</i> 2015 Switzerland	Mental health and substance users	≥4 visits per year	To determine the proportions of psychiatric and substance use disorders suffered by EDs' frequent users compared to the mainstream ED population, to evaluate how effectively these disorders were diagnosed in both groups of patients by ED physicians, and to determine if these disorders were predictive of a frequent use of ED services	389	Fisher exact tests Chi-square test Logistic regressio
Wajnberg, A. <i>et al.</i> 2012 United States	All	≥4 visits over 6 months	To determine factors associated with frequent ED utilization by older adults	5,718	Chi-square test t-test
Watase, H. <i>et al.</i> 2015 Japan	Adults with asthma	≥2 visits per year	To characterise the adult patients who frequently presented to the ED for asthma exacerbation in Japan	1,002	One-way analysis variance Chi-square test Kruskal-Wallis tes Logistic regression Negative binomia regression
Weidner, T.K. <i>et al.</i> 2018 United States	Patients with colorectal cancer	≥3 visits per year	To assess ED utilization in patients with colorectal cancer to identify factors associated with ED visits and subsequent admission, as well as identify a high- risk subset of patients that could be targeted to reduce ED visits	13,446	Chi-square test t-test Logistic regressio Negative binomial regressio
Wong, T.H. <i>et al.</i> 2018 Singapore	Patients with cancer	≥4 visits per year	To identify factors associated with patients becoming ED frequent attenders after a cancer- related hospitalization	47,235	Cox regression Survival analysis

117 118 Fig 2. Nun	nber of studio	es by country.			
Zook, H.G. <i>et al.</i> 2017 United States	Native american children	≥4 visits per year	To determine differences in emergency department ED use by Native American children in rural and urban settings and identify factors associated with frequent ED visits	39,220	Logistic regression Hierarchical model Multiple imputation
Wu, J. <i>et al.</i> 2016 United States	All	≥16 visits during the 2 past years	To assess the feasibility of using routinely gathered registration data to predict patients who will visit EDs with high frequency	1,272,367	Logistic regression Receiver operating characteristic curve
Woo, J.H. <i>et al.</i> 2016 Korea	All	≥4 visits per year	To understand whether the findings about frequent ED users in prior studies in the US healthcare system would be replicated in the Korean population, and whether these findings are independent of insurance status or ethnicity	156,246	t-test Chi-square test Linear regression Logistic regression

Regression tools consist of a set of processes aimed at quantifying the relationships between a dependent variable and other explanatory variables [14]. They are useful for description and prediction. Some regression models may be *regularized*, which in this case means avoiding overfitting with too many explanatory variables, or *zero-truncated*, which means that the model is not allowed to take null values.

Out of the four categories (regression, hypothesis testing, machine learning, and other tools), the most reported tool was the logistic regression (90 studies [3-5, 15-101], two of which are regularized by LASSO or elastic net techniques), followed by the binomial regression (13 studies [18, 46, 55, 73, 76, 77, 82, 89, 102-106], 2 of which are zero-truncated). To a lesser extent, the Poisson regression (seven studies [77, 107-112], one of which is zero-truncated), the linear regression (six studies [74, 76, 102, 113-115]),

BMJ Open

the analysis of variance (six studies [44, 59, 73, 96, 103, 104]), the Cox regression (four studies [87, 93, 105, 116]), and hierarchical models (one study [90]) were also used. In those studies, the results are often associated with odds-ratios. The mixed-effects models were mentioned three times [39, 91, 117]. Regression parameters were estimated by generalized estimating equations in four studies [18, 103, 106, 118] while parameter confidence intervals were estimated by the bootstrap procedure (two studies [25, 67]) and the Clopper-Pearson method (one study [25]). The receiver operating characteristic curve (ROC), or equivalently the sensitivity, specificity, or area under the curve ("c-statistic"), was computed in ten studies [4, 36, 48, 64, 75, 83, 88, 107, 117, 119]. Finally, two studies performed imputation to account for missing data (Markov chain Monte Carlo and multiple imputations [78, 90]).

142 Hypothesis testing

Statistical tests aim at testing a specific hypothesis about data and rely on probability distributions [120]. In the selected studies, the tests aimed mainly at comparing two samples (frequent users and non-frequent users).

The most common statistical tests were the chi-square test (53 studies [17, 28, 31, 34, 36-38, 40-42, 47, 49, 52, 54, 56, 58, 60, 62-69, 72-74, 76, 77, 79-82, 85, 88, 89, 94, 96, 97, 101-104, 109, 110, 112, 115, 119, 121-124]) and the t-test (24 studies [40, 45, 47, 49, 62, 63, 65, 66, 74, 77, 79, 81, 85, 89, 94, 95, 97, 98, 109, 114, 115, 122, 124, 125]), which measured associations between variables and goodness-of-fit. As an alternative to the chi-square test for association, five studies used the Fisher exact test [63, 72, 94, 98, 119]. Sample mean differences were assessed by 23 studies with the Mann-Whitney U test (also called the Wilcoxon rank-sum test [20, 23, 31, 47, 58, 66, 77, 98, 110, 119, 121, 123-125]),

its variant for dependent samples the Wilcoxon signed rank test [40, 101], or the Kruskal-Wallis test [23, 37, 42, 68, 73, 76, 102]. The difference in proportions test [126], Mantel-Haenszel test (test for differences in contingency tables, two studies [44, 117]), the likelihood ratio test (significance test for nested models, two studies [64, 67]), the Hosmer-Lemeshow test (goodness-of-fit for logistic regression, two studies [67, 70]), the Wald test (significance test for regression coefficients, two studies [30, 96]), and the Breslow-Day test (test for homogeneity in contingency tables odds ratio [53]) were also used to a lesser degree. Finally, one study checked the assumption of normality with the Kolmogorov-Smirnov test [66].

163 Machine learning

Machine learning tools are a set of algorithms that can learn and adapt to data in order to classify or predict, for instance [127]. In the selected studies, the machine learning tools aimed mainly at classifying users (frequent versus non-frequent).

Two studies used random forests [31, 36] along with support vector machines. Decision trees, which include classification and regression trees, were implemented by five studies [5, 31, 36, 61, 113]. Adaptive boosting, or AdaBoost, is a meta-algorithm that combines with other algorithms and helps for better performances. It was computed in two studies [36, 61].

172 Other tools

Two studies used survival analysis [50, 116], while another one fitted a nonparametric distribution to their data [25]. Finally, maximum likelihood monotone coarse classifier

BMJ Open

algorithm was used as a binning method [91] and non-negative matrix factorization as aclustering technique [115].

4. Discussion

The most exploited statistical tools arguably came from regression analysis. This may be because regression is well established in medical statistics or also because it is the most natural tool when trying to find significant variables to explain a dependent variable (in this case, to be a frequent user). Moreover, it allows predicting easily the risk of a new user becoming a frequent user, depending on its covariates. Other tools from hypothesis testing or machine learning also proved to be popular, albeit to a much lesser extent. Combining these statistical techniques may help in discovering significant and complementary patterns, compared to using tools from one class only. In our scoping review, two studies mixed statistical tools from regression, hypothesis testing, and machine learning [31, 36]. In those studies, the author evaluated various performance criteria. While logistic regression performed well, other techniques such as random forests or LASSO regression were also competitive. Besides the fact that logistic regression can display modest performances [128], random forests and LASSO regression can complete logistic regression. The first technique can be used to assess the importance of each independent variable in the model, while the second technique can be useful for automatic selection of features. Likewise, using a variety of statistical tools can help complete or confirm results obtained with established methodologies. Different tools from one class can also be mixed in order to achieve different stages of the analysis (for instance, different types of regression [82]).

The analysis of frequent ED users could benefit from using more machine learning techniques. Those were found to be not as common as regression or hypothesis testing, although they are especially appropriate when dealing with classification, prediction, or big data. Tools such as support vector machines (which were used by two studies in this scoping review [31, 36]), artificial neural networks, or Bayesian networks are common classifiers and predictors in the artificial intelligence community [129]. They are popular for instance in cancer diagnostic and prognosis, which strongly rely on classification and prediction [130-132]. In particular, support vector machines, decision trees or self-organizing maps can deal with binary outcomes, which is usually the case for frequent use outcomes. They usually require large datasets in order to overcome overfitting, but this is becoming less and less of an issue in health sciences [133]. Nevertheless, machine learning tools often use a black box approach as there are many intermediary steps leading to the final solution. While each step usually consists of simple arithmetic operations, their multiple interactions can be more difficult to interpret. In spite of this opacity, they still display good performances in classifying and predicting. In some cases, they may be more accurate than the widely used logistic regression [134]. Those methods would thus turn out to be less useful in data exploration [135]. Machine learning tools are getting popular in other fields in health sciences, such as critical care [136], cardiology [137] or emergency medicine [138]. The authors state that their fields would benefit from this growing popularity, though results need to be analyzed and interpreted in collaboration with clinicians.

218 Other tools exist that may also be suitable for describing the associated variables or the 219 prediction of frequent ED users but were not reported in the literature. Among those, Page 27 of 47

BMJ Open

principal component analysis (PCA) is a dimensional reduction and visualization technique, sometimes used with cluster or discriminant analysis [139]. Based on all the original explanatory variables, PCA constructs new ones by summing and weighing them differently. More weight is given to relevant variables so that those latter become dominant in the new constructions while still including all variables. For instance, Burgel et al. (2010) built chronic obstructive pulmonary disease clinical phenotypes by constructing new relevant variables with PCA and by grouping similar subjects in this new space with cluster analysis [140]. Moreover, PCA has already been used for the construction of questionnaires and diagnosis tools in a medical context [141, 142], both of which can prove useful in the identification of frequent users.

As mentioned, regression techniques were common in the selected studies. Yet, quantile regression (QR, [143]) was not mentioned. QR is a generalization of mean regression in the sense that its focus is not only the mean of the dependent variable distribution (such as in classical linear regression) but any quantile of it. QR thus represents an alternative to define frequent users by the high quantiles of ED visit distribution (e.g. the 90th quantile). Eight studies [25, 27, 46, 48, 51, 54, 62, 121] defined frequent users with quantiles, but they did not use OR. OR would allow for finer investigations in the different quantiles of ED users in relationship to the explanatory variables. For instance, the association between age and the number of ED visits may be significantly different across the 10th (low users) and 90th (frequent users) quantiles. Such a heterogeneous association would be uncovered by QR, while usually unseen with a classical mean regression. Ding et al. (2010) used QR to characterize waiting room and treatment times in EDs [144]. They explored the lowest, median and highest of those times and highlighted predictors that were significant only in

particular quantiles. Usually, QR requires a continuous dependent variable as opposed to a logistic regression, though it is possible to combine these two regressions [145]. Furthermore, defining frequent users by quantiles would allow for better comparison between studies as there is no common definition for frequent users.

Strengths and limitations

To the best of our knowledge, this scoping review is the first to list statistical tools that are used in the identification of variables associated with frequent ED use and the prediction of frequent users. Besides, it was conducted following a well-defined methodological framework. The search strategies were designed with an information specialist in three different databases. Two independent evaluators selected the articles and extracted the data while a third independent evaluator settled disagreements, ensuring that all included studies were relevant. One limitation of our study is that quality assessment is not performed in a scoping review. However, this should not alter the results, since the aim was to list which statistical tools have been applied in the literature. Moreover, the majority of articles were in English, which may introduce a selection bias (for instance, one excluded article was in Spanish). More than half of the reviewed studies were indeed conducted in the USA, making the results difficult to compare to other countries.

5. Conclusions

Frequent ED users represent a complex issue, and their analysis require adequate statistical tools. In this context, this scoping review shows that some tools are well established, such as logistic regression and chi-square test, while others such as support vector machines are

BMJ Open

264	less so, though they would deserve to get more attention. It also outlines some research
265	opportunities with other tools not yet explored.
266	Acknowledgments
267	We would like to thank information specialist Josée Toulouse for her help in defining the
268	search strategies and Tina Wey (PhD) for revising the text.
269	Authors contributions
270	YC and CH designed the study with FRH, ID, and AV. YC, ID, CH, and MB collected and
271	analysed the data. YC and CH wrote the first draft of the manuscript. FRH, ID, AV, MCC,
272	and MB contributed to the writing of the manuscript. All authors read and approved the
273	final manuscript.
274	Funding
275	This work was financed by grants from the Fonds de recherche du Québec – Santé and the
276	Centre de recherche du Centre hospitalier universitaire de Sherbrooke. The funders had
277	no role in study design, data collection and analysis, decision to publish, or preparation of
278	the manuscript.
279	Competing interests
280	The authors declare that they have no competing interests.
281	Data sharing statement
282	No additional data are available.
	29
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

283 **References**

1 2 3

4 5 6

7

8 9

10

11

12

13

Kumar GS, Klein R. Effectiveness of case management strategies in reducing
 emergency department visits in frequent user patient populations: a systematic review. J
 Emerg Med. 2013;44(3):717-29. Epub 2012/12/04. doi: 10.1016/j.jemermed.2012.08.035.
 PubMed PMID: 23200765.

288 2. LaCalle E, Rabin E. Frequent users of emergency departments: the myths, the data,
289 and the policy implications. Ann Emerg Med. 2010;56(1):42-8. Epub 2010/03/30. doi:
290 10.1016/j.annemergmed.2010.01.032. PubMed PMID: 20346540.

14 290 10.1016/j.annemergmed.2010.01.032. PubMed PMID: 20346340.
15 291 3. Hunt KA, Weber EJ, Showstack JA, Colby DC, Callaham ML. Characteristics of
16 292 Frequent Users of Emergency Departments. ANN EMERG MED. 2006;48(1):1-8. doi:
17 293 10.1016/j.annemergmed.2005.12.030.

18 294 Doupe MB, Palatnick W, Day S, Chateau D, Soodeen RA, Burchill C, et al. 4. 19 295 Frequent users of emergency departments: Developing standard definitions and defining 20 296 factors. ANN MED. prominent risk EMERG 2012;60(1):24-32. doi: 21 297 10.1016/j.annemergmed.2011.11.036. 22

23 298 5. Hudon C, Courteau J, Krieg C, Vanasse A. Factors associated with chronic frequent
24 299 emergency department utilization in a population with diabetes living in metropolitan
300 areas: A population-based retrospective cohort study. BMC Health Serv Res. 2017;17(1).
301 doi: 10.1186/s12913-017-2453-3.

302
303
304
304
305
305
306
306
307
307
307
308
309
309
301
301
301
301
301
301
302
301
301
301
302
301
301
302
302
303
304
305
305
306
307
307
308
308
309
309
309
300
300
300
301
301
301
302
302
303
304
304
304
305
304
305
304
305
304
305
304
305
304
305
304
305
304
305
304
305
304
305
304
305
304
305
305
306
307
308
308
309
309
309
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300

305 Ruger JP, Richter CJ, Spitznagel EL, Lewis LM. Analysis of costs, length of stay, 7. 31 32 306 and utilization of emergency department services by frequent users: implications for health 33 307 policy. 2004;11(12):1311-7. Acad Emerg Med. Epub 2004/12/04. doi: 34 308 10.1197/j.aem.2004.07.008. PubMed PMID: 15576522.

35
 309
 36
 37
 309
 309
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310
 310

311 9. Arksey H, O'Malley L. Scoping studies: towards a methodological framework.
312 International journal of social research methodology. 2005;8(1):19-32.

40 313 10. Levac D, Colquhoun H, O'Brien KK. Scoping studies: advancing the methodology.
41 314 Implement Sci. 2010;5(1):69. Epub 2010/09/22. doi: 10.1186/1748-5908-5-69. PubMed
42 315 PMID: 20854677; PubMed Central PMCID: PMCPMC2954944.

⁴³ 316 11. Mays N, Roberts E, Popay J. Synthesising research evidence. Studying the organisation and delivery of health services: Research methods. 2001:188-220.

46 318 12. Everitt BS, Skrondal A. The Cambridge Dictionary of Statistics. 4th ed. Cambridge:
47 319 Cambridge University Press Cambridge; 2010.

320 13. Vaismoradi M, Turunen H, Bondas T. Content analysis and thematic analysis:
321 Implications for conducting a qualitative descriptive study. Nurs Health Sci.
322 2013;15(3):398-405. Epub 2013/03/14. doi: 10.1111/nhs.12048. PubMed PMID:
323 23480423.

324 14. Harrell FE, Jr. Regression modeling strategies: with applications to linear models,
325 logistic and ordinal regression, and survival analysis. 2 ed. New York: Springer
326 International Publishing; 2015.

57

58 59

1	
2 3 327 4 228	15. Aagaard J, Aagaard A, Buus N. Predictors of frequent visits to a psychiatric
⁴ 328 5 329	emergency room: a large-scale register study combined with a small-scale interview study. Int J Nurs Stud. 2014;51(7):1003-13. Epub 2013/12/10. doi:
	10.1016/j.ijnurstu.2013.11.002. PubMed PMID: 24315543.
8 331	16. Adams RJ, Smith BJ, Ruffin RE. Factors associated with hospital admissions and
9 332	repeat emergency department visits for adults with asthma. Thorax. 2000;55(7):566-73.
10 333	doi: 10.1136/thorax.55.7.566.
$ \begin{array}{ccc} 11 & 334 \\ 12 & 225 \end{array} $	17. Alghanim SA, Alomar BA. Frequent use of emergency departments in Saudi public
13 333	hospitals: Implications for primary health care services. Asia-Pac J Public Health.
14 336	2015;27(2):NP2521-NP30. doi: 10.1177/1010539511431603.
15 337	18. Alpern ER, Clark AE, Alessandrini EA, Gorelick MH, Kittick M, Stanley RM, et
16 338	al. Recurrent and high-frequency use of the emergency department by pediatric patients.
17 339 18 340	Academic Emergency Medicine. 2014;21(4):365-73. doi: 10.1111/acem.12347.
10	19. Arfken CL, Zeman LL, Yeager L, White A, Mischel E, Amirsadri A. Case-control
¹⁹ 341 20 342	study of frequent visitors to an urban psychiatric emergency service. Psychiatr Serv. 2004;55(3):295-301. Epub 2004/03/06. doi: 10.1176/appi.ps.55.3.295. PubMed PMID:
21 242	15001731.
22 343 23 344	20. Bieler G, Paroz S, Faouzi M, Trueb L, Vaucher P, Althaus F, et al. Social and
24 345	medical vulnerability factors of emergency department frequent users in a universal health
25 346	insurance system. Acad Emerg Med. 2012;19(1):63-8. Epub 2012/01/10. doi:
26 347	10.1111/j.1553-2712.2011.01246.x. PubMed PMID: 22221292.
27 348	21. Billings J, Raven MC. Dispelling an urban legend: frequent emergency department
28 349 29 349	users have substantial burden of disease. Health Aff (Millwood). 2013;32(12):2099-108.
30 350	Epub 2013/12/05. doi: 10.1377/hlthaff.2012.1276. PubMed PMID: 24301392; PubMed
31 351	Central PMCID: PMCPMC4892700.
32 352	22. Boyer L, Dassa D, Belzeaux R, Henry JM, Samuelian JC, Baumstarck-Barrau K, et
33 353 34 354	al. Frequent visits to a French psychiatric emergency service: diagnostic variability in
25 334	psychotic disorders. Psychiatr Serv. 2011;62(8):966-70. Epub 2011/08/03. doi:
35 36 355	10.1176/ps.62.8.pss6208_0966. PubMed PMID: 21807840.
37 356 37 357	23. Brennan JJ, Chan TC, Hsia RY, Wilson MP, Castillo EM. Emergency department
38 357 39 358	utilization among frequent users with psychiatric visits. Acad Emerg Med. 2014;21(9):1015-22. Epub 2014/10/02. doi: 10.1111/acem.12453. PubMed PMID:
40 359	25269582.
41 360	24. Buhumaid R, Riley J, Sattarian M, Bregman B, Blanchard J. Characteristics of
⁴² 361	frequent users of the emergency department with psychiatric conditions. J Health Care Poor
43 362	Underserved. 2015;26(3):941-50.
44 363	25. Cabey WV, Macneill E, White LN, Norton HJ, Mitchell AM. Frequent pediatric
46 364	emergency department use in infancy and early childhood. Pediatr Emerg Care.
47 365	2014;30(10):710-7. doi: 10.1097/PEC.00000000000233.
48 366 49 367	26. Castner J, Wu YWB, Mehrok N, Gadre A, Hewner S. Frequent emergency
50 507	department utilization and behavioral health diagnoses. Nurs Res. 2015;64(1):3-12. doi:
51 308	10.1097/NNR.0000000000065.
52 369 52 370	27. Chambers C, Chiu S, Katic M, Kiss A, Redelmeier DA, Levinson W, et al. High
53 370 54 371	Utilizers of Emergency Health Services in a Population-Based Cohort of Homeless Adults. American journal of public health. 2013;103(S2):S302-10. doi:
54 371 55	American journal of public licatul. 2013,103(32).3302-10. dol.
56	
57	
58 59	31
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 372 10.2105/AJPH.2013.301397. PubMed PMID: 104161876. Language: English. Entry Date: 4 373 20131126. Revision Date: 20150711. Publication Type: Journal Article. 5 374 Chang G, Weiss AP, Orav EJ, Rauch SL. Predictors of frequent emergency 28. 6 375 department use among patients with psychiatric illness. Gen Hosp Psychiatry. 7 2014;36(6):716-20. Epub 2014/10/15. doi: 10.1016/j.genhosppsych.2014.09.010. PubMed 376 8 9 377 PMID: 25312277. 10 378 Chukmaitov AS, Tang A, Carretta HJ, Menachemi N, Brooks RG. Characteristics 29. 11 379 of all, occasional, and frequent emergency department visits due to ambulatory care-12 380 sensitive conditions in Florida. J Ambul Care Manage. 2012;35(2):149-58. doi: 13 381 10.1097/JAC.0b013e318244d222. 14 382 30. Colligan EM, Pines JM, Colantuoni E, Howell B, Wolff JL. Risk Factors for 15 Persistent Frequent Emergency Department Use in Medicare Beneficiaries. Ann Emerg 383 16 17 384 Med. 2016;67(6):721-9. Epub 2016/03/08. doi: 10.1016/j.annemergmed.2016.01.033. 18 385 PubMed PMID: 26947801. 19 386 Das LT, Abramson EL, Stone AE, Kondrich JE, Kern LM, Grinspan ZM. 31. 20 387 Predicting frequent emergency department visits among children with asthma using EHR 21 388 data. Pediatr Pulmonol. 2017;52(7):880-90. doi: 10.1002/ppul.23735. 22 389 Doran KM, Colucci AC, Wall SP, Williams ND, Hessler RA, Goldfrank LR, et al. 32. 23 Reasons for emergency department use: do frequent users differ? Am J Manag Care. 390 24 25 391 2014;20(11):e506-e14. 26 392 33. Doran KM, Raven MC, Rosenheck RA. What drives frequent emergency 27 393 department use in an integrated health system? National data from the veterans health 28 394 administration. ANN EMERG MED. 2013;62(2):151-9. doi: 29 395 10.1016/j.annemergmed.2013.02.016. 30 396 Fernandes AK, Mallmann F, Steinhorst AMP, Nogueira FL, Ávila EM, Saucedo 34. 31 32 397 DZ, et al. Characteristics of Acute Asthma Patients Attended Frequently Compared with 33 398 Those Attended Only Occasionally in an Emergency Department. J Asthma. 34 399 2003;40(6):683-90. doi: 10.1081/JAS-120023487. 35 400 Frost DW, Vembu S, Wang J, Tu K, Morris Q, Abrams HB. Using the Electronic 35. 36 401 Medical Record to Identify Patients at High Risk for Frequent Emergency Department 37 Visits and High System Costs. Am J Med. 2017;130(5):601.e17-.e22. doi: 402 38 403 10.1016/j.amjmed.2016.12.008. 39 40 404 36. Grinspan ZM, Shapiro JS, Abramson EL, Hooker G, Kaushal R, Kern LM. 41 Predicting frequent ED use by people with epilepsy with health information exchange data. 405 42 406 Neurology. 2015;85(12):1031-8. doi: 10.1212/WNL.000000000001944. 43 407 Hasegawa K, Tsugawa Y, Brown DFM, Camargo Jr CA. A population-based study 37. 44 of adults who frequently visit the emergency department for acute asthma: California and 408 45 409 2009-2010. Florida. Ann Am Thorac Soc. 2014;11(2):158-66. doi: 46 47 410 10.1513/AnnalsATS.201306-166OC. 48 411 Huang JA, Tsai WC, Chen YC, Hu WH, Yang DY, Factors associated with frequent 38. 49 use of emergency services in a medical center. J Formos Med Assoc. 2003;102(4):222-8. 412 50 413 39. Hudon C, Sanche S, Haggerty JL. Personal Characteristics and Experience of 51 Primary Care Predicting Frequent Use of Emergency Department: A Prospective Cohort 414 52 2016;11(6):e0157489. 415 Study. PLoS One. Epub 2016/06/15. doi: 53 416 10.1371/journal.pone.0157489. PubMed PMID: 27299525; PubMed Central PMCID: 54 55 417 PMCPMC4907452. 56 57 58

59 60

1 2

BMJ Open

1		
2		
3	418	40. Kerr T, Wood E, Grafstein E, Ishida T, Shannon K, Lai C, et al. High rates of
4 5	419	primary care and emergency department use among injection drug users in Vancouver.
6	420	Journal of Public Health. 2005;27(1):62-6. doi: 10.1093/pubmed/fdh189.
7	421	41. Kirby SE, Dennis SM, Jayasinghe UW, Harris MF. Patient related factors in
8	422	frequent readmissions: The influence of condition, access to services and patient choice.
9	423	BMC Health Serv Res. 2010;10. doi: 10.1186/1472-6963-10-216.
10 11	424	42. Kirby SE, Dennis SM, Jayasinghe UW, Harris MF. Frequent emergency attenders:
12	425	Is there a better way? Aust Health Rev. 2011;35(4):462-7. doi: 10.1071/AH10964.
13	426	43. Ko M, Lee Y, Chen C, Chou P, Chu D. Prevalence of and predictors for frequent
14	427	utilization of emergency department: A population-based study. Medicine. 2015;94(29).
15	428	doi: 10.1097/MD.0000000001205.
16 17	429	44. Ledoux Y, Minner P. Occasional and frequent repeaters in a psychiatric emergency
17	430	room. Soc Psychiatry Psychiatr Epidemiol. 2006;41(2):115-21. Epub 2006/03/02. doi: 10.1007/c00127.005.0010 (
19	431	10.1007/s00127-005-0010-6. PubMed PMID: 16508721.
20	432	45. Legramante JM, Morciano L, Lucaroni F, Gilardi F, Caredda E, Pesaresi A, et al.
21	433	Frequent use of emergency departments by the elderly population when continuing care is
22	434 435	 not well established. PLoS ONE. 2016;11(12). doi: 10.1371/journal.pone.0165939. 46. Leporatti L, Ameri M, Trinchero C, Orcamo P, Montefiori M. Targeting frequent
23 24	435	users of emergency departments: Prominent risk factors and policy implications. Health
24 25	430	Policy. 2016;120(5):462-70. doi: 10.1016/j.healthpol.2016.03.005.
26	437	47. Lim SF, Wah W, Pasupathi Y, Yap S, Koh MS, Tan KL, et al. Frequent attenders
27	439	to the ED: patients who present with repeated asthma exacerbations. Am J Emerg Med.
28	440	2014;32(8):895-9. Epub 2014/06/13. doi: 10.1016/j.ajem.2014.04.052. PubMed PMID:
29	441	24919775.
30 31	442	48. Limsrivilai J, Stidham RW, Govani SM, Waljee AK, Huang W, Higgins PDR.
32	443	Factors That Predict High Health Care Utilization and Costs for Patients With
33	444	Inflammatory Bowel Diseases. Clin Gastroenterol Hepatol. 2017;15(3):385-92.e2. doi:
34	445	10.1016/j.cgh.2016.09.012.
35	446	49. Liu SW, Nagurney JT, Chang Y, Parry BA, Smulowitz P, Atlas SJ. Frequent ED
36 37	447	users: Are most visits for mental health, alcohol, and drug-related complaints? AM J
38	448	EMERG MED. 2013;31(10):1512-5. doi: 10.1016/j.ajem.2013.08.006.
39	449	50. Mandelberg JH, Kuhn RE, Kohn MA. Epidemiologic analysis of an urban, public
40	450	emergency department's frequent users. Academic Emergency Medicine. 2000;7(6):637-
41	451	46.
42 43	452	51. Mann EG, Johnson A, VanDenKerkhof EG. Frequency and characteristics of
43 44	453	healthcare visits associated with chronic pain: results from a population-based Canadian
45	454	study. Can J Anesth. 2016;63(4):411-41. doi: 10.1007/s12630-015-0578-6.
46	455	52. McMahon CG, Power Foley M, Robinson D, O'Donnell K, Poulton M, Kenny RA,
47	456	et al. High prevalence of frequent attendance in the over 65s. Eur J Emerg Med. 2016. Epub
48	457	2016/05/04. doi: 10.1097/mej.00000000000000406. PubMed PMID: 27139928.
49 50	458	53. Milani SA, Crooke H, Cottler LB, Striley CW. Sex differences in frequent ED use
50 51	459	among those with multimorbid chronic diseases. AM J EMERG MED. 2016;34(11):2127-
52	460	31. doi: 10.1016/j.ajem.2016.07.059.
53	461	54. Mueller EL, Hall M, Carroll AE, Shah SS, Macy ML. Frequent Emergency
54	462	Department Utilizers Among Children with Cancer. Pediatr Blood Cancer.
55 56	463	2016;63(5):859-64. Epub 2016/02/04. doi: 10.1002/pbc.25929. PubMed PMID: 26841193.
56 57		
58		33
59		
60		For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

464 55. Nambiar D, Stoové M, Dietze P. Frequent emergency department presentations
465 among people who inject drugs: A record linkage study. Int J Drug Policy. 2017;44:115466 20. doi: 10.1016/j.drugpo.2017.03.010.
467 56. Neufeld E, Viau KA, Hirdes JP, Warry W. Predictors of frequent emergency
468 department visits among rural older adults in Ontario using the Resident Assessment

9 Instrument-Home Care. Austr J Rural Health. 2016;24(2):115-22. doi: 10.1111/ajr.12213. 469 10 470 Norman C, Mello M, Choi B. Identifying Frequent Users of an Urban Emergency 57. 11 471 Medical Service Using Descriptive Statistics and Regression Analyses. West J Emerg Med. 12 472 2016;17(1):39-45. Epub 2016/01/30. doi: 10.5811/westjem.2015.10.28508. PubMed 13 473 PMID: 26823929; PubMed Central PMCID: PMCPMC4729417. 14

474 58. Palmer E, Leblanc-Duchin D, Murray J, Atkinson P. Emergency department use:
475 Is frequent use associated with a lack of primary care provider? Can Fam Phys.
476 2014;60(4):e223-e9.

477 59. Panopalis P, Gillis JZ, Yazdany J, Trupin L, Hersh A, Julian L, et al. Frequent use
478 of the emergency department among persons with systemic lupus erythematosus. Arthritis
479 Care Res (Hoboken). 2010;62(3):401-8. Epub 2010/04/15. doi: 10.1002/acr.20107.
480 PubMed PMID: 20391487; PubMed Central PMCID: PMCPMC3759153.

- 481 60. Paul P, Heng BH, Seow E, Molina J, Tay SY. Predictors of frequent attenders of
 482 emergency department at an acute general hospital in Singapore. Emerg Med J.
 483 2010;27(11):843-8. doi: 10.1136/emj.2009.079160.
- 484 61. Pereira M, Singh V, Hon CP, Greg McKelvey T, Sushmita S, De Cock M, editors.
 485 Predicting future frequent users of emergency departments in California state2016:
 486 Association for Computing Machinery, Inc.
- 487 62. Pines JM, Buford K. Predictors of frequent emergency department utilization in 488 Southeastern Pennsylvania. J Asthma. 2006;43(3):219-23. doi: 489 10.1080/02770900600567015.
- 490 63. Quilty S, Shannon G, Yao A, Sargent W, McVeigh MF. Factors contributing to
 491 frequent attendance to the emergency department of a remote Northern Territory hospital.
 492 Med J Aust. 2016;204(3):111.e1-7.
- 493 64. Samuels-Kalow ME, Bryan MW, Shaw KN. Predicting Subsequent High494 Frequency, Low-Acuity Utilization of the Pediatric Emergency Department. Acad Pediatr.
 495 2017;17(3):256-60. doi: 10.1016/j.acap.2016.11.008.
- 40
 496
 496
 45. Schmoll S, Boyer L, Henry JM, Belzeaux R. [Frequent visitors to psychiatric
 497
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 <li
- 499
 499
 499
 46. Soler JJ, Sanchez L, Roman P, Martinez MA, Perpina M. Risk factors of emergency care and admissions in COPD patients with high consumption of health resources. Respir
 46
 501
 46. 2004;98(4):318-29. Epub 2004/04/10. PubMed PMID: 15072172.
- 47 502 67. Sun BC, Burstin HR, Brennan TA. Predictors and outcomes of frequent emergency 48 503 2003;10(4):320-8. department users. Academic Emergency Medicine. doi: 49 504 10.1197/aemj.10.4.320. 50
- 5050568.Tangherlini N, Pletcher MJ, Covec MA, Brown JF. Frequent use of emergency51506medical services by the elderly: a case-control study using paramedic records. Prehosp53507Disaster Med. 2010;25(3):258-64. Epub 2010/06/30. PubMed PMID: 20586020.
- 5450869.Thakarar K, Morgan JR, Gaeta JM, Hohl C, Drainoni ML. Predictors of Frequent55509Emergency Room Visits among a Homeless Population. PLoS One. 2015;10(4):e0124552.
- 56 57

1 2 3

4

5

6

7

8

58

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3		
3 4	510	Epub 2015/04/24. doi: 10.1371/journal.pone.0124552. PubMed PMID: 25906394;
5	511	PubMed Central PMCID: PMCPMC4407893.
6	512	70. Vandyk AD, VanDenKerkhof EG, Graham ID, Harrison MB. Profiling Frequent
7	513	Presenters to the Emergency Department for Mental Health Complaints: Socio-
8	514	Demographic, Clinical, and Service Use Characteristics. Arch Psychiatr Nurs.
9	515	2014;28(6):420-5. doi: 10.1016/j.apnu.2014.09.001.
10	516	71. Vinton DT, Capp R, Rooks SP, Abbott JT, Ginde AA. Frequent users of US
11	517	emergency departments: characteristics and opportunities for intervention. Emerg Med J.
12	518	2014;31(7):526-32. Epub 2014/01/30. doi: 10.1136/emermed-2013-202407. PubMed
13 14	519	PMID: 24473411.
14	520	72. Vu F, Daeppen JB, Hugli O, Iglesias K, Stucki S, Paroz S, et al. Screening of mental
16	521	health and substance users in frequent users of a general Swiss emergency department.
17	522	BMC Emerg Med. 2015;15:27. Epub 2015/10/11. doi: 10.1186/s12873-015-0053-2.
18	523	PubMed PMID: 26452550; PubMed Central PMCID: PMCPMC4600290.
19	525	73. Watase H, Hagiwara Y, Chiba T, Camargo CA, Jr., Hasegawa K. Multicentre
20	524 525	observational study of adults with asthma exacerbations: who are the frequent users of the
21		
22	526	emergency department in Japan? BMJ Open. 2015;5(4):e007435. Epub 2015/04/30. doi: 10.1126/hmianan.2014.007425. Bub Mad. DMID: 25022104. Bub Mad. Cantral. DMCID:
23	527	10.1136/bmjopen-2014-007435. PubMed PMID: 25922104; PubMed Central PMCID:
24 25	528	PMCPMC4420980.
25 26	529	74. Woo JH, Grinspan Z, Shapiro J, Rhee SY. Frequent Users of Hospital Emergency
20	530	Departments in Korea Characterized by Claims Data from the National Health Insurance:
28	531	A Cross Sectional Study. PloS one. 2016;11(1):e0147450. doi:
29	532	10.1371/journal.pone.0147450.
30	533	75. Wu J, Grannis SJ, Xu H, Finnell JT. A practical method for predicting frequent use
31	534	of emergency department care using routinely available electronic registration data. BMC
32	535	Emerg Med. 2016;16:12. Epub 2016/02/11. doi: 10.1186/s12873-016-0076-3. PubMed
33	536	PMID: 26860825; PubMed Central PMCID: PMCPMC4748445.
34	537	76. Hasegawa K, Tsugawa Y, Tsai CL, Brown DFM, Camargo Jr CA. Frequent
35 36	538	utilization of the emergency department for acute exacerbation of chronic obstructive
30 37	539	pulmonary disease. Respir Res. 2014;15(1). doi: 10.1186/1465-9921-15-40.
38	540	77. Freitag FG, Kozma CM, Slaton T, Osterhaus JT, Barron R. Characterization and
39	541	prediction of emergency department use in chronic daily headache patients. Headache: The
40	542	Journal of Head and Face Pain. 2005;45(7):891-8.
41	543	78. Friedman BW, Serrano D, Reed M, Diamond M, Lipton RB. Use of the Emergency
42	544	Department for Severe Headache. A Population-Based Study. Headache: The Journal of
43	545	Head and Face Pain. 2009;49(1):21-30.
44	545 546	79. O'Toole TP, Pollini R, Gray P, Jones T, Bigelow G, Ford DE. Factors identifying
45	540 547	
46 47		high-frequency and low-frequency health service utilization among substance-using adults.
47 48	548 540	J Subst Abuse Treat. 2007;33(1):51-9.
48 49	549	80. Pasic J, Russo J, Roy-Byrne P. High utilizers of psychiatric emergency services.
50	550	Psychiatr Serv. 2005;56(6):678-84. Epub 2005/06/09. doi: 10.1176/appi.ps.56.6.678.
51	551	PubMed PMID: 15939943.
52	552	81. Rask KJ, Williams MV, McNagny SE, Parker RM, Baker DW. Ambulatory health
53	553	care use by patients in a public hospital emergency department. J Gen Intern Med.
54	554	1998;13(9):614-20.
55		
56		
57 59		25
58 59		35
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2

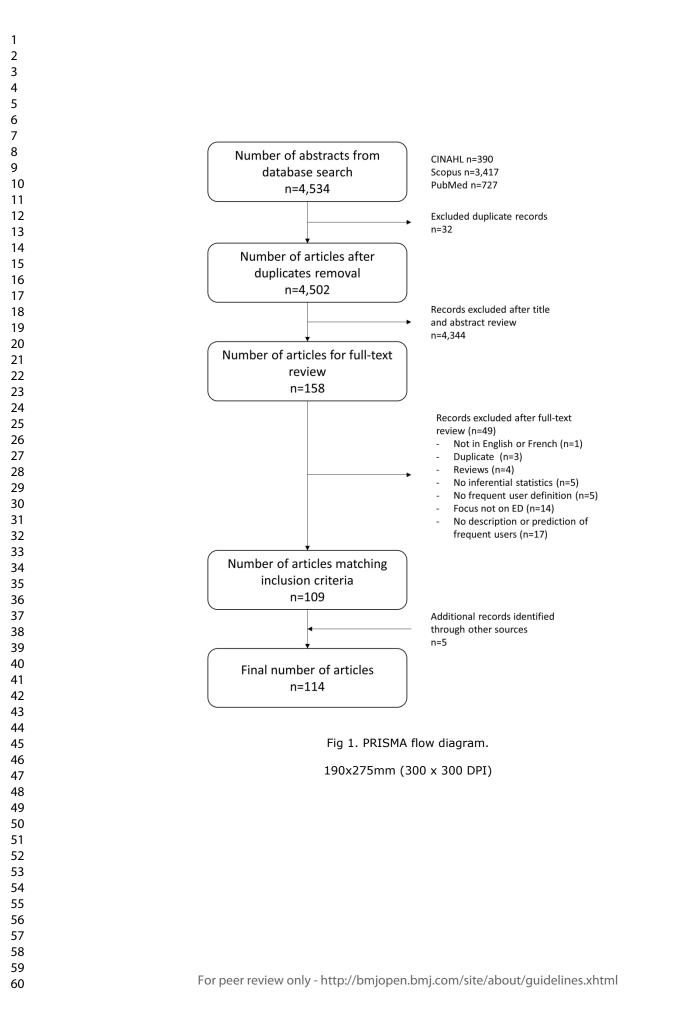
58

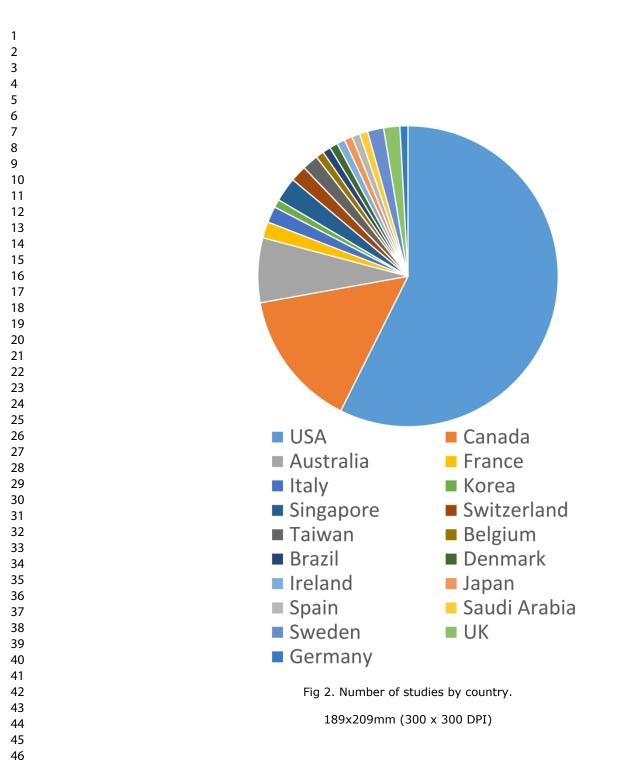
59

60

3 555 Blonigen DM, Macia KS, Bi X, Suarez P, Manfredi L, Wagner TH. Factors 82. 4 556 associated with emergency department useamong veteran psychiatric patients. Psychiatr 5 O. 2017:1-12. doi: 10.1007/s11126-017-9490-2. 557 6 558 83. Batra P, Fridman M, Leng M, Gregory KD. Emergency Department Care in the 7 Postpartum Period: California Births, 2009-2011. Obstet Gynecol. 2017;130(5):1073-81. 559 8 Epub 2017/10/11. doi: 10.1097/aog.00000000002269. PubMed PMID: 29016513. 9 560 10 Burner E, Ruiz A, Sanchez A, Saenz A H, Ayar E, Treacy-Abarca S, et al. 155 561 84. 11 562 Insulin Use Predicts High Emergency Department Utilization Among Patients With Poorly 12 563 Diabetes. ANN **EMERG** MED. 2018;72:S65-S. Controlled doi: 13 10.1016/j.annemergmed.2018.08.160. PubMed PMID: 132033829. Language: English. 564 14 565 Entry Date: In Process. Revision Date: 20181001. Publication Type: Article. Supplement 15 566 Title: Oct2018:Supplement. Journal Subset: Allied Health. 16 17 Flood C, Sheehan K, Crandall M. Predictors of Emergency Department Utilization 567 85. 18 Among Children in Vulnerable Families. Pediatr Emerg Care. 2017;33(12):765-9. doi: 568 19 10.1097/PEC.000000000000658. PubMed PMID: 126685912. Language: English. Entry 569 20 570 Date: 20180621. Revision Date: 20180719. Publication Type: journal article. Journal 21 571 Subset: Biomedical. 22 572 Kanzaria HK, Niedzwiecki MJ, Montoy JC, Raven MC, Hsia RY. Persistent 86. 23 573 Frequent Emergency Department Use: Core Group Exhibits Extreme Levels Of Use For 24 25 574 More Than А Decade. Health Affairs. 2017;36(10):1720-8. doi: 26 575 10.1377/hlthaff.2017.0658. PubMed PMID: 125553100. Language: English. Entry Date: 27 576 20171011. Revision Date: 20171012. Publication Type: Article. 28 577 Naseer M, Dahlberg L, Fagerström C. Health related quality of life and emergency 87. 29 578 department visits in adults of age ≥ 66 years: a prospective cohort study. Health & Quality 30 of Life Outcomes. 2018;16(1):N.PAG-N.PAG. doi: 10.1186/s12955-018-0967-y. PubMed 579 31 32 580 PMID: 130887010. Language: English. Entry Date: In Process. Revision Date: 20181027. 33 Publication Type: journal article. Journal Subset: Biomedical. 581 34 582 Samuels-Kalow M, Peltz A, Rodean J, Hall M, Alpern ER, Aronson PL, et al. 88. 35 583 Predicting Low-Resource-Intensity Emergency Department Visits in Children. Acad 36 584 Pediatr. 2018;18(3):297-304. PubMed PMID: 128897216. Language: English. Entry Date: 37 585 20180414. Revision Date: 20180928. Publication Type: Article. 38 586 Weidner TK, Kidwell JT, Etzioni DA, Sangaralingham LR, Van Houten HK, 89. 39 40 587 Asante D, et al. Factors Associated with Emergency Department Utilization and Admission 41 in Patients with Colorectal Cancer. Journal of Gastrointestinal Surgery. 2018;22(5):913-588 42 589 20. doi: 10.1007/s11605-018-3707-z. PubMed PMID: 129629085. Language: English. 43 590 Entry Date: In Process. Revision Date: 20180523. Publication Type: journal article. Journal 44 591 Subset: Biomedical. 45 592 Zook HG, Kharbanda AB, Puumala SE, Burgess KA, Pickner W, Payne NR. 90. 46 47 593 Emergency Department Utilization by Native American Children. Pediatr Emerg Care. 48 2018:34(11):802-9. doi: 10.1097/PEC.000000000001289. PubMed PMID: 132994315. 594 49 595 Language: English. Entry Date: 20181116. Revision Date: 20181116. Publication Type: 50 596 journal article. Journal Subset: Biomedical. 51 597 91. Ahn E, Kim J, Rahman K, Baldacchino T, Baird C. Development of a risk 52 598 predictive scoring system to identify patients at risk of representation to emergency 53 department: a retrospective population-based analysis in Australia. BMJ Open. 599 54 55 56 57

BMJ Open


1		
2 3		
5 4	600	2018;8(9):e021323. Epub 2018/10/06. doi: 10.1136/bmjopen-2017-021323. PubMed
5	601	PMID: 30287606; PubMed Central PMCID: PMCPMC6173240.
6	602	92. Andrews CM, Westlake M, Wooten N. Availability of Outpatient Addiction
7	603	Treatment and Use of Emergency Department Services Among Medicaid Enrollees.
8	604	Psychiatr Serv. 2018;69(6):729-32. Epub 2018/04/27. doi: 10.1176/appi.ps.201700413.
9	605	PubMed PMID: 29695224.
10	606	93. Gruneir A, Cigsar C, Wang X, Newman A, Bronskill SE, Anderson GM, et al.
11 12	607	Repeat emergency department visits by nursing home residents: a cohort study using health
12	608	administrative data. BMC Geriatr. 2018;18(1):157. Epub 2018/07/07. doi:
14	609	10.1186/s12877-018-0854-8. PubMed PMID: 29976135; PubMed Central PMCID:
15	610	РМСРМС6034297.
16	611	94. Lee J, Lin J, Suter LG, Fraenkel L. Persistently Frequent Emergency Department
17	612	Utilization among Persons with Systemic Lupus Erythematosus. Arthritis Care Res
18	613	(Hoboken). 2018. Epub 2018/10/09. doi: 10.1002/acr.23777. PubMed PMID: 30295422.
19 20	614	95. Mann EG, Johnson A, Gilron I, VanDenKerkhof EG. Pain Management Strategies
20 21	615	and Health Care Use in Community-Dwelling Individuals Living with Chronic Pain. Pain
21	616	Med. 2017. Epub 2017/03/25. doi: 10.1093/pm/pnw341. PubMed PMID: 28339989.
23	617	96. Colligan EM, Pines JM, Colantuoni E, Wolff JL. Factors Associated with Frequent
24	618	Emergency Department Use in the Medicare Population. Med Care Res Rev.
25	619	2017;74(3):311-27. doi: 10.1177/1077558716641826.
26	620	97. Cunningham A, Mautner D, Ku B, Scott K, LaNoue M. Frequent emergency
27	621	department visitors are frequent primary care visitors and report unmet primary care needs.
28	622	J Eval Clin Pract. 2017;23(3):567-73. doi: 10.1111/jep.12672.
29	623	98. Kidane B, Jacob B, Gupta V, Peel J, Saskin R, Waddell TK, et al. Medium and
30 31	624	long-term emergency department utilization after oesophagectomy: A population-based
32	625	analysis. European Journal of Cardio-thoracic Surgery. 2018;54(4):683-8. doi:
33	626	10.1093/ejcts/ezy155.
34	620 627	99. Schlichting LE, Rogers ML, Gjelsvik A, Linakis JG, Vivier PM. Pediatric
35	628	Emergency Department Utilization and Reliance by Insurance Coverage in the United
36	628 629	States. Academic Emergency Medicine. 2017;24(12):1483-90. doi: 10.1111/acem.13281.
37	630	100. Supat B, Brennan JJ, Vilke GM, Ishimine P, Hsia RY, Castillo EM. Characterizing
38 39	631	pediatric high frequency users of California emergency departments. Am J Emerg Med.
39 40	632	2018. Epub 2019/01/18. doi: 10.1016/j.ajem.2018.12.015. PubMed PMID: 30651182.
41	633	101. Peltz A, Samuels-Kalow ME, Rodean J, Hall M, Alpern ER, Aronson PL, et al.
42	634	Characteristics of children enrolled in medicaid with high-frequency emergency
43		
44	635	department use. Pediatrics. 2017;140(3). doi: 10.1542/peds.2017-0962.
45	636	102. Hasegawa K, Tsugawa Y, Camargo CA, Jr., Brown DF. Frequent utilization of the
46	637	emergency department for acute heart failure syndrome: a population-based study. Circ
47 48	638	Cardiovasc Qual Outcomes. 2014;7(5):735-42. Epub 2014/08/21. doi:
40 49	639	10.1161/circoutcomes.114.000949. PubMed PMID: 25139183.
50	640	103. Huynh C, Ferland F, Blanchette-Martin N, Ménard JM, Fleury MJ. Factors
51	641	Influencing the Frequency of Emergency Department Utilization by Individuals with
52	642	Substance Use Disorders. Psychiatr Q. 2016;87(4):713-28. doi: 10.1007/s11126-016-
53	643	9422-6.
54	644	104. Lin WC, Bharel M, Zhang J, O'Connell E, Clark RE. Frequent emergency
55 56	645	department visits and hospitalizations among homeless people with medicaid: Implications
56 57		
57		37
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


for medicaid expansion. American journal of public health. 2015;105:S716-S22. doi: 10.2105/AJPH.2015.302693. 105. Beck A, Sanchez-Walker E, Evans LJ, Harris V, Pegler R, Cross S. Characteristics of people who rapidly and frequently reattend the emergency department for mental health needs. Emerg Med. Eur J 2016;23(5):351-5. Epub 2015/12/03. doi: 10.1097/mej.000000000000349. PubMed PMID: 26629766. Nambiar D, Spelman T, Stoove M, Dietze P. Are People Who Inject Drugs Frequent 106. Users of Emergency Department Services? A Cohort Study (2008-2013). Substance use & misuse. 2018;53(3):457-65. Epub 2017/10/17. doi: 10.1080/10826084.2017.1341921. PubMed PMID: 29035611. 107. Christensen EW, Kharbanda AB, Velden HV, Payne NR. Predicting Frequent Emergency Department Use by Pediatric Medicaid Patients. Popul Health Manag. 2017;20(3):208-15. doi: 10.1089/pop.2016.0051. 108. Hardie TL, Polek C, Wheeler E, McCamant K, Dixson M, Gailey R, et al. Characterising emergency department high-frequency users in a rural hospital. Emerg Med J. 2015;32(1):21-5. doi: 10.1136/emermed-2013-202369. 109. Meyer JP, Oiu J, Chen NE, Larkin GL, Altice FL. Frequent emergency department use among released prisoners with human immunodeficiency virus: Characterization including a novel multimorbidity index. Academic Emergency Medicine. 2013;20(1):79-88. doi: 10.1111/acem.12054. Milbrett P, Halm M. Characteristics and predictors of frequent utilization of 110. emergency services. J Emerg Nurs. 2009;35(3):191-8; guiz 273. Epub 2009/05/19. doi: 10.1016/j.jen.2008.04.032. PubMed PMID: 19446122. Sacamano P, Krawczyk N, Latkin C. Emergency Department Visits in a Cohort of 111. Persons with Substance Use: Incorporating the Role of Social Networks. Substance use & misuse. 2018;53(13):2265-9. doi: 10.1080/10826084.2018.1461225. PubMed PMID: 131395182. Language: English. Entry Date: 20180828. Revision Date: 20180911. Publication Type: Article. Journal Subset: Biomedical. Blair M, Poots AJ, Lim V, Hiles S, Greenfield G, Crehan C, et al. Preschool 112. children who are frequent attenders in emergency departments: an observational study of associated demographics and clinical characteristics. Arch Dis Child. 2017. Epub 2017/08/05. doi: 10.1136/archdischild-2016-311952. PubMed PMID: 28768622. 113. Andrén KG, Rosenqvist U. Heavy users of an emergency department-A two year follow-up study. Soc Sci Med. 1987;25(7):825-31. doi: 10.1016/0277-9536(87)90040-2. Girts TK, Crawford AG, Goldfarb NI, Bachleda M, Grogg A. Predicting high 114. utilization of emergency department services among patients with a diagnosis of psychosis in a medicaid managed care organization. Dis Manage. 2002;5(4):189-96. Rauch J, Hüsers J, Babitsch B, Hübner U. Understanding the Characteristics of 115. Frequent Users of Emergency Departments: What Role Do Medical Conditions Play? Studies in health technology and informatics. 2018;253:175-9. Wong TH, Lau ZY, Ong WS, Tan KB, Wong YJ, Farid M, et al. Cancer patients as 116. frequent attenders in emergency departments: A national cohort study. Cancer medicine. 2018;7(9):4434-46. Epub 2018/08/18. doi: 10.1002/cam4.1728. PubMed PMID: 30117313; PubMed Central PMCID: PMCPMC6144141.

1		
2 3	690	117. Neuman MI, Alpern ER, Hall M, Kharbanda AB, Shah SS, Freedman SB, et al.
4	691	Characteristics of recurrent utilization in pediatric emergency departments. Pediatrics.
5 6	692	2014;134(4):e1025-e31. doi: 10.1542/peds.2014-1362.
7	693	118. Ngamini-Ngui A, Fleury MJ, Moisan J, Grégoire JP, Lesage A, Vanasse A. High
8	694	users of emergency departments in quebec among patients with both schizophrenia and a
9	695	substance use disorder. Psychiatr Serv. 2014;65(11):1389-91.
10 11	696	119. Samuels-Kalow ME, Faridi MK, Espinola JA, Klig JE, Camargo CA, Jr.
12	697	Comparing Statewide and Single-center Data to Predict High-frequency Emergency
13	698 699	Department Utilization Among Patients With Asthma Exacerbation. Academic Emergency Medicine. 2018;25(6):657-67. doi: 10.1111/acem.13342.
14 15	700	120. Altman DG. Practical statistics for medical research. London: CRC press; 1990.
16	701	121. Moe J, Bailey AL, Oland R, Levesque L, Murray H. Defining, quantifying, and
17	702	characterizing adult frequent users of a suburban Canadian emergency department. Can J
18	703	Emerg Med. 2013;15(4):214-26. doi: 10.2310/8000.2013.130936.
19 20	704	122. Wajnberg A, Hwang U, Torres L, Yang S. Characteristics of frequent geriatric users
20	705	of an urban emergency department. J Emerg Med. 2012;43(2):376-81. Epub 2011/11/02.
22	706	doi: 10.1016/j.jemermed.2011.06.056. PubMed PMID: 22040771.
23	707	123. Street M, Berry D, Considine J. Frequent use of emergency departments by older
24 25	708 709	people: a comparative cohort study of characteristics and outcomes. Int J Qual Health Care. 2018;30(8):624-9. Epub 2018/04/17. doi: 10.1093/intqhc/mzy062. PubMed PMID:
26	709	29659863.
27	711	124. Birmingham LE, Cochran T, Frey JA, Stiffler KA, Wilber ST. Emergency
28 29	712	department use and barriers to wellness: A survey of emergency department frequent users.
29 30	713	BMC Emerg Med. 2017;17(1). doi: 10.1186/s12873-017-0126-5.
31	714	125. Kim JJ, Kwok ESH, Cook OG, Calder LA. Characterizing highly frequent users of
32	715	a large Canadian urban emergency department. West J Emerg Med. 2018;19(6):926-33.
33 34	716	doi: 10.5811/westjem.2018.9.39369.
35	717	126. Klein LR, Martel ML, Driver BE, Reing M, Cole JB. Emergency Department
36	718 719	Frequent Users for Acute Alcohol Intoxication. Western Journal of Emergency Medicine: Integrating Emergency Care with Population Health. 2018;19(2):398-402. doi:
37	719	10.5811/westjem.2017.10.35052. PubMed PMID: 128442049. Language: English. Entry
38 39	720	Date: 20180405. Revision Date: 20180405. Publication Type: Article.
40	722	127. Kononenko I. Machine learning for medical diagnosis: history, state of the art and
41	723	perspective. Artif Intell Med. 2001;23(1):89-109. Epub 2001/07/27. PubMed PMID:
42 43	724	11470218.
43	725	128. Hu X, Barnes S, Bjarnadóttir M, Golden B. Intelligent selection of frequent
45	726	emergency department patients for case management: A machine learning framework
46	727	based on claims data. IISE Transactions Healthc Syst Eng. 2017;7(3):130-43. doi:
47 48	728 729	10.1080/24725579.2017.1351502.
49	729	129. Liao S-H, Chu P-H, Hsiao P-Y. Data mining techniques and applications–A decade review from 2000 to 2011. Expert systems with applications. 2012;39(12):11303-11.
50	730	130. Wang S, Summers RM. Machine learning and radiology. Med Image Anal.
51 52	732	2012;16(5):933-51. Epub 2012/04/03. doi: 10.1016/j.media.2012.02.005. PubMed PMID:
52 53	733	22465077; PubMed Central PMCID: PMCPMC3372692.
54	734	131. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine
55	735	learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J.
56 57		
58		39
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2015;13:8-17. Epub 2015/03/10. doi: 10.1016/j.csbj.2014.11.005. PubMed PMID: 25750696; PubMed Central PMCID: PMCPMC4348437. Ramos-Pollan R, Guevara-Lopez MA, Suarez-Ortega C, Diaz-Herrero G, Franco-132. Valiente JM, Rubio-Del-Solar M, et al. Discovering mammography-based machine learning classifiers for breast cancer diagnosis. J Med Syst. 2012;36(4):2259-69. Epub 2011/04/12. doi: 10.1007/s10916-011-9693-2. PubMed PMID: 21479624. Murdoch TB, Detsky AS. The inevitable application of big data to health care. 133. JAMA. 2013;309(13):1351-2. Epub 2013/04/04. doi: 10.1001/jama.2013.393. PubMed PMID: 23549579. Churpek MM, Yuen TC, Winslow C, Meltzer DO, Kattan MW, Edelson DP. 134. Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards. Crit Care Med. 2016;44(2):368-74. Epub 2016/01/16. doi: 10.1097/CCM.000000000001571. PubMed PMID: 26771782; PubMed Central PMCID: PMCPMC4736499. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. New 135. York: Springer; 2009. 136. Sanchez-Pinto LN, Luo Y, Churpek MM, Big Data and Data Science in Critical Care. Chest. 2018;154(5):1239-48. Epub 2018/05/13. doi: 10.1016/j.chest.2018.04.037. PubMed PMID: 29752973; PubMed Central PMCID: PMCPMC6224705. 137. Johnson KW, Torres Soto J, Glicksberg BS, Shameer K, Miotto R, Ali M, et al. Artificial Intelligence in Cardiology, J Am Coll Cardiol. 2018;71(23):2668-79. Epub 2018/06/09. doi: 10.1016/j.jacc.2018.03.521. PubMed PMID: 29880128. Taylor RA, Pare JR, Venkatesh AK, Mowafi H, Melnick ER, Fleischman W, et al. 138. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data–Driven, Machine Learning Approach. Academic emergency medicine. 2016;23(3):269-78. Jolliffe IT. Principal Component Analysis and Factor Analysis. 139. Principal component analysis: Springer; 1986. p. 115-28. Burgel PR, Paillasseur JL, Caillaud D, Tillie-Leblond I, Chanez P, Escamilla R, et 140. al. Clinical COPD phenotypes: a novel approach using principal component and cluster analyses. European Respiratory Journal. 2010;36(3):531-9. Gordon DB, Polomano RC, Pellino TA, Turk DC, McCracken LM, Sherwood G, 141. et al. Revised American Pain Society Patient Outcome Questionnaire (APS-POQ-R) for quality improvement of pain management in hospitalized adults: preliminary psychometric 2010;11(11):1172-86. evaluation. J Pain. Epub 2010/04/20. doi: 10.1016/j.jpain.2010.02.012. PubMed PMID: 20400379. Gasquet I, Villeminot S, Estaquio C, Durieux P, Ravaud P, Falissard B. 142. Construction of a questionnaire measuring outpatients' opinion of quality of hospital consultation departments. Health Qual Life Outcomes. 2004;2(1):43. Epub 2004/08/06. doi: 10.1186/1477-7525-2-43. PubMed PMID: 15294020; PubMed Central PMCID: PMCPMC516447. 143. Koenker R. Quantile regression: Cambridge university press; 2005. Ding R, McCarthy ML, Desmond JS, Lee JS, Aronsky D, Zeger SL. Characterizing 144. waiting room time, treatment time, and boarding time in the emergency department using quantile regression. Academic Emergency Medicine. 2010;17(8):813-23.

2 3 4 5 6	781 782 783	145. Bottai M, Cai B, McKeown RE. Logistic quantile regression for bounded outcomes. Stat Med. 2010;29(2):309-17. Epub 2009/11/27. doi: 10.1002/sim.3781. PubMed PMID: 19941281.
7 8 9 10	784	
10 11 12 13 14		
15 16 17 18		
19 20 21 22		
23 24 25 26		
27 28 29 30		
31 32 33 34		
35 36 37 38		
39 40 41 42		
43 44 45 46		
47 48 49 50		
51 52 53 54		
55 56 57 58		41
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Research strategies used in:

- CINAHL: ("revolving door" OR (frequen* OR high OR heavy OR repeat) N3 (hospital* OR utili?ation OR attend* OR consult* OR visit* OR flyer* OR use* OR patient*)) AND "emergency department" AND ((statistic* OR predict* OR *variate OR model* OR "regression")
- Scopus: TITLE-ABS-KEY ("revolving door" OR (frequen* OR high OR heavy OR repeat) W/3 (hospital* OR utili?ation OR attend* OR consult* OR visit* OR flyer* OR use* OR patient*)) AND TITLE-ABS-KEY ("emergency department") AND (TITLE-ABS-KEY (predict* OR "univariate" OR "multivariate" OR model* OR "regression") OR KEY ({statistics and numerical data})) AND (EXCLUDE (EXACTKEYWORD , "Controlled Study ") OR EXCLUDE (EXACTKEYWORD , " Comparative Study ") OR EXCLUDE (EXACTKEYWORD , "Clinical Trial") OR EXCLUDE (EXACTKEYWORD , "Clinical Trial") OR EXCLUDE (EXACTKEYWORD , "Controlled Clinical Trial"))
- PUBMED: ((("Emergency Medical Services"[Mesh] OR emergency OR emergencies)) AND ("repeat use" OR "heavy user" OR "heavy users" OR "high attender" OR "high attenders" OR "high attendere" OR "high attenders" OR "high attendere" OR "high user" OR "high users" OR "high utilisation" OR "high user" OR "high users" OR "high utilisation" OR "high utilization" OR "frequent consultation" OR "frequent consultant" OR "frequent consultants" OR "frequent consults" OR "frequent consults" OR "frequent attenders" OR "frequent attendere" OR "frequent visit" OR "frequent visits" OR "frequent visitor" OR "frequent visitors" OR "frequent visit" OR "frequent visits" OR "frequent visitor" OR "frequent visitors" O

user" OR "frequent users" OR "frequent utilisation" OR "frequent utilization" OR "high consultation" OR "high consultations" OR "high consultant" OR "high consultants" OR "high consult" OR "high consults" OR "frequent hospitalisation" OR "frequent hospitalisations" OR "frequent hospitalization" OR "frequent hospitalizations" OR "repeat hospitalisation" OR "repeat hospitalisations" OR "repeat hospitalization" OR "repeat hospitalizations" OR "revolving door")) AND ("Statistics" [Mesh] OR "predictive" OR "univariate" OR "multivariate" OR "prediction" OR "model" OR "models" OR "modeling" OR "modelization" OR "modelling" OR "modelisation" OR "regression")

Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist

SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #
TITLE			
Title	1	Identify the report as a scoping review.	1
ABSTRACT			
Structured summary	2	Provide a structured summary that includes (as applicable): background, objectives, eligibility criteria, sources of evidence, charting methods, results, and conclusions that relate to the review questions and objectives.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known. Explain why the review questions/objectives lend themselves to a scoping review approach.	4
Objectives	4	Provide an explicit statement of the questions and objectives being addressed with reference to their key elements (e.g., population or participants, concepts, and context) or other relevant key elements used to conceptualize the review questions and/or objectives.	4
METHODS			
Protocol and registration	5	Indicate whether a review protocol exists; state if and where it can be accessed (e.g., a Web address); and if available, provide registration information, including the registration number.	-
Eligibility criteria	6	Specify characteristics of the sources of evidence used as eligibility criteria (e.g., years considered, language, and publication status), and provide a rationale.	5-6
Information sources*	7	Describe all information sources in the search (e.g., databases with dates of coverage and contact with authors to identify additional sources), as well as the date the most recent search was executed.	5-6
Search	8	Present the full electronic search strategy for at least 1 database, including any limits used, such that it could be repeated.	Supplementary material
Selection of sources of evidence†	9	State the process for selecting sources of evidence (i.e., screening and eligibility) included in the scoping review.	5-6
Data charting process‡	10	Describe the methods of charting data from the included sources of evidence (e.g., calibrated forms or forms that have been tested by the team before their use, and whether data charting was done independently or in duplicate) and any processes for obtaining and confirming data from investigators.	6
Data items	11	List and define all variables for which data were sought and any assumptions and simplifications made.	6
Critical appraisal of individual sources of evidence§	12	If done, provide a rationale for conducting a critical appraisal of included sources of evidence; describe the methods used and how this information was used in any data synthesis (if appropriate).	-
Synthesis of results	13	Describe the methods of handling and summarizing the data that were charted.	6-7

SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED
RESULTS			
Selection of sources of evidence	14	Give numbers of sources of evidence screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally using a flow diagram.	6-7
Characteristics of sources of evidence	15	For each source of evidence, present characteristics for which data were charted and provide the citations.	7-22
Critical appraisal within sources of evidence	16	If done, present data on critical appraisal of included sources of evidence (see item 12).	-
Results of individual sources of evidence	17	For each included source of evidence, present the relevant data that were charted that relate to the review questions and objectives.	7-22
Synthesis of results	18	Summarize and/or present the charting results as they relate to the review questions and objectives.	22-25
DISCUSSION			
Summary of evidence	19	Summarize the main results (including an overview of concepts, themes, and types of evidence available), link to the review questions and objectives, and consider the relevance to key groups.	25-28
Limitations	20	Discuss the limitations of the scoping review process.	28
Conclusions	21	Provide a general interpretation of the results with respect to the review questions and objectives, as well as potential implications and/or next steps.	29
FUNDING			
Funding	22	Describe sources of funding for the included sources of evidence, as well as sources of funding for the scoping review. Describe the role of the funders of the scoping review.	29

JBI = Joanna Briggs Institute; PRISMA-ScR = Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews.

* Where *sources of evidence* (see second footnote) are compiled from, such as bibliographic databases, social media platforms, and Web sites.

⁺ A more inclusive/heterogeneous term used to account for the different types of evidence or data sources (e.g., quantitative and/or qualitative research, expert opinion, and policy documents) that may be eligible in a scoping review as opposed to only studies. This is not to be confused with *information sources* (see first footnote).

[‡] The frameworks by Arksey and O'Malley (6) and Levac and colleagues (7) and the JBI guidance (4, 5) refer to the process of data extraction in a scoping review as data charting.

§ The process of systematically examining research evidence to assess its validity, results, and relevance before using it to inform a decision. This term is used for items 12 and 19 instead of "risk of bias" (which is more applicable to systematic reviews of interventions) to include and acknowledge the various sources of evidence that may be used in a scoping review (e.g., quantitative and/or qualitative research, expert opinion, and policy document).

From: Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. ;169:467–473. doi: 10.7326/M18-0850

