

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

ASSOCIATION BETWEEN SOCIOECONOMIC INDICATORS AND CHRONIC KIDNEY DISEASE IN RURAL-URBAN GHANA-THE RODAM STUDY

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022610
Article Type:	Research
Date Submitted by the Author:	01-Mar-2018
Complete List of Authors:	Adjei Nana, David ; University of Ghana, Department of Medical Laboratory Sciences; University of Amsterdam, Department of Public Health Stronks, Karien; Academic Medical Center , Department of Public Health Adu, Dwomoa; Korle-bu Teaching Hospital, Department of Medicine Beune, Erik; AMC Meeks, Karlijn; AMC, Public Health Smeeth, Liam; London School of Hygiene and Tropical Medicine, Non Communicable Disease Epidemiology Owusu-Dabo, Ellis; Kwame Nkrumah University of Science and Technology Kumasi Centre for Collaborative Research in Tropical Medicine Klipstein-Grobusch, Kerstin; 1 Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands Mockenhaupt, Frank; Charité – University Medicine, Berlin, Institute of Tropical Medicine and International Health Danquah, Ina; German Institute of Human Nutrition, Molecular Epidemiology; Charite Universitatsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economy Spranger, Joachim; Department of Endocrinology and Metabolism, 1. Charité-University Medicine Berlin, Germany. Bahendeka, Silver; 1. MKPGMS - Uganda Martyrs University De-Graft Aikins, Ama; University of Ghana, Regional Institute for Population Studies Agyemang, Charles; Academic Medical centre, University of Amsterdam, Department of Public Health
Keywords:	Chronic Kidney Disease, Socioeconomic status, Health inequalities, RODAM study, rural, urban

SCHOLARONE[™] Manuscripts

BMJ Open

ASSOCIATION BETWEEN SOCIOECONOMIC INDICATORS AND CHRONIC KIDNEY DISEASE IN RURAL-URBAN GHANA-THE RODAM STUDY

David N. Adjei, MSc^{1,2}; Karien Stronks, MSc, PhD¹; Dwomoa Adu, MD³; Erik Beune, MSc, PhD¹; Karlijn Meeks, MSc¹; Liam Smeeth, MD, PhD⁴; Juliet, Addo, MD, PhD⁴; Ellis Owuso-Dabo, MSc, PhD⁵, Kerstin Klipstein-Grobusch, MSc, PhD^{6,7}; Frank P. Mockenhaupt, MD, PhD⁸; Ina, Danquah, MSc, PhD⁹; Joachim, Spranger, MD, PhD^{10,11,12}; Silver Bahendeka, MD, PhD¹³; Ama de-Graft, Aikins, MSc, PhD¹⁴; Charles Agyemang, MPH, PHD¹

- 1. Department of Public Health, Academic Medical Center, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.
- 2. Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana.
- 3. Department of Medicine, School of Medicine and Dentistry, University of Ghana and Korle-Bu Teaching Hospital, Accra, Ghana.
- 4. Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom.
- 5. Kumasi Centre for collaborative Research, KNUST, Kumasi, Ghana
- 6. Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Centre, Utrecht University, The Netherlands
- 7. Division of Epidemiology & Biostatistics, School of Public Health, Faculty of Healths, University of the Witwatersrand, Johannesburg, South Africa
- 8. Institute of Tropical Medicine and International Health, Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
- 9. Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.
- 10. Department of Endocrinology and Metabolism, Charité-University Medicine Berlin, Berlin, Germany.
- 11. German Centre for Cardiovascular Research (DZHK), Berlin, Germany.
- 12. Center for Cardiovascular Research (CCR), Charité-University Medicine Berlin, Berlin, Germany.
- 13. MKPGMS Uganda Martyrs University, Kampala, Uganda.
- 14. Regional Institute for Population Studies, University of Ghana, Legon, Ghana.

Address correspondence to David Nana Adjei, MSc, Department of Public Health, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands, School Biomedical and Allied Health Sciences, Medical Laboratory Sciences, University of Ghana, E-mail: dna@chs.edu.gh, d.n.adjei@amc.uva.nl, Tel: +233236717850

Abstract

Objectives Studies from high income countries suggest higher prevalence of Chronic Kidney Disease (CKD) among individuals in low socio economic groups. However, some studies from low and middleincome countries (LMICs) show the reverse pattern among those in high socioeconomic groups. It is unknown which pattern applies to individuals living in rural and urban Ghana. We therefore assessed the association between Socio-Economic Status (SES) indicators and CKD in rural and urban Ghana and to what extent the higher SES of people in urban areas of Ghana could account for differences in CKD between rural and urban populations.

Setting: We used baseline data from multi-centre Research on Obesity and Diabetes among African Migrants (RODAM) study.

Participants: A sample of 2492 adults (Rural Ghana, 1043, Urban Ghana, 1,449 aged 25 to 70 years living in Ghana.

Outcomes & Measurements Three CKD outcomes were considered using the 2012 KDIGO (Kidney Disease: Improving Global Outcomes) severity of CKD classification: albuminuria (albumin-creatinine ratio \geq 3 mg/mmol (category \geq A2)); reduced glomerular filtration rate (eGFR < 60 mL/min/1.73 m2 (category \geq G3)) and high to very high CKD risk based on the combination of these two.

Results All three SES indicators were not associated with CKD in both rural and urban Ghana after age and sex adjustment except for rural Ghana where high wealth index was significantly associated with higher odds of reduced eGFR (AOR, 2.38; 95% C.I. 1.03-5.47). The higher rate of CKD observed in urban Ghana was not explained by the higher SES of that population.

Conclusion SES indicators were not associated with prevalence of CKD except for wealth index and reduced eGFR in rural Ghana. Consequently, the higher SES did not account for the increased rate of CKD among urban dwellers suggesting the need to identify other factors that may be driving this.

Index Words: Chronic kidney disease; socioeconomic status; health inequalities; risk factor; ethnic minority groups; migrants; RODAM study, Ghana

Strengths and limitation of the study

- The use of well-standardized study protocols across rural and urban Ghana eliminated intra protocol variability.
- Our study is also the first in Africa to use all three categories of CKD definition (albuminuria, reduced eGFR and CKD risk) by KDIGO 2012 in assessing association of SES with CKD in rural and urban setting, this provides a more detailed information on CKD outcomes.
- The limitation of intra laboratory variability in earlier studies was eliminated using the same standard operating procedures in the same laboratory for running all samples for both rural and urban Ghana.
- The use of three constructs of SES (educational level, occupational level and wealth index) in this study also provides a much better holistic approach to assessing SES association with CKD. Also, the distribution of SES in our study reflect on the national data allowing for generalization of our findings.
- Our study was limited by the use of cross sectional design which prevented us from determining causality between predictors and CKD progression.

Introduction

In general, individuals in lower socio-economic status (SES) groups have been shown to suffer more frequently from Chronic Kidney Disease (CKD), often progressing to End Stage Renal Disease (ESRD), and associated with inadequate dialysis treatment, reduced access to kidney transplantation and poor health outcomes ¹. Recent studies have consistently found low SES to be associated with higher risk of CKD among people of African origin ²⁻⁵.

However, in some settings the well-known inverse association between SES and CKD seems to be absent, or even reversed. For example, Bryne et al. did not find an association between SES and End Stage Renal Disease ⁶. Invariably, others studies have consistently found a positive association between SES and CKD ^{7 8}. Specifically, as SES improved, unhealthful lifestyle (unhealthy diet, physical inactivity, smoking and alcohol consumption) increased in China while that of the United States decreased with improved SES ⁹. People with higher incomes, in these contexts, can afford a western lifestyle, which is more readily available in the urban areas than in the rural areas. There is therefore an interaction between individual SES and environmental factors, such as food and sedentary life style in such populations ¹⁰⁻¹². Consequently, in those settings, people with a higher SES might have higher CKD risk.

In urban areas, the population in general has a higher SES than in rural areas ¹³. For example, individuals with higher educational level migrate from rural areas to find higher occupations matching their higher education to improve on their wealth. If indeed a positive association between SES and CKD is observed in LMICs, this might underlie the well-known health differences between urban and rural areas, with urban areas having an increased risk of CKD ¹⁴. So far, it is unknown whether the reversed SES gradient (higher risk in high SES group) might explain the higher burden of CKD in urban areas as compared to rural areas in Africa.

In view of this, we assessed the association of SES with CKD in rural and urban Ghana and studied what extent the higher SES of people in urban areas could account for differences in CKD between rural and urban populations.

Methods

Study population and study design

In the present analyses, data used were from the RODAM (Research on Obesity & Diabetes among African Migrants) study, a multi-centre cross-sectional study, were used. The rationale, conceptual framework, design and methodology of the RODAM study have been described in detail elsewhere ^{15 16}. As the Healthy Life in an Urban Setting (HELIUS) study conducted among Ghanaian migrants living in Amsterdam did not find any associations between SES and CKD ¹⁷ the current study focused on rural and urban Ghana (Ashanti region of Ghana). The RODAM study was conducted from 2012 to 2015 and it comprised of individuals aged 25-70 years living in rural and urban Ghana and Ghanaian migrants in Europe. All participants below 25 and above 70 years were excluded in the present analyses. The present analysis was restricted to the rural and urban sites (n=2492) RODAM participants. Specifically, 1043 participants from rural Ghana and 1449 from urban Ghana were used in this study.

Data collection for the study was standardized across the sites. Written informed consent was obtained from each participant prior to enrolment in the study. The respective ethics committees in Ghana and the three European countries approved the study protocols before data collection began. The response rate was 76% in rural Ghana and 74% in urban Ghana. In Ghana, participants were randomly drawn from a list of 30 enumeration areas in the Ashanti region based on the 2010 population census using the multistage random sampling. These enumeration areas came from two purposively selected urban cities (Kumasi and Obuasi) and 15 randomly selected rural communities in the Ashanti region. Selected health and community authorities were first identified, notified of the study and letters were sent giving detailed explanation of the study. We sent team members to stay among the communities to familiarize with them and organize mini clinics in the field. This lasted between 1-2 weeks depending on the sampled population and responsiveness of respondents.

In Ghana, questionnaires administration and physical examination were done at the same day/time. The participants were instructed to fast from 10.00 pm the night before the physical examination. For the current study, 2566 participants with data available on both questionnaire data and physical measurements were used. We excluded (n=74) individuals outside the RODAM age range of 25-70 years resulting in a data set of 2492 for analysis. These comprised 1,449 Urban Ghana and 1043 Rural Ghana. For the final analysis, individuals with no data on CKD status (n=42) were excluded.

Measurements

Demographic and lifestyle factors

Information on demographics, educational level, occupational level, wealth index and lifestyle factors (smoking and physical activity) were obtained by questionnaire. Physical examinations were performed with validated devices per standardized operational procedures across all study sites. Weight was measured in light clothing and without shoes with SECA 877 scales to the nearest 0.1 kg. Height was measured without shoes with a portable stadiometer (SECA 217) to the nearest 0.1 cm. Body mass index (BMI) was calculated as weight (kg) divided by height squared (m²). Overweight was defined as BMI of \geq 25 to <30 kg/m² and obesity as BMI \geq 30 kg/m^{2 18}. Waist circumference was measured in cm at the midpoint between the lower rib and the upper margin of the iliac crest. Per participant all anthropometrics were measured twice by the same assessor and the average of the two measurements were used for analyses.

Covariates

Socioeconomic indicators used in this study were educational level, occupational status and level of wealth index. Educational level was determined based on self-reported highest educational qualification accomplished based on the Ghanaian educational system. Occupational level was determined based on self-reported current occupation if still employed or/and last occupation before retirement or student. The reported occupations were further coded according to the International Standard Classification of Occupations scheme (ISCO-08). Wealth index was determined using the World Health Organization (WHO) standard of wealth index classification. Wealth index was based on data collected in the Household Questionnaire. The questionnaire comprised of questions on household's ownership of several consumer items such as television, car, flooring material, toilet facilities etc. Each household was assigned a standard score for each asset. Wealth index was then expressed in five quintiles. The five quintiles were further categorized into three quintiles by combining the second and third quintiles due to small numbers ¹⁹. All three SES constructs were further classified as low, medium and high SES and their relationship to each other tested.

Outcome: CKD prevalence

Participants were asked to bring an early morning urine sample for the analyses of albuminuria and creatinine levels. Urinary albumin concentration (in mg/L) was measured by an immunochemical turbidimetric method (Roche Diagnostics). Urinary creatinine concentration (in umol/L) was measured by a kinetic spectrophotometric method (Roche Diagnostics). Estimated glomerular filtration rate (eGFR)

BMJ Open

was calculated using the CKDEPI (CKD Epidemiology Collaboration) creatinine equation ²⁰. Urinary albumin-creatinine ratio (ACR; expressed in mg/g) was calculated by taking the ratio between urinary albumin and urinary creatinine. eGFR and albuminuria were categorized according to the 2012 KDIGO (Kidney Disease: Improving Global Outcomes) classification ²¹. eGFR was categorized as follows: $G_{1,2} \ge 1$ 90 mL/min/1.73 m² (normal kidney function); G2, 60 to 89 mL/min/1.73 m² (mildly decreased); G3a, 45 to 59 mL/min/1.73 m² (mildly to moderately decreased); G3b, 30 to 44 mL/min/1.73 m² (moderately to severely decreased); G4, 15 to 29 mL/min/1.73 m² (severely decreased); and G5, < 15 mL/min/1.73 m² (kidney failure). Albuminuria categories were derived from ACR and were as follows: A1, < 3mg/mmol (normal to mildly increased); A2, 3 to 30 mg/mmol (moderately increased); and A3, > 30mg/mmol (severely increased). CKD status was categorized according to severity of kidney disease (green, low risk; vellow, moderately increased risk; orange, high risk; and red, very high risk) using the combination of eGFR (G1-G5) and albuminuria (A1-A3) levels defined by the 2012 KDIGO guideline ²². Due to the small number of participants in the very high risk category of CKD, high and very high risk groups were combined. Reduced eGFR was defined as $eGFR < 60 \text{ mL/min}/1.73 \text{ m}^2$. Because of the small number of participants in the severely increased albuminuria category, we defined albuminuria as ACR \geq 3 mg/mmol by combining the moderately increased (A2) and severely increased (A3) categories.

Other variables

Blood pressure (BP) was measured three times using a validated semi-automated device (The Microlife WatchBP home) with appropriate cuffs in a sitting position after at least 5 min rest. The mean of the last two BP measurements was used in the analyses. Hypertension was defined as systolic BP \geq 140 mmHg, and/or diastolic BP \geq 90 mmHg, and/or being on antihypertensive medication treatment, and/or selfreported hypertension. Trained research assistants in the two sites collected fasting venous blood samples. All the blood samples were processed and aliquoted immediately (within one hour to maximum three hours of the vena puncture) after collection per standard operation procedures, and then temporarily stored at the local research location at -20° C. The separated samples were then transported to the local research centres laboratories, where they were checked, registered and stored at -80°C. To avoid intralaboratory variability, the stored blood samples from the local research centres were transported to Berlin, Germany for biochemical analyses. Fasting plasma glucose concentration was measured using an enzymatic method (hexokinase). Type 2 diabetes was defined according to the WHO diagnostic criteria (fasting glucose \geq 7.0 mmol/L, and/or current use of medication prescribed to treat diabetes, and/or selfreported diabetes)²³. Concentration of total cholesterol was assessed using colorimetric test kits. All biochemical analyses were performed using an ABX Pentra 400 chemistry analyzer (ABX Pentra; Horiba ABX, Germany). Hypercholesterolemia was defined as total cholesterol level ≥ 6.22 mmol/L. Serum

creatinine concentration (in umol/L) was determined by a kinetic colorimetric spectrophotometric isotope dilution mass spectrometry–calibrated method (Roche Diagnostics). Biochemical analyses were subject to extensive quality checks including blinded serial measurements.

Patient and Public Involvement

Community leaders were involved in the recruitment of patients. These comprised of religious communities (churches and mosques), endorsement from local key leaders and establishing relationships with healthcare organizations. We also provided information on the study by involving the local media (radio and television stations). We sent letters to all selected health and community authorities to notify participants of the study. Team members were sent to the various community to stay among the community and organize mini clinics for a period of 1-2 weeks. Results of the study were disseminated through seminars, durbars and via radio and television stations.

Statistical methods

Participants' characteristics were expressed as absolute numbers and percentages for categorical variables and as means and standard deviations (SD) for continuous variables. CKD prevalence with 5% error bars were presented as bar graphs for each SES construct across rural and urban Ghana. Spearman's rank correlation was used to determine correlations between the three SES constructs. Odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were estimated by means of logistic regression analyses to study the odds of albuminuria (ACR>3 mg/mmol, A2-A3, moderately to severely increased albuminuria), reduced kidney function (eGFR< 60 mL/min/1.73 m², G3-G5 moderately to severely decreased kidney function) and increased CKD risk (high and very high CKD risk), with adjustments for potential covariates (age and sex). These covariates were adjusted for to account for their impact in the pathway of CKD incidence, prevalence and progression ²⁴. Model 1 was age and sex adjusted. The analyses were performed for the total population (using low educational level, low occupational status and low level of wealth index as reference categories). Further analysis was conducted using rural Ghana as reference. Model 1 was adjusted for age and sex while model 2 was adjusted for age, sex and educational level. Model 3 was adjusted for age, sex and occupational status while model 4 was adjusted for age, sex and level of wealth index (p < 0.05). Tolerance test and variance inflation factor (VIF) showed very small degree of collinearity among SES predictors thus we adjusted for each of SES variables separately. Complete case analysis approach was used. All data available were included in the ageadjusted models. All analyses were performed using STATA, version 14.0 (StataCorp LP).

Results

Table 1 shows characteristics of study participants. Participants in rural Ghana were slightly older than those in urban Ghana. Female preponderance was observed in both rural and urban Ghana, though higher proportions were observed in urban Ghana. Individuals living in rural Ghana were generally less educated compared with those living in urban Ghana. There were slightly more individuals with low occupational status in urban Ghana compared with their peers in rural Ghana. People in urban Ghana were wealthier than their rural counterparts. Rural Ghanaians were more physically active compared with their urban peers. Smoking was low among Ghanaians though rural Ghanaians were more likely to smoke compared with their urban peers. Hypercholesterolemia was more prevalent in urban Ghana than in rural Ghana. Hypertension and type 2 diabetes were more prevalent in urban Ghanaians compared with those living in rural Ghana. Urban Ghanaians were markedly more obese compared with their rural peers. Except for eGFR, albuminuria and CKD risk prevalence rates were higher in urban Ghana compared with rural Ghana.

<u> </u>	Rural Ghana	Urban Ghana
	10.10 (11.0)	1 4 40 (50 1)
Number of participants, N (%)	1043 (41.9)	1449 (58.1)
Mean age, years (SD)	46.5 (12.6)	45.2 (11.4)
Females, N (%)	638 (61.2)	1034 (71.4)
Educational level n (%)		
Low	555 (56.9)	614 (43.9)
Middle	311 (31.9)	547 (39.1)
High	108 (11.8)	239 (17.0)
Occupational status, n (%)		
Low	250 (25.7)	374 (26.7)
Middle	628 (64.5)	818 (58.4)
High	96 (9.8)	209 (14.9)
Wealth index, n (%)		
Low	449 (46.5)	368 (26.6)
Middle	276 (28.6)	416 (30.0)
High	241 (24.9)	602 (43.4)
Low physical activity, n (%)	663 (47.22)	592 (60.7)
Smoking, n (%)	22 (2.3)	14 (1.0)
Hypercholesterolemia, n (%)	78 (7.6)	270 (18.7)
Hypertension, n (%)	306 (29.3)	531 (36.7)
Diabetes, n (%)	53 (5.1)	153 (10.6)

Table 1: Baseline characteristics by location

Albuminuria, n (%) A1, Normal to mildly increased (ACR <3 mg/mmol)	930 (91.6)	1285 (89.1)
A2-A3, moderately to severely increased (ACR \geq 3 mg/mmol)	85 (8.4)	158 (10.9)
eGFR, n (%)		
G1-G2 ($\geq 60 \text{ mL/min}/1.73 \text{m}^2$)	989 (96.3)	1388 (96.3)
$G3-G5 (<60 \text{ mL/min}/1.73 \text{ m}^2)$	38 (3.7)	54 (3.7)
CKD risk, n (%)		
Low risk (green)	916 (90.5)	1281 (88.9)
Moderately increased to very high risk (yellow to red)	96 (9.5)	160 (11.1)

Abbreviations: N, number of respondents; SD, standard deviation; eGFR, estimated glomerular filtration rate; ACR, albumin creatinine ratio; CKD, Chronic kidney disease

Figure 1 shows prevalence of CKD by level of education in urban and rural Ghana. Prevalence of CKD decreased with increasing levels of education in rural Ghana. Higher prevalence of CKD was observed among individuals with low educational level compared with those with middle and high educational level. However, those with high educational level in urban Ghana had higher prevalence of CKD compared with those with middle level education. For occupational status, prevalence of CKD was higher among individuals with low occupational status in urban Ghana. Similar patterns were observed in rural Ghana, however, those with higher occupational status had higher prevalence of CKD compared with those with middle occupational status (Figure 2). Figure 3 shows prevalence of CKD by level of wealth index. CKD prevalence among the levels of wealth index varied between urban and rural Ghana. Those with middle level wealth index had higher prevalence of CKD compared with those with low or high CKD prevalence in both rural and urban Ghana. CKD prevalence rate for low and high level wealth index in urban Ghana was the same while that of rural Ghana was slightly different.

 BMJ Open

In urban Ghana, high educational level was positively associated with high wealth index but inversely associated with occupation. In rural Ghana, high education was positively associated with high wealth index, but there was no significant association between education and occupation. High wealth index was inversely associated with high occupational status in both rural and urban Ghana (Table 2).

Table 2: Relationship between SES constructs (educational, occupational level and wealth index) by urban rural Ghana

Correlation matrix	Educational level	Occupational level	Wealth index	SES
Urban Ghana		604		
Educational level	1.000			
Occupational status	-0.115*	1.000		
Wealth Index	0.294*	-0.126*	1.000	
Composite SES	0.576*	-0.024	0.937*	1.000
Rural Ghana				
Educational level	1.000			
Occupational status	0.017	1.000		
Wealth Index	0.219*	-0.135*	1.000	
SES	0.504*	0.029	0.934*	1.000

Significant at 1%, Spearman's correlation

Table 3 shows association between level of education, occupational status, level of wealth index and prevalence of CKD. After adjusting for age and sex, we observed no significant association between SES indicators (educational level, occupational status and wealth index) and CKD in urban Ghana. In rural Ghana, whereas educational level and occupational status were not associated with CKD prevalence, high wealth index was significantly associated with higher odds of reduced eGFR.

Table 3: Association of SES indicators (educational level, occupational status and wealth index level) with albuminuria, reduced eGFR and CKD risk

	Albuminuria	a (ACR≥3 mg/mmol)	eGFR < 60 m	eGFR < 60 mL/min/1.73 m2		High to very high CKD risk (KDIGO, 2012)	
		OR (95% CI)		OR (95% CI)		OR (95% CI)	
	n (%)	Model 1	n (%)	Model 1	n cases (%)	Model 1	
Education							
Urban Ghana							
Low	612 (14.7)	1.00 (Reference)	612 (4.1)	1.00 (Reference)	612 (14.1)	1.00 (Reference)	
Middle	546 (7.8)	0.51 (0.34-0.76)	546 (3.7)	1.12 (0.59-2.12)	545 (8.1)	0.59 (0.39-0.89)	
High	238 (8.4)	0.53 (0.31-0.91)	238 (3.4)	0.91 (0.37-2.19)	238 (10.9)	0.83 (0.51-1.38)	
Rural Ghana							
Low	540 (8.7)	1.00 (Reference)	548 (3.8)	1.00 (Reference)	538 (9.5)	1.00 (Reference)	
Middle	301 (6.3)	0.89 (0.51-1.59)	303 (3.9)	1.69 (0.77-3.66)	300 (8.7)	1.33 (0.79-2.25)	
High	105 (3.8)	0.66 (0.23-1.95)	107 (2.8)	1.28 (0.35-4.71)	105 (3.8)	0.69 (0.23-2.02)	
Occupational status							
Urban Ghana							
Low	207 (10.1)	1.00 (Reference)	207 (6.8)	1.00 (Reference)	207 (12.1)	1.00 (Reference)	
Middle	817 (11.1)	1.50 (0.88-2.83)	817 (3.6)	1.15 (0.56-2.35)	816 (11.6)	1.37 (0.84-2.56)	
High	373 (11.0)	1.57 (0.89-2.53)	373 (2.7)	1.02 (0.41-2.52)	373 (9.7)	1.21 (0.68-2.14)	
Rural Ghana							

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Low	95 (10.5)	1.00 (Reference)	96 (10.4)	1.00 (Reference)	95 (14.7)	1.00 (Reference)
Middle	610 (6.7)	0.65 (0.31-1.37)	619 (3.1)	0.37 (0.16-0.85)	608 (7.6)	0.55 (0.28-1.08)
High	241 (8.3)	0.99 (0.43-2.28)	243 (2.9)	0.51 (0.18-1.44)	240 (9.2)	0.94 (0.44-2.01)
Wealth index						
Urban Ghana						
Low	367 (11.2)	1.00 (Reference)	367 (3.5)	1.00 (Reference)	367 (10.1)	1.00 (Reference)
Middle	414 (12.3)	1.12 (0.73-1.74)	414 (3.9)	1.30 (0.61-2.80)	413 (13.1)	1.45 (0.93-2.27)
High	601 (9.8)	0.82 (0.55-1.25)	600 (3.8)	1.13 (0.55-2.31)	600 (10.8)	1.11 (0.72-1.71)
Rural Ghana						
Low	441 (7.9)	1.00 (Reference)	446 (3.1)	1.00 (Reference)	441 (8.4)	1.00 (Reference)
Middle	264 (8.7)	1.13 (0.65-1.98)	269 (3.7)	1.22 (0.52-2.84)	262 (10.3)	1.31 (0.77-2.25)
High	234 (5.6)	0.78 (0.40-1.53)	235 (5.1)	2.38 (1.03-5.47)	233 (7.7)	1.16 (0.63-2.14)

Model 1, adjusted for age and sex; Abbreviations: CI, confidence interval; ACR, albumin creatinine ration; eGFR, estimated glomerular filtration rate; CKD, chronic kidney disease; OR, odds ratio, n= total number of individuals in rural and urban Ghana among the various levels of SES constructs; %, proportion of individuals with CKD among the various levels of SES constructs in rural and urban Ghana.

Table 4 shows the contribution of all three SES constructs to rural and urban CKD prevalence differences. The odds of albuminuria and CKD risk was significantly higher in urban Ghana compared with rural Ghana. The higher rate of CKD observed in urban Ghana was not explained by the higher SES of that population as compared to their rural counterparts.

Table 4: Contribution of SES indicators to rural-urban differences in albuminuria, reduced eGFR and CKD risk

		OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
	0h	Model 1	Model 2	Model 3	Model 4
Albuminuria (ACR≥3 mg/mmol					
Sites	n cases (%)				
Urban Ghana	1,443 (10.9)	1.37 (1.03-1.81)	1.70 (1.25-2.31)	1.55 (1.15-2.10)	1.62 (1.18-2.19)
Rural Ghana	1,015 (8.4)	1.00 (Reference)	1.00 (Reference)	1.00 (Reference)	1.00 (Reference)
eGFR < 60 mL/min/1.73 m2					
Sites	n cases (%)				
Urban Ghana	1,442 (3.7)	1.27 (0.82-1.97)	1.20 (0.76-1.89)	1.18 (0.79-1.86)	1.12 (0.70-1.78)
Rural Ghana	1,027 (3.7)	1.00 (Reference)	1.00 (Reference)	1.00 (Reference)	1.00 (Reference)
High to very high CKD risk					
Sites	n cases (%)				
Urban Ghana	1,441 (11.1)	1.23 (1.01-1.62)	1.44 (1.07-1.93)	1.38 (1.03-1.84)	1.36 (1.01-1.83)
Rural Ghana	1,012 (9.46)	1.00 (Reference)	1.00 (Reference)	1.00 (Reference)	1.00 (Reference)

Model 1: adjusted for age and sex; Model 2: adjusted for age, sex and education level; Model 3: adjusted for age, sex and occupational status; Model 4: adjusted for age, sex and wealth index; Abbreviations: CI, confidence interval; ACR, albumin creatinine ratio; eGFR, estimated glomerular filtration rate; CKD, chronic kidney disease; OR, odds ratio, n=number of participants. n= total number of individuals in rural and urban Ghana; %, proportion of individuals with CKD among urban and rural Ghana.

Discussion

Key findings

Our study findings show no association between all three SES constructs and the prevalence of CKD in both rural and urban Ghana except for wealth index in rural Ghana, with the risk of CKD being higher in the wealthier populations. The higher rate of CKD observed in urban Ghana could not be attributed to the higher SES of that population compared to their rural counterparts.

Discussion of key findings

Association of SES with CKD in rural and urban Ghana

Our study did not find any significant associations between all three SES constructs and CKD among rural and urban Ghana except for wealth index in rural Ghana. The positive association observed between wealth index in rural Ghana may be due to a number of reasons. A comparison of the three SES constructs showed higher educational level to be associated with wealth index in both rural and urban Ghana but not occupational level. This seems to suggest that occupational level may not be adequately capturing the SES status of individuals living in these settings in relation to CKD. For example, Masthi et al, compared different SES scales in rural and urban India and concluded that Standard of Living Index (SLI) scale was more accurate for classification of SES in urban and rural setting ²⁵. Our finding is consistent with other studies ^{6 26} which reported no association between SES and CKD in high-income countries and LMICs, but in contrast with other studies ^{2-4 27} that found positive associations between SES and CKD. The reasons for our current finding are unclear. However, it has been suggested that these inconsistent associations may be due to the varying pathways through which the effect of SES on health status is mediated. For example, at a given educational level marked ethnic differences have been reported. Additionally, similar differences were observed for wealth status at a given income level ²⁸⁻³⁰.

Contribution of SES to observed CKD risk differences between rural and urban Ghana

We observed higher rates of CKD in urban Ghana compared with rural Ghana, as expected. The observed higher rates of CKD in our study were not explained by the higher SES of that population as compared to their rural counterparts. Our results indicate that this is due to the lack of a clear difference in the SES distribution of rural and urban Ghana observed in this study, as well as to the lack of associations between SES and CKD. Consistent with our findings, in a study conducted in Northern Tanzania SES did not explain increased risk of CKD in urban Tanzania ²⁶. The lack of associations between SES and CKD

could probably partly be explained by the process of epidemiological transition in relation to the "diffusion theory" of ischemic heart disease mortality. This theory attributes the commencement of ischemic heart disease to individuals in the high SES group due to their ability to afford behaviours (smoking, alcohol and sedentary lifestyles) which increased risk of ischemic heart disease. The lower SES groups were later affected partially because of improved living standards, imitation and urbanization. The higher SES groups were the first to embrace behavioural changes required to decrease the risk of ischemic heart disease and this resulted in reversing the gradient ³¹. The rapid urbanization of some rural communities in the Ashanti region of Ghana and the imitation of urban lifestyle could account for our finding. Also, it could be that whereas the high SES group in urban Ghana has already embraced favourable behavioural changes, those in rural Ghana are vet to do so ³². This explains the observed association of wealth index with CKD in rural Ghana but not in urban Ghana. The complexities of influence of SES on prevalence and progression of CKD and the differential prevalence of established risk factors (diabetes, obesity and hypertension) in rural and urban Ghana may also contribute to the different associations of SES with CKD prevalence observed in rural and urban Ghana. In our study, the prevalence rates of hypercholesterolemia, hypertension and type 2 diabetes were substantially higher in urban Ghana compared with that of rural Ghana. Also, the interplay of other less understood or researched factors (e.g., exposure to nephrotoxins, herbal medications, sepsis) may be influencing the pathway in which SES influences CKD prevalence and progression.

Strength and limitation

 Our study presents several strengths. First, we used well-standardized study protocols across rural and urban Ghana. Our study is also the first in Africa to use all three categories of CKD definition (albuminuria, reduced eGFR and CKD risk) by KDIGO 2012 in assessing association of SES with CKD in rural and urban setting, this provides a more detailed information on CKD outcomes. The limitation of intra laboratory variability in earlier studies was eliminated using the same standard operating procedures in the same laboratory for running all samples for both rural and urban Ghana. The use of three constructs of SES in this study also provides a much better holistic approach to assessing SES. Also, the distribution of SES in our study reflect on the national data allowing for generalization of our findings. Our study was limited by the use of cross sectional design which prevented us from determining causality between predictors and CKD progression.

Conclusion

All three SES constructs appear not to be associated with prevalence of CKD in urban and rural Ghana except for wealth index in rural Ghana. The observed higher prevalence of CKD in urban Ghana was not explained by the higher SES in urban Ghana. Our study seems to suggest that other non-traditional factors such as nephrotoxins, herbal medications and misuse of over the counter drugs may play a role and underscores the need to further explore these factors.

Acknowledgement

The authors are very grateful to the research assistants, interviewers and other staff of the five research locations who took part in gathering the data and the Ghanaian volunteers in all the participating RODAM sites. We gratefully acknowledge the advisory board members for their valuable support in shaping the RODAM study methods and the Academic Medical Centre Biobank for their support in biobank management and high-quality storage of collected samples.

Contributors

My co-authors have all contributed substantially to this manuscript and approve of this submission. Research idea and study design: DNA, CA, KS, DA, EB, KM, JA; data acquisition and curation: DNA, CA, EB, KM, data analysis/interpretation: DNA, CA, KS, DA, EB, KM, LS, JA, EOD, KKB, FPM, ID, JS, SB, ADA; statistical analysis: DNA, CA, KS. DNA, CA, KS, DA, EB, KM, LS, JA, EOD, KKB, FPM, ID, JS, SB, ADA contributed important intellectual content during manuscript drafting or revision and accepts accountability for the overall work by ensuring that questions pertaining to the accuracy or integrity of any portion of the work are appropriately investigated and resolved. DNA and CA takes responsibility that this study has been reported honestly, accurately, and transparently; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned have been explained.

Funding

This work was supported by the European Commission under the Framework Programme (Grant Number: 278901). The funders had no role in study design, data collection and analysis, decision to

publish, or preparation of the manuscript. The Wellcome Trust supported Professor Smeeth's contribution, grant number WT082178. Professor Joachim Spranger was supported by the DZHK (German Center for cardiovascular research) and the Berlin Institute of Health (BIH).

Competing interest: I have communicated with all my co-authors and obtained their full disclosures. My co-authors and I declare no conflicts of interest.

Patient Consent: None declared

Ethics approval: IRBs at each participating site.

Data sharing statement: Data are available from the RODAM research cohort, a third party. Dr. Eric Beune affiliated with the RODAM research cohort and a co-author of this paper in accordance with the RODAM requirements for collaboration. Dr. Beune is the Data Collection Coordinator of RODAM and may be contacted with further questions (e.j.beune@amc.uva.nl). Additionally, researchers interested in further collaboration with RODAM may see the following URL: <u>http://www.rod-am.eu/</u>

2	
3	
4	
5	
6	References
7	1. Patzer RE, McClellan WM. Influence of race, ethnicity and socioeconomic status on kidney
8	disease. Nature Reviews Nephrology 2012;8(9):533-41.
9	2. Merkin SS, Roux AVD, Coresh J, et al. Individual and neighborhood socioeconomic status
10	
10	and progressive chronic kidney disease in an elderly population: The Cardiovascular
12	Health Study. Soc Sci Med 2007;65(4):809-21.
12	3. Bello AK, Peters J, Rigby J, et al. Socioeconomic status and chronic kidney disease at
14	presentation to a renal service in the United Kingdom. Clin J Am Soc Nephrol
15	2008;3(5):1316-23.
16	4. Crews DC, Charles RF, Evans MK, et al. Poverty, race, and CKD in a racially and
17	
18	socioeconomically diverse urban population. <i>Am J Kidney Dis</i> 2010;55(6):992-1000.
19	5. Shoham DA, Vupputuri S, Roux AVD, et al. Kidney disease in life-course socioeconomic
20	context: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Kidney Dis
20	2007;49(2):217-26.
22	6. Byrne C, Nedelman J, Luke RG. Race, socioeconomic status, and the development of end-
23	stage renal disease. Am J Kidney Dis 1994;23(1):16-22.
24	7. Popkin BM. The shift in stages of the nutrition transition in the developing world differs from
25	past experiences! Public Health Nutr 2002;5(1A):205-14.
26	
27	8. Du S, Lu B, Zhai F, et al. A new stage of the nutrition transition in China. <i>Public Health Nutr</i>
28	2002;5(1a):169-74.
29	9. Kim S, Symons M, Popkin BM. Contrasting socioeconomic profiles related to healthier
30	lifestyles in China and the United States. Am J Epidemiol 2004;159(2):184-91.
31	10. Adler NE, Ostrove JM. Socioeconomic status and health: what we know and what we don't.
32	Ann N Y Acad Sci 1999;896(1):3-15.
33	
34	11. Anderson NB, Armstead CA. Toward understanding the association of socioeconomic status
35	and health: A new challenge for the biopsychosocial approach. <i>Psychosom Med</i>
36	1995;57(3):213-25.
37	12. Feinstein JS. The relationship between socioeconomic status and health: a review of the
38	literature. The Milbank Quarterly 1993:279-322.
39	13. Samuel P, Antonisamy B, Raghupathy P, et al. Socio-economic status and cardiovascular risk
40	factors in rural and urban areas of Vellore, Tamilnadu, South India. Int J Epidemiol
41	2012;41(5):1315-27.
42	
43	14. Christie S, Fone DL. Does car ownership reflect socio-economic disadvantage in rural areas?
44	A cross-sectional geographical study in Wales, UK. Public Health 2003;117(2):112-16.
45	15. Agyemang C, Beune E, Meeks K, et al. Rationale and cross-sectional study design of the
46	Research on Obesity and type 2 Diabetes among African Migrants: the RODAM study.
47	<i>BMJ open</i> 2015;4(3):e004877.
48	16. Addo J, Agyemang C, Aikins Ad-G, et al. Association between socioeconomic position and
49	the prevalence of type 2 diabetes in Ghanaians in different geographic locations: the
50	
51	RODAM study. J Epidemiol Community Health 2017: jech-2016-208322.
52	17. Adjei DN, Stronks K, Adu D, et al. Relationship between educational and occupational
53	levels, and Chronic Kidney Disease in a multi-ethnic sample-The HELIUS study. PLoS
54	One 2017;12(11):e0186460.
55	
56	
57	
58	
59	19
60	19 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

19 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

18. Consultation WE. Waist circumference and waist-hip ratio. *Report of a WHO Expert Consultation Geneva: World Health Organization* 2008:8-11.

- 19. Rutstein SO, Johnson K, MEASURE OM. The DHS wealth index: ORC Macro, MEASURE DHS 2004.
- 20. Stevens LA, Schmid CH, Greene T, et al. Comparative performance of the CKD epidemiology collaboration (CKD-EPI) and the modification of diet in renal disease (MDRD) study equations for estimating GFR levels above 60 mL/min/1.73 m 2. *Am J Kidney Dis* 2010;56(3):486-95.
- 21. Eknoyan G, Lameire N, Eckardt K, et al. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. *Kidney Int* 2013;3:5-14.
- 22. KDIGO G. Work Group. KDIGO clinical practice guideline for glomerulonephritis. *Kidney inter, Suppl* 2012;2:139-274.
- 23. Association AD. Standards of medical care in diabetes—2014. *Diabetes Care* 2014;37(Supplement 1):S14-S80.
- 24. Collins AJ, Foley RN, Herzog C, et al. US Renal Data System 2010 Annual Data Report. *American journal of kidney diseases: the official journal of the National Kidney Foundation* 2011;57(1 Suppl 1):A8, e1.
- 25. Masthi NR, Gangaboraiah PK. An exploratory study on socio economic status scales in a rural and urban setting. *Journal of family medicine and primary care* 2013;2(1):69.
- 26. Stanifer JW, Maro V, Egger J, et al. The epidemiology of chronic kidney disease in Northern Tanzania: a population-based survey. *PLoS One* 2015;10(4):e0124506.
- 27. Bruce MA, Beech BM, Crook ED, et al. Association of socioeconomic status and CKD among African Americans: the Jackson Heart Study. *Am J Kidney Dis* 2010;55(6):1001-08.
- 28. Braveman PA, Cubbin C, Egerter S, et al. Socioeconomic status in health research: one size does not fit all. *JAMA* 2005;294(22):2879-88.
- 29. Gilthorpe MS, Wilson RC. Rural/urban differences in the association between deprivation and healthcare utilisation. *Soc Sci Med* 2003;57(11):2055-63.
- 30. Choi AI, Weekley CC, Chen S-C, et al. Association of educational attainment with chronic disease and mortality: the Kidney Early Evaluation Program (KEEP). *Am J Kidney Dis* 2011;58(2):228-34.
- 31. Mackenbach JP, Cavelaars A, Kunst AE, et al. Socioeconomic inequalities in cardiovascular disease mortality. An international study. *Eur Heart J* 2000;21(14):1141-51.
- 32. McKay L, Macintyre S, Ellaway A. Migration and health: a review of the international literature. MRC Social and Public Health Sciences Unit, Occasional Paper No. 12. *Glasgow: Medical Research Council[Links]* 2003

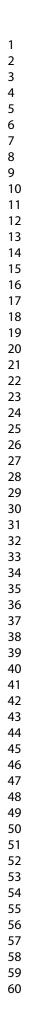

Legend for figures

Figure 1: Prevalence of chronic kidney disease (CKD) across level of education among urban and rural participants Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups.

Figure 2: Prevalence of chronic kidney disease (CKD) across occupational status among urban and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups.

Figure 3: Prevalence of chronic kidney disease (CKD) across wealth index categories among urban and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

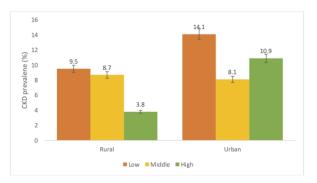


Figure 1: Prevalence of chronic kidney disease (CKD) across level of education among urban and rural participants Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups

Figure 1: Prevalence of chronic kidney disease (CKD) across level of education among urban and rural participants Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups

215x279mm (150 x 150 DPI)

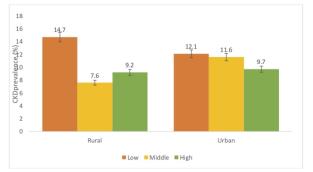
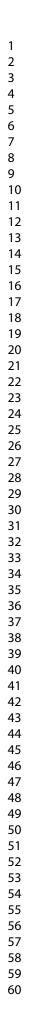



Figure 2: Prevalence of chronic kidney disease (CKD) across occupational status among urban and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups

Figure 2: Prevalence of chronic kidney disease (CKD) across occupational status among urban and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups

215x279mm (150 x 150 DPI)

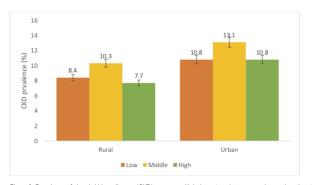


Figure 3: Prevalence of chronic kidney disease (CKD) across wealth index categories among urban and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups

Figure 3: Prevalence of chronic kidney disease (CKD) across wealth index categories among urban and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups

215x279mm (150 x 150 DPI)

BMJ Open

A CROSS-SECTIONAL STUDY OF ASSOCIATION BETWEEN SOCIOECONOMIC INDICATORS AND CHRONIC KIDNEY DISEASE IN RURAL-URBAN GHANA-THE RODAM STUDY

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022610.R1
Article Type:	Research
Date Submitted by the Author:	18-Jul-2018
Complete List of Authors:	Adjei Nana, David ; University of Ghana, Department of Medical Laboratory Sciences; University of Amsterdam, Department of Public Health Stronks, Karien; Academic Medical Center , Department of Public Health Adu, Dwomoa; Korle-bu Teaching Hospital, Department of Medicine Beune, Erik; AMC Meeks, Karlijn; AMC, Public Health Smeeth, Liam; London School of Hygiene and Tropical Medicine, Addo, Juliet; London School of Hygiene and Tropical Medicine, Non Communicable Disease Epidemiology Owusu-Dabo, Ellis; Kwame Nkrumah University of Science and Technology, Kumasi Centre for Collaborative Research in Tropical Medicine Klipstein-Grobusch, Kerstin; 1 Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands Mockenhaupt, Frank; Charité – University Medicine, Berlin, Institute of Tropical Medicine and International Health Danquah, Ina; German Institute of Human Nutrition, Molecular Epidemiology; Charite Universitatsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economy Spranger, Joachim; Department of Endocrinology and Metabolism, 1. Charité-University Medicine Berlin, Germany. Bahendeka, Silver; 1. MKPGMS - Uganda Martyrs University De-Graft Aikins, Ama; University of Ghana, Regional Institute for Population Studies Agyemang, Charles; Academic Medical centre, University of Amsterdam, Department of Public Health
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health, Epidemiology
Keywords:	Chronic Kidney Disease, Socioeconomic status, Health inequalities, RODAM study, rural, urban

1	
2	
3	
4 5	SCHOLARONE"
6	Manuscripts
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18 19	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31 32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52 53	
53 54	
55	
56	
57	
58	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4 5	1 2	A CROSS SECTIONAL STUDY OF ASSOCIATION BETWEEN SOCIOECONOMIC INDICATORS AND CHRONIC KIDNEY DISEASE IN RURAL-URBAN GHANA-THE
6	3	RODAM STUDY
7	4	David N. Adjei, MSc ^{1,2} ; Karien Stronks, MSc, PhD ¹ ; Dwomoa Adu, MD ³ ; Erik Beune, MSc,
8	5	PhD ¹ ; Karlijn Meeks, MSc ¹ ; Liam Smeeth, MD, PhD ⁴ ; Juliet, Addo, MD, PhD ⁴ ; Ellis Owuso-
9	6	Dabo, MSc, PhD ⁵ , Kerstin Klipstein-Grobusch, MSc, PhD ^{6,7} ; Frank P. Mockenhaupt, MD, PhD
10	7	⁸ ; Ina, Danquah, MSc, PhD ^{9,10} ; Joachim, Spranger, MD, PhD ^{11,12,13} ; Silver Bahendeka, MD,
11	8	PhD ¹⁴ ; Ama de-Graft, Aikins, MSc, PhD ¹⁵ ; Charles Agyemang, MPH, PHD ¹
12		
13 14	9	1. Department of Public Health, Academic Medical Center, University of Amsterdam,
14	10	Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.
16	11	2. Department of Medical Laboratory Sciences, School of Biomedical and Allied Health
17	12	Sciences, College of Health Sciences, University of Ghana, Accra, Ghana.
18		
19	13	3. Department of Medicine, School of Medicine and Dentistry, University of Ghana and Korle-
20	14	Bu Teaching Hospital, Accra, Ghana.
21 22	15 16	4. Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom.
23 24	10	
25	17	5. Kumasi Centre for collaborative Research, KNUST, Kumasi, Ghana
26	18	6. Julius Global Health, Julius Center for Health Sciences and Primary Care, University
27	19	Medical Centre, Utrecht University, The Netherlands
28	20	7. Division of Epidemiology & Biostatistics, School of Public Health, Faculty of Health
29	20	Sciences, University of the Witwatersrand, Johannesburg, South Africa.
30		
31 32	22	8. Institute of Tropical Medicine and International Health, Charité - University Medicine
33	23	Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
34	24	9. Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-
35	25	Rehbrücke, Nuthetal, Germany.
36		
37	26	10. Charité - Universitaetsmedizin Berlin, Institute for Social Medicine, Epidemiology and
38 39	27	Health Economics, Berlin, Germany.
40	28	11. Department of Endocrinology and Metabolism, Charité-University Medicine Berlin, Berlin,
41	29	Germany.
42	30	12. German Centre for Cardiovascular Research (DZHK), Berlin, Germany.
43		
44 45	31	13. Center for Cardiovascular Research (CCR), Charité-University Medicine Berlin, Berlin,
46	32	Germany.
47 48	33	14. MKPGMS - Uganda Martyrs University, Kampala, Uganda.
49	34	15. Regional Institute for Population Studies, University of Ghana, Legon, Ghana.
50 51	35	Address correspondence to David Nana Adjei, MSc, Department of Public Health, Academic
52	36	Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the
53 54	37	Netherlands, School Biomedical and Allied Health Sciences, Medical Laboratory Sciences,
55 56	38	University of Ghana, E-mail: dna@chs.edu.gh, d.n.adjei@amc.uva.nl, Tel: +233236717850
57		
58 50		4
59 60		ے For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

39 Abstract

4 40 5 41

Objectives: Studies from high income countries suggest higher prevalence of Chronic Kidney Disease 42 (CKD) among individuals in low socio economic groups. However, some studies from low and middle-43 income countries (LMICs) show the reverse pattern among those in high socioeconomic groups. It is 44 unknown which pattern applies to individuals living in rural and urban Ghana. We therefore assessed the 45 association between Socio-Economic Status (SES) indicators and CKD in rural and urban Ghana and to 46 what extent the higher SES of people in urban areas of Ghana could account for differences in CKD 47 between rural and urban populations.

Methods: We used baseline data from multi-centre Research on Obesity and Diabetes among African 50 Migrants (RODAM) study. A sample of 2492 adults (Rural Ghana, 1043, Urban Ghana, 1,449) aged 25 to 51 70 years living in Ghana. Three CKD outcomes were considered using the 2012 KDIGO (Kidney 52 Disease: Improving Global Outcomes) severity of CKD classification: albuminuria (albumin-creatinine 53 ratio \geq 3 mg/mmol (category \geq A2)); reduced glomerular filtration rate (eGFR < 60 mL/min/1.73 m2 54 (category \geq G3)) and high to very high CKD risk based on the combination of these two.

56 Results: All three SES indicators were not associated with CKD in both rural and urban Ghana after age 57 and sex adjustment except for rural Ghana where high wealth index was significantly associated with 58 higher odds of reduced eGFR (AOR, 2.38; 95% C.I. 1.03-5.47). The higher rate of CKD observed in 59 urban Ghana was not explained by the higher SES of that population.

Conclusion: SES indicators were not associated with prevalence of CKD except for wealth index and reduced eGFR in rural Ghana. Consequently, the higher SES did not account for the increased rate of CKD among urban dwellers suggesting the need to identify other factors that may be driving this.

Index Words: Chronic kidney disease; socioeconomic status; health inequalities; risk factor; ethnic minority groups; migrants; RODAM study, Ghana

1		
2 3	88	Strengths and limitation of the study
4	89	Strengths and minitation of the study
5 6	90	• The use of well-standardized study protocols across rural and urban Ghana eliminated intra
7	91	protocol variability.
8 9	92	
10 11	93	• Our study is also the first in Africa to use all three categories of CKD definition
12	94	(albuminuria, reduced eGFR and CKD risk) by KDIGO 2012 in assessing association of
13 14	95	SES with CKD in rural and urban setting. This provides a more detailed information on
15	96	CKD outcomes.
16 17	97	
18	98	• The limitation of intra laboratory variability in earlier studies was eliminated using the same
19 20	99	standard operating procedures in the same laboratory for running all samples for both rural and
21 22	100	urban Ghana.
23	101	
24 25	102	• The use of three constructs of SES (educational level, occupational level and wealth index) in this
26	103	study also provides a much better holistic approach to assessing SES association with CKD.
27 28	104	
29	105	• Our study was limited by the use of cross sectional design which prevented us from determining
30 31	106	causality between predictors and CKD progression.
32 33	107	
33 34	107	
35	109	
36 37	110	
37 38	111	
39	112	
40	113 114	
41 42	114	
43	116	
44	117	
45 46	118	
40 47	119	
48	120	
49	121	
50	122	
51 52	123	
53	124	
54	125	
55	126	
56	127	
57 58		
59		3
60		3 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3	128	
3 4	128	Introduction
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	130	
	131	In general, individuals in lower socio-economic status (SES) groups have been shown to suffer more
	132	frequently from Chronic Kidney Disease (CKD), often progressing to End Stage Renal Disease (ESRD),
	133	and associated with inadequate dialysis treatment, reduced access to kidney transplantation and poor
	134	health outcomes ¹ . Recent studies have consistently found low SES to be associated with higher risk of
	135	CKD among people of African origin ²⁻⁵ .
	136	However, in some settings the well-known inverse association between SES and CKD seems to be absent,
	137	or even reversed. For example, Bryne et al. did not find an association between SES and End Stage Renal
	138	Disease 6 . Other studies have found a positive association between SES and CKD 78 . Specifically, as
	139	SES improved, unhealthful lifestyle (unhealthy diet, physical inactivity, smoking and alcohol
	140	consumption) increased in China while that of the United States decreased with improved SES ⁹ . People
24 25	141	with higher incomes, in these contexts, can afford a western lifestyle, which is more readily available in
25 26	142	the urban areas than in the rural areas. There is therefore an interaction between individual SES and
27 28	143	environmental factors, such as food and sedentary life style in such populations ¹⁰⁻¹² . Consequently, in
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	144	those settings, people with a higher SES might have higher CKD risk.
	145	In urban areas, the population in general has a higher SES than in rural areas ¹³ . For example, individuals
	146	with higher educational level migrate from rural areas to find higher occupations matching their higher
	147	education to improve on their wealth. If indeed a positive association between SES and CKD is observed
	148	in LMICs, this might underlie the well-known health differences between urban and rural areas, with
	149	urban areas having an increased risk of CKD ¹⁴ . So far, it is unknown whether the reversed SES gradient
	150	(higher risk in high SES group) might explain the higher burden of CKD in urban areas as compared to
	151	rural areas in Africa.
	152	
	153	In view of this, we assessed the association of SES with CKD in rural and urban Ghana and studied what
	154	extent the higher SES of people in urban areas could account for differences in CKD between rural and
	155	urban populations.
48 49	150	
50 51	156 157	
52	158	
53 54	159 160	
55	161	
56 57		
58 59		
60		4 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4 5 6	162 163 164 165	Methods Study population and study design
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	165	In the present analyses, data from the RODAM (Research on Obesity & Diabetes among African
	167	Migrants) study, a multi-centre cross-sectional study were used. The rationale, conceptual framework,
	168	design and methodology of the RODAM study have been described in detail elsewhere $^{15 16}$. As the
	169	Healthy Life in an Urban Setting (HELIUS) study conducted among Ghanaian migrants living
	170	in Amsterdam did not find any associations between SES and CKD ¹⁷ the current study focused on
	171	rural and urban Ghana (Ashanti region of Ghana). The RODAM study was conducted from 2012 to 2015
	172	and it comprised of individuals aged 25-70 years living in rural and urban Ghana and Ghanaian migrants
	173	in Europe. All participants below 25 and above 70 years were excluded in the present analyses. The
	174	present analysis was restricted to the rural and urban sites (n=2492) RODAM participants. Specifically,
	175	1043 participants from rural Ghana and 1449 from urban Ghana were used in this study.
25	176 177	Data collection for the study was standardized across the sites. Written informed consent was obtained
26 27	177	from each participant prior to enrolment in the study. The respective ethics committees in Ghana and the
28 29	178	three European countries approved the study protocols before data collection began. Specifically, we
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	179	obtained ethical clearance in Ghana from (School of Medical Sciences/Komfo Anokye Teaching Hospital
	180	
		Committee on Human Research, Publication & Ethical Review Board, in the Netherlands, (Institutional Review Board of the AMC, University of Amsterdam) in Committee of Charita
	182 183	Review Board of the AMC, University of Amsterdam), in Germany, (Ethics Committee of Charite-
		Universitätsmedizin) and the UK (London School of Hygiene and Tropical Medicine Research Ethics
	184	Committee) before data collection began in each country.
	185	The response rate was 76% in rural Ghana and 74% in urban Ghana. In Ghana, participants were
	186	randomly drawn from a list of 30 enumeration areas in the Ashanti region based on the 2010 population
	187	census using the multistage random sampling. These enumeration areas came from two purposively
	188	selected urban cities (Kumasi and Obuasi) and 15 randomly selected rural communities in the Ashanti
45 46	189	region. Selected health and community authorities were first identified, notified of the study and letters
47 48 49 50 51 52 53 54	190	were sent giving detailed explanation of the study. We sent team members to stay among the communities
	191	to familiarize with them and organize mini clinics in the field. This lasted between 1-2 weeks depending
	192	on the sampled population and responsiveness of respondents.
	193	In Ghana, questionnaires administration and physical examination were done at the same day/time. The
	194	participants were instructed to fast from 10.00 pm the night before the physical examination. For the
55 56 57	195	current study, 2566 participants with data available on both questionnaire data and physical measurements

1 2

58

59 60 5 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 7 of 29

BMJ Open

196 were used. We excluded (n=74) individuals outside the RODAM age range of 25-70 years resulting in a 197 data set of 2492 for analysis. These comprised 1,449 Urban Ghana and 1043 Rural Ghana. For the final 198 analysis, individuals with no data on CKD status (n=42) were excluded.

199 Measurements

11 200 **Covariates**

201 Demographic and lifestyle factors

Information on demographics, educational level, occupational level, wealth index and lifestyle factors (smoking and physical activity) were obtained by questionnaire. Physical examinations were performed with validated devices per standardized operational procedures across all study sites. Weight was measured in light clothing and without shoes with SECA 877 scales to the nearest 0.1 kg. Height was measured without shoes with a portable stadiometer (SECA 217) to the nearest 0.1 cm. Body mass index (BMI) was calculated as weight (kg) divided by height squared (m^2) . Overweight was defined as BMI of \geq 25 to <30 kg/m² and obesity as BMI \geq 30 kg/m²¹⁸. Per participant all anthropometrics were measured twice by the same assessor and the average of the two measurements were used for analyses.

210 Predictor: SES

Socioeconomic indicators used in this study were educational level, occupational status and level of wealth index. Educational level was determined based on self-reported highest educational qualification accomplished based on the Ghanaian educational system. Occupational level was determined based on self-reported current occupation if still employed and/or last occupation before retirement or student. The reported occupations were further coded according to the International Standard Classification of Occupations scheme (ISCO-08). Where 'high' (professionals, managers, clerical support staff, higher grade routine non-manual employees service and sales-related occupations) and 'low' (craft and related trades workers, elementary occupations and farmers) and the rest were categorize into the 'middle'. Wealth index was determined using the World Health Organization (WHO) standard of wealth index classification. Wealth index was based on data collected in the Household Questionnaire. The questionnaire comprised of questions on household's ownership of several consumer items such as television, car, flooring material, toilet facilities etc. Each household was assigned a standard score for each asset. Wealth index was then expressed in five categories. The five categories were further categorized into three categories by combining the second and third category due to small numbers ¹⁹. All three SES constructs were further classified as low, medium and high SES and their relationship to each

other tested. A composite SES variable (SES) was generated based on the three SES constructs using the
 EGEN group command in STATA. This was also categorized into 3 categories (low, medium and high).

228 Co-morbidity factors

Blood pressure (BP) was measured three times using a validated semi-automated device (The Microlife WatchBP home) with appropriate cuffs in a sitting position after at least 5 min rest. The mean of the last two BP measurements was used in the analyses. Hypertension was defined as systolic BP > 140 mmHg. and/or diastolic BP \geq 90 mmHg, and/or being on antihypertensive medication treatment, and/or self-reported hypertension. Trained research assistants in the two sites collected fasting venous blood samples. All the blood samples were processed and aliquoted immediately (within one hour to maximum three hours of the vena puncture) after collection per standard operation procedures, and then temporarily stored at the local research location at -20° C. The separated samples were then transported to the local research centres laboratories, where they were checked, registered and stored at -80°C. To avoid intra-laboratory variability, the stored blood samples from the local research centres were transported to Berlin, Germany for biochemical analyses. Fasting plasma glucose concentration was measured using an enzymatic method (hexokinase). Type 2 diabetes was defined according to the WHO diagnostic criteria (fasting glucose \geq 7.0 mmol/L, and/or current use of medication prescribed to treat diabetes, and/or self-reported diabetes)²⁰. Concentration of total cholesterol was assessed using colorimetric test kits. All biochemical analyses were performed using an ABX Pentra 400 chemistry analyzer (ABX Pentra: Horiba ABX, Germany). Hypercholesterolemia was defined as total cholesterol level ≥ 6.22 mmol/L. Serum creatinine concentration (in umol/L) was determined by a kinetic colorimetric spectrophotometric isotope dilution mass spectrometry-calibrated method (Roche Diagnostics). Biochemical analyses were subject to extensive quality checks including blinded serial measurements.

40248Outcome: CKD prevalence

Participants were asked to bring an early morning urine sample for the analyses of albuminuria and creatinine levels. Urinary albumin concentration (in mg/L) was measured by an immunochemical turbidimetric method (Roche Diagnostics). Urinary creatinine concentration (in umol/L) was measured by a kinetic spectrophotometric method (Roche Diagnostics). Estimated glomerular filtration rate (eGFR) was calculated using the CKDEPI (CKD Epidemiology Collaboration) creatinine equation ²¹. Urinary albumin-creatinine ratio (ACR; expressed in mg/g) was calculated by taking the ratio between urinary albumin and urinary creatinine. eGFR and albuminuria were categorized according to the 2012 KDIGO (Kidney Disease: Improving Global Outcomes) classification ²². eGFR was categorized as follows: $G_{1,2} \ge 1$ 90 mL/min/1.73 m² (normal kidney function); G2, 60 to 89 mL/min/1.73 m² (mildly decreased); G3a, 45

Page 9 of 29

BMJ Open

to 59 mL/min/1.73 m² (mildly to moderately decreased); G3b, 30 to 44 mL/min/1.73 m² (moderately to severely decreased); G4, 15 to 29 mL/min/1.73 m² (severely decreased); and G5, < 15 mL/min/1.73 m² (kidney failure). Albuminuria categories were derived from ACR and were as follows: A1, < 3mg/mmol (normal to mildly increased); A2, 3 to 30 mg/mmol (moderately increased); and A3, > 30 mg/mmol (severely increased). CKD status was categorized according to severity of kidney disease (green, low risk; vellow, moderately increased risk; orange, high risk; and red, very high risk) using the combination of eGFR (G1-G5) and albuminuria (A1-A3) levels defined by the 2012 KDIGO guideline ²³. Due to the small number of participants in the very high risk category of CKD, high and very high risk groups were combined. Reduced eGFR was defined as eGFR < 60 mL/min/1.73 m². Because of the small number of participants in the severely increased albuminuria category, we defined albuminuria as ACR \geq 3 mg/mmol by combining the moderately increased (A2) and severely increased (A3) categories.

Patient and Public Involvement

Community leaders were involved in the recruitment of patients. These comprised of religious communities (churches and mosques), endorsement from local key leaders and establishing relationships with healthcare organizations. We also provided information on the study by involving the local media (radio and television stations). We sent letters to all selected health and community authorities to notify participants of the study. Team members were sent to the various community to stay among the community and organize mini clinics for a period of 1-2 weeks. Results of the study were disseminated through seminars, durbars and via radio and television stations.

Statistical methods

Participants' characteristics were expressed as absolute numbers and percentages for categorical variables and as means and standard deviations (SD) for continuous variables. CKD prevalence with 5% error bars were presented as bar graphs for each SES construct across rural and urban Ghana. Spearman's rank correlation was used to determine correlations between the three SES constructs. Odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were estimated by means of logistic regression analyses to study the odds of albuminuria (ACR>3 mg/mmol, A2-A3, moderately to severely increased albuminuria), reduced kidney function (eGFR< 60 mL/min/1.73 m^2 , G3-G5 moderately to severely decreased kidney function) and increased CKD risk (high and very high CKD risk) by SES, with adjustments for potential covariates (age and sex). These covariates were adjusted for to account for their impact in the pathway of CKD incidence, prevalence and progression²⁴. The analyses were performed for the total population (using low educational level, low occupational status and low level of wealth index as reference categories). Further analysis was conducted using rural Ghana as reference. Model 1

was adjusted for age and sex while model 2 was adjusted for age, sex and educational level. Model 3 was adjusted for age, sex and occupational status while model 4 was adjusted for age, sex and level of wealth index. Model 5 was adjusted for age, sex, educational level, occupational level and wealth index (p<0.05). Tolerance test and variance inflation factor (VIF) showed very small degree of collinearity among SES predictors thus we adjusted for each of SES variables separately. Complete case analysis approach was used. All data available were included in the age-adjusted models. All analyses were performed using STATA, version 14.0 (StataCorp LP).

297 Results

 Table 1 shows characteristics of study participants. Participants in rural Ghana were slightly older than those in urban Ghana. Female preponderance was observed in both rural and urban Ghana, though higher proportions were observed in urban Ghana. Individuals living in rural Ghana were generally less educated compared with those living in urban Ghana. There were slightly more individuals with low occupational status in urban Ghana compared with their peers in rural Ghana. People in urban Ghana were wealthier than their rural counterparts. Rural Ghanaians were more physically active compared with their urban peers. Smoking was low among Ghanaians though rural Ghanaians were more likely to smoke compared with their urban peers. Hypercholesterolemia was more prevalent in urban Ghana than in rural Ghana. Hypertension and type 2 diabetes were more prevalent in urban Ghanaians compared with those living in rural Ghana. Urban Ghanaians were markedly more obese compared with their rural peers. Except for eGFR, albuminuria and CKD risk prevalence rates were higher in urban Ghana compared with rural Ghana.

Table 1: Baseline characteristics by location

	Rural Ghana	Urban Ghana
Number of participants, N (%)	1043 (41.9)	1449 (58.1)
Mean age, years (SD)	46.5 (12.6)	45.2 (11.4)
Females, N (%)	638 (61.2)	1034 (71.4)
Educational level n (%)		
Low	555 (56.9)	614 (43.9)
Middle	311 (31.9)	547 (39.1)
High	108 (11.2)	239 (17.0)
Occupational status, n (%)		
Low	250 (25.7)	374 (26.7)
Middle	628 (64.5)	818 (58.4)

~				
3 4		High	96 (9.8)	209 (14.9)
4 5		Wealth index, n (%)		
6		Low	449 (46.5)	368 (26.6)
7		Middle	276 (28.6)	416 (30.0)
8 9		High	241 (24.9)	602 (43.4)
10		BMI (kg/m ²	()	
11		< 25	794 (76.3)	579 (39.9)
12 13		25-29.9	189 (18.2)	495 (34.2)
14		≥ 30	58 (5.5)	374 (25.9)
15		Low physical activity, n (%)	663 (47.22)	592 (60.7)
16 17		Smoking, n (%)	22 (2.3)	14 (1.0)
18				
19		Hypercholesterolemia, n (%)	78 (7.6)	270 (18.7)
20		Hypertension, n (%)	306 (29.3)	531 (36.7)
21 22		Diabetes, n (%)	53 (5.1)	153 (10.6)
22		Albuminuria, n (%)		
24		A1, Normal to mildly increased (ACR <3 mg/mmol)	930 (91.6)	1285 (89.1)
25		A2-A3, moderately to severely increased (ACR \geq 3 mg/mmol)	85 (8.4)	158 (10.9)
26		eGFR, n (%)		
27 28		$G1-G2 (\geq 60 \text{ mL/min}/1.73 \text{ m}^2)$	989 (96.3)	1388 (96.3)
29		$G3-G5 (<60 \text{ mL/min}/1.73 \text{ m}^2)$	38 (3.7)	54 (3.7)
30		CKD risk, n (%)		
31 32		Low risk (green)	916 (90.5)	1281 (88.9)
32 33		Moderately increased to very high risk (yellow to red)	96 (9.5)	160 (11.1)
34	313	The defaulty mercused to very mgn fisk (genew to red)	<i>y</i> (<i>yy</i>)	100 (11.1)
35	314	Abbreviations: N, number of respondents; SD, standard deviation; eGFR, estimat	ed glomerular filtration rat	e; ACR, albumin
36	315	creatinine ratio; CKD, Chronic kidney disease	-	
37	316			

Figure 1 shows prevalence of CKD by level of education in urban and rural Ghana. Prevalence of CKD decreased with increasing levels of education in rural Ghana. Higher prevalence of CKD was observed among individuals with low educational level compared with those with middle and high educational level. However, those with high educational level in urban Ghana had higher prevalence of CKD compared with those with middle level education. For occupational status, prevalence of CKD was higher among individuals with low occupational status in urban Ghana. Similar patterns were observed in rural Ghana, however, those with higher occupational status had higher prevalence of CKD compared with those with middle occupational status (Figure 2). Figure 3 shows prevalence of CKD by level of wealth index. CKD prevalence among the levels of wealth index varied between urban and rural Ghana. Those with middle level wealth index had higher prevalence of CKD compared with those with low or high CKD prevalence in both rural and urban Ghana. CKD prevalence rate for low and high level wealth index same while that of rural Ghana was urban Ghana was the slightly different. in

Among the whole group, educational level was positively associated with wealth index (p<0.01) and composite SES (P<0.01). Occupational level was also inversely associated with educational level (p<0.01) and wealth index (p<0.01). In urban Ghana, high educational level was positively associated with high wealth index but inversely associated with occupation (p<0.01). In rural Ghana, high education was positively associated with high wealth index (p<0.01), but there was no significant association between education and occupation. High wealth index was inversely associated with high occupational status in both rural and urban Ghana (p<0.01) (Table 2).

334 Table 2: Relationship between SES constructs (educational, occupational level and wealth index) by urban rural Ghana

Correlation matrix	Educational level	Occupational level	Wealth index S
Whole group		Co Co	
Educational level	1.000		
Occupational status	-0.060	1.000	
	0.004		
Wealth Index	0.282	-0.121	1.000
	0.001	0.001	
SES	1.000	-0.059	0.282 1.0
	0.003	0.006	0.001
Urban Ghana			
Educational level	1.000		
Occupational status	-0.115	1.000	
	0.001		
Wealth Index	0.294	-0.126	1.000

1 2					
3 4		0.001	0.001		
5	SES	1.000	-0.024	0.937	1.000
7 8		0.002	0.001	0.001	
9	Rural Ghana				
10 11	Educational level	1.000			
12 13	Occupational status	0.017	1.000		
14 15		0.589			
16 17	Wealth Index	0.219	-0.135	1.000	
18		0.001	0.001		
19 20	SES	0.504	0.017	0.934	1.000
21 22		0.001	0.587	0.001	
23 337 24 338 25 338 26 339 27 340 28 341 30 342 31 343 32 343 33 344 34 345 36 346 37 348 41 349 42 43 44 45 46 46		For peer review only - h	12 http://bmjopen.bmj.com/		lelines.xhtml

Table 3 shows association between level of education, occupational status, level of wealth index and prevalence of CKD. After adjusting for age and sex for the whole group, albuminuria was associated with middle level education (p<0.01). After adjusting for age and sex, we observed no significant association between SES indicators (educational level, occupational status and wealth index) and CKD in urban Ghana. However, middle and higher level education was associated with reduced albuminuria in urban Ghana (p<0.01). Whereas educational level and occupational status were not associated with CKD prevalence, high wealth index was significantly associated with higher odds of reduced eGFR (p<0.01).

Table 3: Association of SES indicators (educational level, occupational status and wealth index level) with albuminuria, reduced eGFR and CKD risk

	Albuminuria	(ACR≥3 mg/mmol)	eGFR < 60 mL	/min/1.73 m2	High to very high CKD risk (K 2012)	
		OR (95% CI)		OR (95% CI)		OR (95% CI)
	n (%)	Model 1	n (%)	Model 1	n cases (%)	Model 1
Education						
Whole group						
Low	1,152 (11.89)	1.00 (Reference)	1,160 (3.97)	1.00 (Reference)	1.150 (11.91)	1.00 (Reference
Middle	847 (7.32)	0.66 (0.48-0.91)	849 (3.77)	1.36 (0.83-2.22)	845 (8.28)	0.82 (0.59-1.12
High	343 (7.00)	0.67 (0.42-1.07)	345 (3.19)	1.11 (0.55-2.29)	343 (8.75)	0.96 (0.62-1.49
Urban Ghana						
Low	612 (14.7)	1.00 (Reference)	612 (4.1)	1.00 (Reference)	612 (14.1)	1.00 (Reference
Middle	546 (7.8)	0.51 (0.34-0.76)	546 (3.7)	1.12 (0.59-2.12)	545 (8.1)	0.59 (0.39-0.89
High	238 (8.4)	0.53 (0.31-0.91)	238 (3.4)	0.91 (0.37-2.19)	238 (10.9)	0.83 (0.51-1.38
Rural Ghana						
Low	540 (8.7)	1.00 (Reference)	548 (3.8)	1.00 (Reference)	538 (9.5)	1.00 (Reference
Middle	301 (6.3)	0.89 (0.51-1.59)	303 (3.9)	1.69 (0.77-3.66)	300 (8.7)	1.33 (0.79-2.25
High	105 (3.8)	0.66 (0.23-1.95)	107 (2.8)	1.28 (0.35-4.71)	105 (3.8)	0.69 (0.23-2.02
Occupational st	tatus					
Whole group						
Low	614 (9.93)	1.00 (Reference)	616 (2.76)	1.00 (Reference)	613 (9.46)	1.00 (Reference

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Middle	1,427 (9.25)	0.82 (0.59-1.14)	1,436 (3.34)	0.93 (0.52-1.66)	1,424 (9.90)	0.89 (0.65-1.2
High	302 (10.26)	0.76 (0.47-1.22)	303 (7.92)	1.33 (0.67-2.62)	302 (12.91)	0.90 (0.57-1.4
Urban Ghana						
Low	207 (10.1)	1.00 (Reference)	207 (6.8)	1.00 (Reference)	207 (12.1)	1.00 (Reference
Middle	817 (11.1)	1.50 (0.88-2.83)	817 (3.6)	1.15 (0.56-2.35)	816 (11.6)	1.37 (0.84-2.5
High	373 (11.0)	1.57 (0.89-2.53)	373 (2.7)	1.02 (0.41-2.52)	373 (9.7)	1.21 (0.68-2.1
Rural Ghana						
Low	95 (10.5)	1.00 (Reference)	96 (10.4)	1.00 (Reference)	95 (14.7)	1.00 (Reference
Middle	610 (6.7)	0.65 (0.31-1.37)	619 (3.1)	0.37 (0.16-0.85)	608 (7.6)	0.55 (0.28-1.0
High	241 (8.3)	0.99 (0.43-2.28)	243 (2.9)	0.51 (0.18-1.44)	240 (9.2)	0.94 (0.44-2.0
Wealth index						
Whole group						
Low	808 (9.65)	1.00 (Reference)	813 (3.32)	1.00 (Reference)	808 (9.16)	1.00 (Reference
Middle	678 (10.91)	1.18 (0.84-1.66)	683 (3.81)	1.30 (0.74-2.28)	675 (12.0)	1.43 (1.02-2.0
High	835 (8.62)	0.93 (0.66-1.31)	835 (4.19)	1.55 (0.91-2.64)	833 (9.96)	1.21 (0.86-1.
Urban Ghana						
Low	367 (11.2)	1.00 (Reference)	367 (3.5)	1.00 (Reference)	367 (10.1)	1.00 (Referen
Middle	414 (12.3)	1.12 (0.73-1.74)	414 (3.9)	1.30 (0.61-2.80)	413 (13.1)	1.45 (0.93-2.2
High	601 (9.8)	0.82 (0.55-1.25)	600 (3.8)	1.13 (0.55-2.31)	600 (10.8)	1.11 (0.72-1.)
Rural Ghana						
Low	441 (7.9)	1.00 (Reference)	446 (3.1)	1.00 (Reference)	441 (8.4)	1.00 (Referen
Middle	264 (8.7)	1.13 (0.65-1.98)	269 (3.7)	1.22 (0.52-2.84)	262 (10.3)	1.31 (0.77-2.2
High	234 (5.6)	0.78 (0.40-1.53)	235 (5.1)	2.38 (1.03-5.47)	233 (7.7)	1.16 (0.63-2.1

Table 4 shows the contribution of all three SES constructs to rural and urban CKD prevalence differences. The odds of albuminuria and CKD risk was significantly higher in urban Ghana compared with rural Ghana. The higher rate of CKD observed in urban Ghana was not explained by the higher SES of that population as compared to their rural counterparts.

368 Table 4: Contribution of SES indicators to rural-urban differences in albuminuria, reduced eGFR and CKD risk

				ŕ		
		OR (95% CI)				
		Model 1	Model 2	Model 3	Model 4	Model 5
Albuminuria (ACR≥3 mg/mmol		5				
Sites	n cases (%)					
Urban Ghana	1,443 (10.9)	1.37 (1.03-1.81)	1.70 (1.25-2.31)	1.55 (1.15-2.10)	1.62 (1.18-2.19)	1.74 (1.27-2.38)
Rural Ghana	1,015 (8.4)	1.00 (Reference)				
eGFR < 60 mL/min/1.73 m2						
Sites	n cases (%)					
Urban Ghana	1,442 (3.7)	1.27 (0.82-1.97)	1.20 (0.76-1.89)	1.18 (0.79-1.86)	1.12 (0.70-1.78)	1.07 (0.67-1.72)
Rural Ghana	1,027 (3.7)	1.00 (Reference)				
High to very high CKD risk						
Sites	n cases (%)					
Urban Ghana	1,441 (11.1)	1.23 (1.01-1.62)	1.44 (1.07-1.93)	1.38 (1.03-1.84)	1.36 (1.01-1.83)	1.40 (1.04-1.91)
Rural Ghana	1,012 (9.46)	1.00 (Reference)	1.00 (Reference)	1.00 (Reference)	1.00 (Reference)	1.00 (Reference

Model 1: adjusted for age and sex; Model 2: adjusted for age, sex and education level; Model 3: adjusted for age, sex and occupational status; Model 4: adjusted for age, sex and wealth index; Model 5: adjusted for age, sex, educational level, occupational status and wealth index; Abbreviations: CI, confidence interval; ACR, albumin creatinine ration; eGFR, estimated glomerular filtration rate; CKD, chronic kidney disease; OR, odds ratio, n=number of participants. n= total number of individuals in rural and urban Ghana; %,

proportion of individuals with CKD among urban and rural Ghana.

2		
3 4	375	Discussion
5	376	Key findings
6 7	377	Our study findings show no association between all three SES constructs and the prevalence of CKD in
8	378	both rural and urban Ghana except for wealth index in rural Ghana, with the risk of CKD being higher in
9 10	379	the wealthier populations. The higher rate of CKD observed in urban Ghana could not be attributed to the
11	380	higher SES of that population compared to their rural counterparts.
12 13	381	
14 15	382	Discussion of key findings
15 16	383	
17 18 19	384 385	Association of SES with CKD in rural and urban Ghana
20	386	Our study did not find any significant associations between all three SES constructs and CKD among
21 22	387	rural and urban Ghana except for wealth index in rural Ghana. The positive association observed between
23	388	wealth index in rural Ghana may be due to a number of reasons. A comparison of the three SES
24 25	389	constructs showed higher educational level to be associated with wealth index in both rural and urban
26	390	Ghana but not occupational level. This seems to suggest that occupational level may not be adequately
27 28	391	capturing the SES status of individuals living in these settings in relation to CKD. For example, Masthi et
29 30	392	al, compared different SES scales in rural and urban India and concluded that Standard of Living Index
31	393	(SLI) scale was more accurate for classification of SES in urban and rural setting ²⁵ . Our finding is
32 33	394	consistent with other studies, ^{6 26} which reported no association between SES and CKD in high-income
34 35	395	countries and LMICs, but in contrast with other studies ²⁻⁴ ²⁷ that found positive associations between
36 37	396	SES and CKD. The reasons for our current finding are unclear. However, it has been suggested that these
38	397	inconsistent associations may be due to the varying pathways through which the effect of SES on health
39 40	398	status is mediated. For example, at a given educational level marked ethnic differences have been
41 42	399	reported. Additionally, similar differences were observed for wealth status at a given income level ²⁸⁻³⁰ .
43 44 45	400 401 402	Contribution of SES to observed CKD risk differences between rural and urban Ghana
46	402	We observed higher rates of CKD in urban Ghana compared with rural Ghana, as expected. The observed
47 48	404	higher rates of CKD in our study were not explained by the higher SES of that population as compared to
49 50	405	their rural counterparts. Our results indicate that this is due to the lack of a clear difference in the SES
50 51	406	distribution of rural and urban Ghana observed in this study, as well as to the lack of associations between
52 53	407	SES and CKD. Consistent with our findings, in a study conducted in Northern Tanzania SES did not
54	408	explain increased risk of CKD in urban Tanzania ²⁶ . The lack of associations between SES and CKD
55 56 57	409	could probably partly be explained by the process of epidemiological transition in relation to the

"diffusion theory" of ischemic heart disease mortality. This theory attributes the commencement of ischemic heart disease to individuals in the high SES group due to their ability to afford behaviours (smoking, alcohol and sedentary lifestyles) which increased risk of ischemic heart disease. The lower SES groups were later affected partially because of improved living standards, imitation and urbanization. The higher SES groups were the first to embrace behavioural changes required to decrease the risk of ischemic heart disease and this resulted in reversing the gradient ³¹. The rapid urbanization of some rural communities in the Ashanti region of Ghana and the imitation of urban lifestyle could account for our finding. Also, it could be that whereas the high SES group in urban Ghana has already embraced favourable behavioural changes, those in rural Ghana are vet to do so ³². This explains the observed association of wealth index with CKD in rural Ghana but not in urban Ghana. The complexities of influence of SES on prevalence and progression of CKD and the differential prevalence of established risk factors (diabetes, obesity and hypertension) in rural and urban Ghana may also contribute to the different associations of SES with CKD prevalence observed in rural and urban Ghana. In our study, the prevalence rates of hypercholesterolemia, hypertension and type 2 diabetes were substantially higher in urban Ghana compared with that of rural Ghana. Also, the interplay of other less understood or researched factors (e.g., exposure to nephrotoxins, herbal medications, sepsis) may be influencing the pathway in which SES influences CKD prevalence and progression.

Strength and limitation

Our study presents several strengths. First, we used well-standardized study protocols across rural and urban Ghana. Our study is also the first in Africa to use all three categories of CKD definition (albuminuria, reduced eGFR and CKD risk) by KDIGO 2012 in assessing association of SES with CKD in rural and urban setting, this provides a more detailed information on CKD outcomes. The limitation of intra laboratory variability in earlier studies was eliminated using the same standard operating procedures in the same laboratory for running all samples for both rural and urban Ghana. The use of three constructs of SES in this study also provides a much better holistic approach to assessing SES. Also, the distribution of SES in our study reflect on the national data allowing for generalization of our findings. Our study was limited by the use of cross sectional design, which prevented us from determining causality between predictors and CKD progression. Furthermore, there were more women than men in our study due to the higher response rate in women compared with men. However, this applied to both rural and urban Ghana. We therefore do not expect this to influence our results in a significant way.

Conclusion

Page 19 of 29

BMJ Open

All three SES constructs appear not to be associated with prevalence of CKD in urban and rural Ghana except for wealth index in rural Ghana. The observed higher prevalence of CKD in urban Ghana was not explained by the higher SES in urban Ghana. Our study seems to suggest that other non-traditional factors such as nephrotoxins, herbal medications and misuse of over the counter drugs may play a role and underscores the need to further explore these factors.

Acknowledgement

The authors are very grateful to the research assistants, interviewers and other staff of the five research locations who took part in gathering the data and the Ghanaian volunteers in all the participating RODAM sites. We gratefully acknowledge the advisory board members for their valuable support in shaping the RODAM study methods and the Academic Medical Centre Biobank for their support in biobank management and high-quality storage of collected samples.

Contributors

My co-authors have all contributed substantially to this manuscript and approve of this submission. Research idea and study design: DNA, CA, KS, DA, EB, KM, JA; data acquisition and curation: DNA, CA, EB, KM, data analysis/interpretation: DNA, CA, KS, DA, EB, KM, LS, JA, EOD, KKB, FPM, ID, JS, SB, ADA; statistical analysis: DNA, CA, KS, DNA, CA, KS, DA, EB, KM, LS, JA, EOD, KKB, FPM, ID, JS, SB, ADA contributed important intellectual content during manuscript drafting or revision and accepts accountability for the overall work by ensuring that questions pertaining to the accuracy or integrity of any portion of the work are appropriately investigated and resolved. DNA and CA takes responsibility that this study has been reported honestly, accurately, and transparently; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned have been explained.

Funding

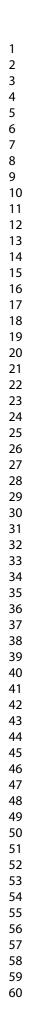
This work was supported by the European Commission under the Framework Programme (Grant Number: 278901). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The Wellcome Trust supported Professor Smeeth's contribution, grant number WT082178. Professor Joachim Spranger was supported by the DZHK (German Center for cardiovascular research) and the Berlin Institute of Health (BIH).

 Gompeting interest: I have communicated with all my co-authors and obtained their full disclosures. My co-authors and I declare no conflicts of interest. Patient Consent: None declared Ethics approval: IRBs at each participating site. Data sharing statement: Data are available from the RODAM research cohort, a third party. Dr. Eric Beune affiliated with the RODAM research cohort and a co-author of this paper in accordance with the RODAM requirements for collaboration. Dr. Beune is the Data Collection Coordinator of RODAM and may be contacted with further questions (c.j.beune@ame.uva.nl). Additionally, researchers interested in further collaboration with RODAM may see the following URL: http://www.rod-am.eu/ URL: http://www.rod-am.eu/ Wassing and the statement of the	1		
480 disclosures: My co-authors and I declare no conflicts of interest. 481 Patient Consent: None declared 483 Ethics approval: IRBs at each participating site. 485 Data sharing statement: Data are available from the RODAM research cohort, a third party. Dr. 486 Data sharing statement: Data are available from the RODAM research cohort, a third party. Dr. 487 Eric Beune affiliated with the RODAM research cohort and a co-author of this paper in accordance with the RODAM and may be contacted with further questions (e.j.beune@amc.uva.nl). 488 Coordinator of RODAM and may be contacted with further questions (e.j.beune@amc.uva.nl). 490 Additionally, researchers interested in further collaboration with RODAM may see the following 491 URL: http://www.rod-am.eu/ 493 494 495 500 501 503 502 503 503 506 504 505 505 503 506 507 507 508 508 509 509 500 501 501 502 503 503	3	479	Competing interest: I have communicated with all my co-authors and obtained their full
6 481 482 Patient Consent: None declared 483 Ethics approval: IRBs at each participating site. 484 Data sharing statement: Data are available from the RODAM research cohort, a third party. Dr. 485 Data sharing statement: Data are available from the RODAM research cohort and a co-author of this paper in accordance with the RODAM requirements for collaboration. Dr. Beune is the Data Collection 7 487 488 Coordinator of RODAM and may be contacted with further questions (e.j.beune@amc.uva.nl). 490 Additionally, researchers interested in further collaboration with RODAM may see the following 911 URL: http://www.rod-am.cu/ 922 923 943 944 944 945 947 947 948 947 949 948 949 948 949 948 949 948 949 949 949 949 949 949 949 949 949 949 949 949 949 949 949 949		480	
433 Function content forme detents 434 Ethics approval: IRBs at each participating site. 435 Data sharing statement: Data are available from the RODAM research cohort, a third party. Dr. 436 Data sharing statement: Data are available from the RODAM research cohort and a co-author of this paper in a accordance with the RODAM requirements for collaboration. Dr. Beune is the Data Collection 438 Coordinator of RODAM and may be contacted with further questions (c.j.beune@ame.uva.nl). 440 Additionally, researchers interested in further collaboration with RODAM may see the following. 441 UR1: http://www.rod-am.eu/ 442 443 443 444 444 445 444 445 444 444 444 445 445 444 444 445 444 445 444 445 444 445 445 446 446 447 447 448 448 446 4495 446 4495 446 4495 446 450 456	6		
9 484 Ethics approval: IRBs at each participating site. 11 485 9 484 9 485 9 484 9 487 11 488 12 486 9 484 9 Atta sharing statement: Data are available from the RODAM research cohort, a third party. Dr. 12 489 14 887 14 887 15 6 16 90 17 488 189 Coordinator of RODAM and may be contacted with further questions (e.j.beune@amc.uva.nl). 190 Additionally, researchers interested in further collaboration with RODAM may see the following 191 URL: http://www.rod-am.cu/ 192 493 194 494 195 100 190 100 191 URL: http://www.rod-am.cu/ 192 100 193 100 194 100 194 100 195 100 194			Patient Consent: None declared
485 Data sharing statement: Data are available from the RODAM research cohort, a third party. Dr. 487 Eric Beune affiliated with the RODAM research cohort and a co-author of this paper in accordance with the RODAM requirements for collaboration. Dr. Beune is the Data Collection 488 Coordinator of RODAM and may be contacted with further questions (e.j.beune@ame.uva.nl). 490 Additionally, researchers interested in further collaboration with RODAM may see the following 491 URL: http://www.rod-am.cu/ 492 493 493 494 6495 505 506 501 501 502 502 503 503 504 504 507 505 506 506 507 507 508 508 509 509 506 501 501 502 503 503 506 504 507 505 506 506 507 507 508 508 509 509 500 </td <td>9</td> <td></td> <td>Ethics approval: IRBs at each participating site.</td>	9		Ethics approval: IRBs at each participating site.
13 487 Eric Beune affiliated with the RODAM research cohort and a co-author of this paper in accordance with the RODAM requirements for collaboration. Dr. Beune is the Data Collection 14 488 accordance with the RODAM and may be contacted with further questions (e.j.beune@amc.uva.nl). 18 490 Additionally, researchers interested in further collaboration with RODAM may see the following 17 489 URL: http://www.rod-am.cu/ 18 493 14 493 15 494 16 495 17 495 18 493 19 URL: http://www.rod-am.cu/ 19 99 19 495 14 493 14 502 150 503 16 504 17 508 18 505 19 506 10 502 11 502 12 503 13 504 14 502 15 505 15 505 16 511			
487 Enter Beune annuated with the RODAM research conort and a co-author of this paper in 488 accordance with the RODAM requirements for collaboration. Dr. Beune is the Data Collection 7 648 490 Additionally, researchers interested in further collaboration with RODAM may see the following 491 URL: http://www.rod-am.eu/ 24 493 24 493 25 503 3501 444 493 502 503 503 504 503 505 503 506 501 507 505 508 506 509 506 501 504 502 503 503 506 504 507 505 503 506 501 507 502 508 506 509 506 510 516 511 516 512 516 513 518		486	Data sharing statement: Data are available from the RODAM research cohort, a third party. Dr.
100 accontance with the RODAM and may be contacted with further questions (c.j.beune@ame.uva.nl). 19 490 401 Additionally, researchers interested in further collaboration with RODAM may see the following 11 11 11 11 11 11 11 11 11 11 11 11 12 11 13 11 14 11 14 11 15 11 16 11 17 11 18 11 19 12 14 12 14 14 15 11 16 12 17 13 18 11 19 12 10 12 11 13 12 14 13 14 14 15 15 12 16 12 17 13 18		487	Eric Beune affiliated with the RODAM research cohort and a co-author of this paper in
17 489 Coordinator of RODAM and may be contacted with further questions (e.j.beune@amc.uva.nl). 18 490 Additionally, researchers interested in further collaboration with RODAM may see the following 20 491 URL: http://www.rod-am.eu/ 21 492 23 493 24 493 25 494 26 495 27 496 28 497 29 493 21 493 22 494 23 500 33 501 34 502 35 503 36 503 37 504 38 505 39 506 44 511 45 512 47 513 48 514 49 515 501 516 517 520 520 References		488	accordance with the RODAM requirements for collaboration. Dr. Beune is the Data Collection
9 490 Additionally, researchers interested in further collaboration with RODAM may see the following 0 491 URL: http://www.rod-am.eu/ 22 492 33 493 24 493 25 494 493 493 26 495 27 496 28 497 39 498 31 499 32 500 33 501 34 502 35 503 36 504 37 504 38 505 39 506 40 507 41 508 42 509 43 510 44 511 45 511 46 512 47 513 48 514 49 515 50 516 517 520 520 520 52	17	489	Coordinator of RODAM and may be contacted with further questions (e.j.beune@amc.uva.nl).
40 507 41 508 42 509 43 510 44 511 45 511 46 512 47 513 48 514 49 515 50 516 51 517 52 518 54 519 55 520 56 521 References		490	Additionally, researchers interested in further collaboration with RODAM may see the following
40 507 41 508 42 509 43 510 44 511 45 511 46 512 47 513 48 514 49 515 50 516 51 517 52 518 54 519 55 520 56 521 References	20	491	URL: http://www.rod-am.eu/
40 507 41 508 42 509 43 510 44 511 45 511 46 512 47 513 48 514 49 515 50 516 51 517 52 518 54 519 55 520 56 521 References		492	
40 507 41 508 42 509 43 510 44 511 45 511 46 512 47 513 48 514 49 515 50 516 51 517 52 518 54 519 55 520 56 521 References	23		
40 507 41 508 42 509 43 510 44 511 45 511 46 512 47 513 48 514 49 515 50 516 51 517 52 518 54 519 55 520 56 521 References			
40 507 41 508 42 509 43 510 44 511 45 511 46 512 47 513 48 514 49 515 50 516 51 517 52 518 54 519 55 520 56 521 References			
40 507 41 508 42 509 43 510 44 511 45 511 46 512 47 513 48 514 49 515 50 516 51 517 52 518 54 519 55 520 56 521 References			
40 507 41 508 42 509 43 510 44 511 45 511 46 512 47 513 48 514 49 515 50 516 51 517 52 518 54 519 55 520 56 521 References		497	
40 507 41 508 42 509 43 510 44 511 45 511 46 512 47 513 48 514 49 515 50 516 51 517 52 518 54 519 55 520 56 521 References		498	
40 507 41 508 42 509 43 510 44 511 45 511 46 512 47 513 48 514 49 515 50 516 51 517 52 518 54 519 55 520 56 521 References		499	
40 507 41 508 42 509 43 510 44 511 45 511 46 512 47 513 48 514 49 515 50 516 51 517 52 518 54 519 55 520 56 521 References		500	
40 507 41 508 42 509 43 510 44 511 45 511 46 512 47 513 48 514 49 515 50 516 51 517 52 518 54 519 55 520 56 521 References		501	
40 507 41 508 42 509 43 510 44 511 45 511 46 512 47 513 48 514 49 515 50 516 51 517 52 518 54 519 55 520 56 521 References		502	
40 507 41 508 42 509 43 510 44 511 45 511 46 512 47 513 48 514 49 515 50 516 51 517 52 518 54 519 55 520 56 521 References		503	
40 507 41 508 42 509 43 510 44 511 45 511 46 512 47 513 48 514 49 515 50 516 51 517 52 518 54 519 55 520 56 521 References			
40 507 41 508 42 509 43 510 44 511 45 511 46 512 47 513 48 514 49 515 50 516 51 517 52 518 54 519 55 520 56 521 References			
43 510 44 511 45 511 46 512 47 513 48 514 49 515 50 516 51 517 52 517 53 518 54 519 55 520 56 521 References	39		
43 510 44 511 45 511 46 512 47 513 48 514 49 515 50 516 51 517 52 517 53 518 54 519 55 520 56 521 References			
43 510 44 511 45 511 46 512 47 513 48 514 49 515 50 516 51 517 52 517 53 518 54 519 55 520 56 521 References			
44 510 45 511 46 512 47 513 48 514 49 515 50 516 51 517 52 518 54 519 55 520 56 521 References			
45 512 47 513 48 514 49 515 50 516 51 517 52 518 54 519 55 520 56 521 References			
47 513 48 514 49 515 50 516 51 517 52 517 53 518 54 519 55 520 56 521 Ferences			
48 514 49 515 50 516 51 517 52 517 53 518 54 519 55 520 56 521 Ferences 57			
49 515 50 516 51 517 52 518 53 518 54 519 55 520 56 521 57 Keferences			
50 516 51 517 52 517 53 518 54 519 55 520 56 521 57 References			
51 517 52 518 53 518 54 519 55 520 56 521 57 References			
52 518 53 519 55 520 56 521 57			
54 519 55 520 56 521 References 57			
55 520 56 521 References 57			
56 521 References 57			
57			References
58			
59 19			10
59 19 60 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			۲۹ For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2		
3	522	1. Patzer RE, McClellan WM. Influence of race, ethnicity and socioeconomic status on kidney
4	523	disease. Nature Reviews Nephrology 2012;8(9):533-41.
5	524	2. Merkin SS, Roux AVD, Coresh J, et al. Individual and neighborhood socioeconomic status
6 7	525	and progressive chronic kidney disease in an elderly population: The Cardiovascular
8	526	Health Study. Soc Sci Med 2007;65(4):809-21.
9	527	3. Bello AK, Peters J, Rigby J, et al. Socioeconomic status and chronic kidney disease at
10	528	presentation to a renal service in the United Kingdom. <i>Clin J Am Soc Nephrol</i>
11	520 529	2008;3(5):1316-23.
12	530	4. Crews DC, Charles RF, Evans MK, et al. Poverty, race, and CKD in a racially and
13	531	socioeconomically diverse urban population. <i>Am J Kidney Dis</i> 2010;55(6):992-1000.
14	532	5. Shoham DA, Vupputuri S, Roux AVD, et al. Kidney disease in life-course socioeconomic
15	532	
16 17		context: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Kidney Dis
17	534	2007;49(2):217-26.
19	535	6. Byrne C, Nedelman J, Luke RG. Race, socioeconomic status, and the development of end-
20	536	stage renal disease. <i>Am J Kidney Dis</i> 1994;23(1):16-22.
21	537	7. Popkin BM. The shift in stages of the nutrition transition in the developing world differs from
22	538	past experiences! Public Health Nutr 2002;5(1A):205-14.
23	539	8. Du S, Lu B, Zhai F, et al. A new stage of the nutrition transition in China. <i>Public Health Nutr</i>
24	540	2002;5(1a):169-74.
25	541	9. Kim S, Symons M, Popkin BM. Contrasting socioeconomic profiles related to healthier
26 27	542	lifestyles in China and the United States. Am J Epidemiol 2004;159(2):184-91.
27	543	10. Adler NE, Ostrove JM. Socioeconomic status and health: what we know and what we don't.
29	544	Ann N Y Acad Sci 1999;896(1):3-15.
30	545	11. Anderson NB, Armstead CA. Toward understanding the association of socioeconomic status
31	546	and health: A new challenge for the biopsychosocial approach. Psychosom Med
32	547	1995;57(3):213-25.
33	548	12. Feinstein JS. The relationship between socioeconomic status and health: a review of the
34	549	literature. The Milbank Quarterly 1993:279-322.
35	550	13. Samuel P, Antonisamy B, Raghupathy P, et al. Socio-economic status and cardiovascular risk
36 37	551	factors in rural and urban areas of Vellore, Tamilnadu, South India. Int J Epidemiol
38	552	2012;41(5):1315-27.
39	553	14. Christie S, Fone DL. Does car ownership reflect socio-economic disadvantage in rural areas?
40	554	A cross-sectional geographical study in Wales, UK. Public Health 2003;117(2):112-16.
41	555	15. Agyemang C, Beune E, Meeks K, et al. Rationale and cross-sectional study design of the
42	556	Research on Obesity and type 2 Diabetes among African Migrants: the RODAM study.
43	557	<i>BMJ open</i> 2015;4(3):e004877.
44 45	558	16. Addo J, Agyemang C, Aikins Ad-G, et al. Association between socioeconomic position and
45 46	559	the prevalence of type 2 diabetes in Ghanaians in different geographic locations: the
40 47	560	RODAM study. J Epidemiol Community Health 2017: jech-2016-208322.
48	561	17. Adjei DN, Stronks K, Adu D, et al. Relationship between educational and occupational
49	562	levels, and Chronic Kidney Disease in a multi-ethnic sample-The HELIUS study. <i>PLoS</i>
50	563	<i>One</i> 2017;12(11):e0186460.
51		
52	564 565	18. Consultation WE. Waist circumference and waist-hip ratio. <i>Report of a WHO Expert</i>
53	565 566	Consultation Geneva: World Health Organization 2008:8-11.
54 55	566	19. Rutstein SO, Johnson K, MEASURE OM. The DHS wealth index: ORC Macro, MEASURE
55 56	567	DHS 2004.
50 57		
58		
59		20
60		20 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3	568	20. Association AD. Standards of medical care in diabetes—2014. Diabetes Care
4	569	2014;37(Supplement 1):S14-S80.
5	570	21. Stevens LA, Schmid CH, Greene T, et al. Comparative performance of the CKD
6	570	epidemiology collaboration (CKD-EPI) and the modification of diet in renal disease
7		1 67 ()
8	572	(MDRD) study equations for estimating GFR levels above 60 mL/min/1.73 m 2. Am J
9 10	573	<i>Kidney Dis</i> 2010;56(3):486-95.
10 11	574	22. Eknoyan G, Lameire N, Eckardt K, et al. KDIGO 2012 clinical practice guideline for the
12	575	evaluation and management of chronic kidney disease. <i>Kidney Int</i> 2013;3:5-14.
13	576	23. KDIGO G. Work Group. KDIGO clinical practice guideline for glomerulonephritis. <i>Kidney</i>
14	577	inter, Suppl 2012;2:139-274.
15	578	24. Collins AJ, Foley RN, Herzog C, et al. US Renal Data System 2010 Annual Data Report.
16	579	American journal of kidney diseases: the official journal of the National Kidney
17	580	Foundation 2011;57(1 Suppl 1):A8, e1.
18	581	25. Masthi NR, Gangaboraiah PK. An exploratory study on socio economic status scales in a
19 20	582	rural and urban setting. <i>Journal of family medicine and primary care</i> 2013;2(1):69.
20 21	583	26. Stanifer JW, Maro V, Egger J, et al. The epidemiology of chronic kidney disease in Northern
22	584	Tanzania: a population-based survey. PLoS One 2015;10(4):e0124506.
23	585	27. Bruce MA, Beech BM, Crook ED, et al. Association of socioeconomic status and CKD
24	586	among African Americans: the Jackson Heart Study. Am J Kidney Dis 2010;55(6):1001-
25	587	08.
26	588	28. Braveman PA, Cubbin C, Egerter S, et al. Socioeconomic status in health research: one size
27	589	does not fit all. JAMA 2005;294(22):2879-88.
28	590	29. Gilthorpe MS, Wilson RC. Rural/urban differences in the association between deprivation
29	591	and healthcare utilisation. Soc Sci Med 2003;57(11):2055-63.
30 31	592	30. Choi AI, Weekley CC, Chen S-C, et al. Association of educational attainment with chronic
32	593	disease and mortality: the Kidney Early Evaluation Program (KEEP). Am J Kidney Dis
33	595 594	2011;58(2):228-34.
34	594 595	31. Mackenbach JP, Cavelaars A, Kunst AE, et al. Socioeconomic inequalities in cardiovascular
35	595 596	
36		disease mortality. An international study. <i>Eur Heart J</i> 2000;21(14):1141-51.
37	597	32. McKay L, Macintyre S, Ellaway A. Migration and health: a review of the international
38	598	literature. MRC Social and Public Health Sciences Unit, Occasional Paper No. 12.
39 40	599	Glasgow: Medical Research Council[Links] 2003
40 41	600	
42	601	
43	602	
44	603	
45	604	
46	605	
47	606	
48	607	
49 50	608	
50 51	609	Legend for figures
52	610	
53	611	Figure 1: Prevalence of chronic kidney disease (CKD) across level of education among urban
54	612	and rural participants Definitions according to 2012 KDIGO (Kidney Disease: Improving Global
55		
56		
57		
58 50		24
59 60		21 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		


630

Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups.

Figure 2: Prevalence of chronic kidney disease (CKD) across occupational status among urban and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups.

Figure 3: Prevalence of chronic kidney disease (CKD) across wealth index categories among urban and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, js. or very high-risk groups.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

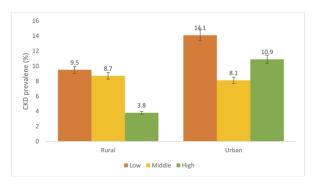


Figure 1: Prevalence of chronic kidney disease (CKD) across level of education among urban and rural participants Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups

Figure 1: Prevalence of chronic kidney disease (CKD) across level of education among urban and rural participants Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups.

279x361mm (300 x 300 DPI)

CKDprevalence (%) + 91 14,7 7.6

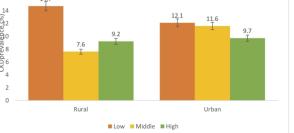
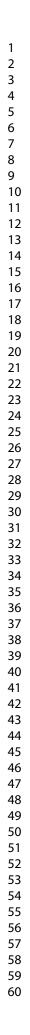



Figure 2: Prevalence of chronic kidney disease (CKD) across occupational status among urban and rural participants. Definitions according to 2012 KDIGO (kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased fisk, high-risk, or very high-risk groups

Figure 2: Prevalence of chronic kidney disease (CKD) across occupational status among urban and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups.

279x361mm (300 x 300 DPI)

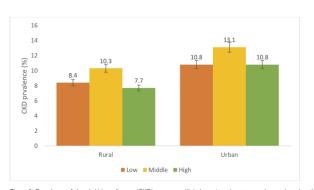


Figure 3: Prevalence of chronic kidney disease (CKD) across wealth index categories among urban and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups

Figure 3: Prevalence of chronic kidney disease (CKD) across wealth index categories among urban and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups.

279x361mm (300 x 300 DPI)

BMJ Open

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No.	Recommendation		Page No.	Relevant text from manuscript
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1,2		We have included a commonly used term in the title and abstract
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2		Our study did not find an associations between SE indicators and CKD in bot rural and urban Ghana after ag and sex adjustment except i rural Ghana where wealth inde was associated with prevalenc of CKD. Consequently, th higher SES did not account fo the increased rate of CKI among urban dweller suggesting the need to identif other factors that may be drivin this.
Introduction					
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4		The theoretical and scientifi background as well as th rationale for conducting th study have been provided in th introduction section.
Objectives	3	State specific objectives, including any prespecified hypotheses	4		We assessed the association of SES with CKD in rural an urban Ghana and studied wha extent the higher SES of peopl in urban areas could account for differences in CKD betwee rural and urban populations
Methods					
Study design	4	Present key elements of study design early in the paper	5-6		Details given in the methods
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-6		Rural or urban Ghana.
		1			
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xh	ntml		

Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls 		A multi-centre cross-sectional study was conducted among Ghanaian adults (n=2492) aged 25-70 years residing in rural and urban Ghana.
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of selection of participants	6-8	
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per		
		case		
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6-8	The main outcomes have been clearly defined.
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6-8	We defined each variable of interest in the methods accordingly
Bias	9	Describe any efforts to address potential sources of bias	18	Potential sources of bias have discussed in the discussion section
Study size	10	Explain how the study size was arrived at	5	Given in the methods section and we have also referred to the RODAM study methods paper
Continued on next page				
		2		

BMJ Open

Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	8-9	Please see methods
Statistical	12	(a) Describe all statistical methods, including those used to control for confounding	8-9	Please see methods
methods		(b) Describe any methods used to examine subgroups and interactions	8-9	Please see methods
		(c) Explain how missing data were addressed	8-9	
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	NA	We have reported non-response
		Case-control study—If applicable, explain how matching of cases and controls was addressed		across sites
		Cross-sectional study—If applicable, describe analytical methods taking account of sampling		
		strategy		
		(<u>e</u>) Describe any sensitivity analyses	NA	
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially eligible, examined	5	Non-response analysis was done to
		for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed		shed light on the differential response rates across sites
		(b) Give reasons for non-participation at each stage	5	response rates across sites
		(c) Consider use of a flow diagram	5	We have also referred to RODAM
				methods paper
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on	5	We have also referred to RODAM
		exposures and potential confounders		methods paper
		(b) Indicate number of participants with missing data for each variable of interest	5	We have also referred to RODAM
				methods paper
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)	NA	
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	NA	
		Case-control study-Report numbers in each exposure category, or summary measures of exposure	NA	
		<i>Cross-sectional study</i> —Report numbers of outcome events or summary measures	9-10	Summary measures are given in the results section and in tables and figures
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision	12-16	Unadjusted and adjusted estimates
		(eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were		are given in the results section and
		included		in figures
		(b) Report category boundaries when continuous variables were categorized	12-16	We have provided mean and corresponding standard deviations for the continuous variables.
		3		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xł	atml	

		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time	NA	
Continued on next pa	ige			
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	NA	
Discussion				
Key results	18	Summarise key results with reference to study objectives	8	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	18	Key limitations regarding stud methods including differentia response rates and samplin methods in the various study site have been provided
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	17-18	Cautious overall interpretation o the key findings have been provided.
Generalisability	21	Discuss the generalisability (external validity) of the study results	17-18	
Other informati	on			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the	19	The funders had no role in stud design, data collection and analysis
*Give informatio	on sep	original study on which the present article is based	in cohort and	decision to publish, or preparation of the manuscript
Note: An Explan checklist is best u	ation used i		examples of the icine.org/, And	decision to publish, or preparatio of the manuscript cross-sectional studies. ransparent reporting. The STROBE nals of Internal Medicine at
Note: An Explan checklist is best u	ation used i	parately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups and Elaboration article discusses each checklist item and gives methodological background and published in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmed	examples of the icine.org/, And	decision to publish, or preparatio of the manuscript cross-sectional studies. ransparent reporting. The STROBE nals of Internal Medicine at
Note: An Explan checklist is best u	ation used i	parately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups and Elaboration article discusses each checklist item and gives methodological background and published in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmed	examples of the icine.org/, And	decision to publish, or preparatio of the manuscript cross-sectional studies. ransparent reporting. The STROBE nals of Internal Medicine at
Note: An Explan checklist is best u	ation used i	parately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups and Elaboration article discusses each checklist item and gives methodological background and published in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmed /, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at wo	examples of the icine.org/, And	decision to publish, or preparatio of the manuscript cross-sectional studies. ransparent reporting. The STROBE nals of Internal Medicine at
Note: An Explan checklist is best u	ation used i	parately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups and Elaboration article discusses each checklist item and gives methodological background and published in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmed	examples of the icine.org/, And	decision to publish, or preparation of the manuscript cross-sectional studies. ransparent reporting. The STROBE nals of Internal Medicine at

BMJ Open

A CROSS-SECTIONAL STUDY OF ASSOCIATION BETWEEN SOCIOECONOMIC INDICATORS AND CHRONIC KIDNEY DISEASE IN RURAL-URBAN GHANA-THE RODAM STUDY

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022610.R2
Article Type:	Research
Date Submitted by the Author:	05-Nov-2018
Complete List of Authors:	Adjei Nana, David ; University of Ghana, Department of Medical Laboratory Sciences; University of Amsterdam, Department of Public Health Stronks, Karien; Academic Medical Center , Department of Public Health Adu, Dwomoa; Korle-bu Teaching Hospital, Department of Medicine Beune, Erik; AMC Meeks, Karlijn; AMC, Public Health Smeeth, Liam; London School of Hygiene and Tropical Medicine, Addo, Juliet; London School of Hygiene and Tropical Medicine, Non Communicable Disease Epidemiology Owusu-Dabo, Ellis; Kwame Nkrumah University of Science and Technology, Kumasi Centre for Collaborative Research in Tropical Medicine Klipstein-Grobusch, Kerstin; 1 Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands Mockenhaupt, Frank; Charité – University Medicine, Berlin, Institute of Tropical Medicine and International Health Danquah, Ina; German Institute of Human Nutrition, Molecular Epidemiology; Charite Universitatsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economy Spranger, Joachim; Department of Endocrinology and Metabolism, 1. Charité-University Medicine Berlin, Germany. Bahendeka, Silver; 1. MKPGMS - Uganda Martyrs University De-Graft Aikins, Ama; University of Ghana, Regional Institute for Population Studies Agyemang, Charles; Academic Medical centre, University of Amsterdam, Department of Public Health
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health, Epidemiology
Keywords:	Chronic Kidney Disease, Socioeconomic status, Health inequalities, RODAM study, rural, urban

1 2 3 4 5 6 7 8	SCHOLARONE [™] Manuscripts
9 10 11 12 13 14 15 16	
17 18 19 20 21 22 23 24	
25 26 27 28 29 30 31 32 33	
34 35 36 37 38 39 40 41	
42 43 44 45 46 47 48 49 50	
50 51 52 53 54 55 56 57 58	
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2					
3	1	A CROSS SECTIONAL STUDY OF ASSOCIATION BETWEEN			
4 5	2	SOCIOECONOMIC INDICATORS AND CHRONIC KIDNEY DISEASE IN			
6					
7 8	3	RURAL-URBAN GHANA-THE RODAM STUDY			
9	4 5	David N. Adjei, MSc, PhD ^{1,2} ; Karien Stronks, MSc, PhD ¹ ; Dwomoa Adu, MD ³ ; Erik Beune, MSc, PhD ¹ ; Karlijn Meeks, MSc, PhD ¹ ; Liam Smeeth, MD, PhD ⁴ ; Juliet, Addo, MD, PhD ⁴ ;			
10 11	6	Ellis Owuso-Dabo, MSc, PhD ⁵ , Kerstin Klipstein-Grobusch, MSc, PhD ^{6,7} ; Frank P.			
12	7	Mockenhaupt, MD, PhD ⁸ ; Ina, Danquah, MSc, PhD ^{9,10} ; Joachim, Spranger, MD, PhD ^{11,12,13} ;			
13 14	8 9	Silver Bahendeka, MD, PhD ¹⁴ ; Ama de-Graft, Aikins, MSc, PhD ¹⁵ ; Charles Agyemang, MPH, PHD ¹			
15	-				
16 17 18	10 11	1. Department of Public Health, Academic Medical Center, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.			
19 20	12 13	2. Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana.			
21 22 23	14 15	 Department of Medicine, School of Medicine and Dentistry, University of Ghana and Korle- Bu Teaching Hospital, Accra, Ghana. 			
24 25 26	16 17	 Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom. 			
27 28 29 30	18 19 20	 Kumasi Centre for Collaborative Research, KNUST, Kumasi, Ghana Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Centre, Utrecht University, The Netherlands. 			
31 32 33	21 22	 Division of Epidemiology & Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. 			
34 35	23 24	 Institute of Tropical Medicine and International Health, Charité – University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany. 			
36 37 38	25 26	9. Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam- Rehbrücke, Nuthetal, Germany.			
39 40 41	27 28	 Charité - Universitaetsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economics, Berlin, Germany. 			
42 43 44	29 30	11. Department of Endocrinology and Metabolism, Charité-University Medicine Berlin, Berlin, Germany.			
45	31	12. German Centre for Cardiovascular Research (DZHK), Berlin, Germany.			
46 47 48	32 33	13. Center for Cardiovascular Research (CCR), Charité-University Medicine Berlin, Berlin, Germany.			
49 50	34	14. MKPGMS - Uganda Martyrs University, Kampala, Uganda.			
51	35	15. Regional Institute for Population Studies, University of Ghana, Legon, Ghana.			
52 53	36	Address correspondence to David Nana Adjei, MSc, PhD Department of Public Health,			
54 55 56	37	Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the			
57 58 59		1			
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			

1		
2 3	20	
4	38	Netherlands, School of Biomedical and Allied Health Sciences, Medical Laboratory Sciences,
5 6	39	University of Ghana, E-mail: dna@chs.edu.gh, d.n.adjei@amc.uva.nl, Tel: +233236717850
7 8	40	Abstract
9	41	Obiectives. Studies from high income countries success higher provelance of Chronic Kidney Disease
10	42 43	Objectives: Studies from high income countries suggest higher prevalence of Chronic Kidney Disease (CKD) among individuals in low socio-economic groups. However, some studies from low and middle-
11 12	43 44	income countries (LMICs) show the reverse pattern among those in high socioeconomic groups. It is
12	44	unknown which pattern applies to individuals living in rural and urban Ghana. We therefore assessed the
14	46	association between Socio-Economic Status (SES) indicators and CKD in rural and urban Ghana and to
15	47	what extent the higher SES of people in urban areas of Ghana could account for differences in CKD
16	48	between rural and urban populations.
17	49	
18 19	50	Methods: We used baseline data from multi-centre Research on Obesity and Diabetes among
20	51	African Migrants (RODAM) study. The sample consisted of 2492 adults (Rural Ghana, 1043, Urban
21	52	Ghana, 1,449) aged 25 to 70 years living in Ghana. Three CKD outcomes were considered using the 2012
22	53	KDIGO (Kidney Disease: Improving Global Outcomes) severity of CKD classification: albuminuria
23 24	54	(albumin-creatinine ratio \geq 3 mg/mmol (category \geq A2)); reduced glomerular filtration rate (eGFR < 60
25	55	mL/min/1.73 m2 (category \geq G3)) and high to very high CKD risk based on the combination of these two.
26	56	
27	57	Results: All three SES indicators were not associated with CKD in both rural and urban Ghana after age
28	58 59	and sex adjustment except for rural Ghana where high wealth index was significantly associated with higher odds of reduced eGFR (AOR, 2.38; 95% C.I. 1.03-5.47). The higher rate of CKD observed in
29	60	urban Ghana was not explained by the higher SES of that population.
30 21	61	urban Ghana was not explained by the higher SES of that population.
31 32	62	Conclusion: SES indicators were not associated with prevalence of CKD except for wealth index and
33	63	reduced eGFR in rural Ghana. Consequently, the higher SES of did not account for the increased rate of
34	64	CKD among urban dwellers suggesting the need to identify other factors that may be driving this.
35	65	
36	66	
37	67	Index Words: Chronic kidney disease; socioeconomic status; health inequalities; risk factor; ethnic
38 39	68	minority groups; migrants; RODAM study, Ghana
40	69	
41	70	
42		
43	71	
44	72	
45 46		
40 47	73	
48	74	
49	75	
50	75	
51 52	76	
53	77	
54 55	78	
55 56	. 0	
57		
58		
59		2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xntml

1		
2 3	-0	
4	79	
5 6	80	
7 8	81	
9	82	
10 11	83	
12	84	
13 14	85	Strengths and limitation of the study
15 16	86	
17	87	• The use of well-standardized study protocols across rural and urban Ghana eliminated intra
18 19	88	protocol variability.
20	89	
21 22	90	• Our study is also the first in Africa to use all three categories of CKD definitions (albuminuria,
23 24	91	reduced eGFR and CKD risk) by KDIGO 2012 in assessing association of SES with CKD in rural
24 25	92	and urban setting. This provides more detailed information on CKD outcomes.
26 27	93	and urban setting. This provides more detailed information on exploateomes.
28	94	• The limitation of intra laboratory variability in earlier studies was eliminated using the same
29 30	94 95	standard operating procedures in the same laboratory for running all samples for both rural and
31	95 96	urban Ghana.
32 33	90 97	
34 35		
35 36	98 00	• The use of three constructs of SES (educational level, occupational level and wealth index) in this
37 38	99 100	study also provides a much better holistic approach to assessing SES associations with CKD.
39	100	
40 41	101	• Our study was limited because of the use of cross sectional design which prevented us from
42	102	determining causality between predictors and CKD progression.
43 44	103	
45 46	104	
47	105	
48 49	106	
50	107	
51 52	108	
53 54	109	
55	110	
56 57		
58		
59 60		3 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

26	124	
27	125	Introduction

127 In general, individuals in lower socio-economic status (SES) groups have been shown to suffer more 128 frequently from Chronic Kidney Disease (CKD), often progressing to End Stage Renal Disease (ESRD), 129 and associated with inadequate dialysis treatment, reduced access to kidney transplantation and poor 130 health outcomes ¹. Recent studies have consistently found low SES to be associated with higher risk of 131 CKD among people of African origin ²⁻⁵.

However, in some settings the well-known inverse association between SES and CKD seems to be absent, or even reversed. For example, Bryne et al. did not find an association between SES and End Stage Renal Disease ⁶. Other studies have found ⁷⁸. Specifically, as SES improved, a positive association between SES and CKD unhealthful lifestyle (unhealthy diet, physical inactivity, smoking and alcohol consumption) increased in China while that of the United States decreased with improved SES ⁹. People with higher incomes, in these contexts, can afford a western

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	139	lifectule which is more readily evailable in the urban areas than in the rural areas			
4 5	139	lifestyle, which is more readily available in the urban areas than in the rural areas.			
6 7	140	There is therefore an interaction between individual SES and environmental factors,			
8 9 10	141	such as food and sedentary life style in such populations ¹⁰⁻¹² . Consequently, in those			
10 11 12	142	settings, people with a higher SES might have higher CKD risk.			
13	143	In urban areas, the population in general has a higher SES than in rural areas ¹³ . For example, individuals			
14 15	144	with higher educational level migrate from rural areas to find higher occupations matching their higher			
16	145	education to improve on their wealth. If indeed a positive association between SES and CKD is observed			
17 18	146	in LMICs, this might underlie the well-known health differences between urban and rural areas, with			
19	147	urban areas having an increased risk of CKD ¹⁴ . So far, it is unknown whether the reversed SES gradient			
20 21	148	(higher risk in high SES group) might explain the higher burden of CKD in urban areas as compared to			
22	149	rural areas in Africa.			
23 24	150				
25	151	In view of this, we assessed the association of SES with CKD in rural and urban Ghana and studied what			
26 27	152	extent the higher SES of people in urban areas could account for differences in CKD between rural and			
28	152				
29 30	155	urban populations.			
31 32	154				
32 33	155				
34 35					
36	156				
37 38	157				
38 39	158				
40 41	159				
41 42	160				
43 44	161	Methods			
45	162				
46 47	163	Study population and study design			
48 49	164	In the present analyses, data from the RODAM (Research on Obesity & Diabetes			
50 51 52	165	among African Migrants) study, a multi-centre cross-sectional study were used. The			
53 54	166	rationale, conceptual framework, design and methodology of the RODAM study have			
55 56 57 58	167	been described in detail elsewhere ^{15 16} . As the Healthy Life in an Urban Setting			
59		5 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			
60		for peer review only integry on jopen on joen would dure upout guidelines. And in			

Page 7 of 35

BMJ Open

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26 27	
27 28	
20 29	
29 30	
30 31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

59

60

168 (HELIUS) study conducted among Ghanaian migrants living in Amsterdam did not find any 169 associations between SES and CKD ¹⁷ the current study focused on rural and urban Ghana (Ashanti 170 region of Ghana). The RODAM study was conducted from 2012 to 2015 and it comprised 171 of individuals aged 25-70 years living in rural and urban Ghana and Ghanaian 172 migrants in Europe. All participants below 25 and above 70 years were excluded in 173 the present analyses. The present analysis was restricted to the rural and urban sites 174 (n=2492) RODAM participants. Specifically, 1043 participants from rural Ghana and 175 1449 from urban Ghana were used in this study.

, 176

177 Data collection for the study was standardized across all sites. Written informed 178 consent was obtained from each participant prior to enrolment in the study. The 179 respective ethics committees in Ghana and the three European countries approved the 180 study protocols before data collection began. Specifically, we obtained ethical clearance 181 in Ghana from School of Medical Sciences/Komfo Anokye Teaching Hospital 182 Committee on Human Research, Publication & Ethical Review Board. In the 183 Netherlands the Institutional Review Board of the AMC, University of Amsterdam gave 184 approval for the study. In Germany, approval for the study was obtained from the 185 Ethics Committee of Charite-Universitäts medizin. The London School of Hygiene and 186 Tropical Medicine Research Ethics Committee gave approval for the study in the UK.

The response rate was 76% in rural Ghana and 74% in urban Ghana. In Ghana, participants were randomly drawn from a list of 30 enumeration areas in the Ashanti region based on the 2010 population census using the multistage random sampling. These enumeration areas came from two purposively selected urban cities (Kumasi and Obuasi) and 15 randomly selected rural communities in the Ashanti region.

192 Selected health and community authorities were first identified, notified of the study 193 and letters were sent giving detailed explanation of the study. We sent team members 194 to stay among the communities to familiarize with them and organize mini clinics in 195 the field. This lasted between 1-2 weeks depending on the sampled population and 196 responsiveness of respondents.

In Ghana, questionnaires administration and physical examination were done at the same day/time. The participants were instructed to fast from 10.00 pm the night before the physical examination. For the current study, 2566 participants with data available on both questionnaire data and physical measurements were used. We excluded (n=74) individuals outside the RODAM age range of 25-70 years resulting in a data set of 2492 for analysis. These comprised 1,449 Urban Ghana and 1043 Rural Ghana. For the final analysis, individuals with no data on CKD status (n=42) were excluded.

204 Measurements

205 Covariates

206 Demographic and lifestyle factors

Information on demographics, educational level, occupational level, wealth index and lifestyle factors (smoking and physical activity) were obtained by questionnaire. Physical examinations were performed with validated devices per standardized operational procedures across all study sites. Weight was measured in light clothing and without shoes with SECA 877 scales to the nearest 0.1 kg. Height was measured without shoes with a portable stadiometer (SECA 217) to the nearest 0.1 cm. Body mass index (BMI) was calculated as weight (kg) divided by height squared (m^2). Overweight was defined as BMI of \geq 25 to <30 kg/m² and obesity as BMI \geq 30 kg/m² ¹⁸. Per participant, all anthropometrics were measured twice by the same assessor and the average of the two measurements were used for analyses.

215 Predictor: SES

Page 9 of 35

BMJ Open

Socioeconomic indicators used in this study were educational level, occupational status and level of wealth index. Educational level was determined based on self-reported highest educational qualification accomplished based on the Ghanaian educational system. Occupational level was determined based on self-reported current occupation if still employed and/or last occupation before retirement or student. The reported occupations were further coded according to the International Standard Classification of Occupations scheme (ISCO-08). Where 'high' (professionals, managers, clerical support staff, higher grade routine non-manual employees service and sales-related occupations) and 'low' (craft and related trades workers, elementary occupations and farmers) and the rest were categorized into the 'middle'. Wealth index was determined using the World Health Organization (WHO) standard of wealth index classification. Wealth index was based on data collected in the Household Questionnaire. The questionnaire comprised of questions on household's ownership of several consumer items such as television, car, flooring material, toilet facilities etc. Each household was assigned a standard score for each asset. Wealth index was then expressed in five categories. The five categories were further categorized into three categories by combining the second and third category due to small numbers ¹⁹. All three SES constructs were further classified as low, medium and high SES and their relationship to each other tested. A composite SES variable (SES) was generated based on the three SES constructs (education, occupation and wealth index) using the EGEN group command in STATA. The codes were combined into numerical variables and their averages computed. The resultant values were recoded into three categories (low, medium and high).

Co-morbidity factors

Blood pressure (BP) was measured three times using a validated semi-automated device (The Microlife WatchBP home) with appropriate cuffs in a sitting position after at least 5 min rest. The mean of the last two BP measurements was used in the analyses. Hypertension was defined as systolic BP \geq 140 mmHg, and/or diastolic BP \geq 90 mmHg, and/or being on antihypertensive medication treatment, and/or self-reported hypertension. Trained research assistants in the two sites collected fasting venous blood samples. All the blood samples were processed and aliquoted immediately (within one hour to maximum three hours of the vena puncture) after collection per standard operation procedures, and then temporarily stored at the local research location at -20° C. The separated samples were then transported to the local research centres laboratories, where they were checked, registered and stored at -80°C. To avoid intra-laboratory variability, the stored blood samples from the local research centres were transported to Berlin, Germany for biochemical analyses. Fasting plasma glucose concentration was measured using an enzymatic method (hexokinase). Type 2 diabetes was defined according to the WHO diagnostic criteria (fasting glucose \geq 7.0 mmol/L, and/or current use of medication prescribed to treat diabetes, and/or self-

reported diabetes) ²⁰. Concentration of total cholesterol was assessed using colorimetric test kits. All biochemical analyses were performed using an ABX Pentra 400 chemistry analyzer (ABX Pentra; Horiba ABX, Germany). Hypercholesterolemia was defined as total cholesterol level \geq 6.22 mmol/L. Serum creatinine concentration (in umol/L) was determined by a kinetic colorimetric spectrophotometric isotope dilution mass spectrometry–calibrated method (Roche Diagnostics). Biochemical analyses were subject to extensive quality checks including blinded serial measurements.

Outcome: CKD prevalence

Participants were asked to bring an early morning urine sample for the analyses of albuminuria and creatinine levels. Urinary albumin concentration (in mg/L) was measured by an immunochemical turbidimetric method (Roche Diagnostics). Urinary creatinine concentration (in umol/L) was measured by a kinetic spectrophotometric method (Roche Diagnostics). Estimated glomerular filtration rate (eGFR) was calculated using the CKDEPI (CKD Epidemiology Collaboration) creatinine equation ²¹. Urinary albumin-creatinine ratio (ACR; expressed in mg/g) was calculated by taking the ratio between urinary albumin and urinary creatinine. eGFR and albuminuria were categorized according to the 2012 KDIGO (Kidney Disease: Improving Global Outcomes) classification ²². eGFR was categorized as follows: $G_{1,2} \ge 1$ 90 mL/min/1.73 m² (normal kidney function); G2, 60 to 89 mL/min/1.73 m² (mildly decreased); G3a, 45 to 59 mL/min/1.73 m² (mildly to moderately decreased); G3b, 30 to 44 mL/min/1.73 m² (moderately to severely decreased); G4, 15 to 29 mL/min/1.73 m² (severely decreased); and G5, < 15 mL/min/1.73 m² (kidney failure). Albuminuria categories were derived from ACR and were as follows: A1, < 3mg/mmol (normal to mildly increased); A2, 3 to 30 mg/mmol (moderately increased); and A3, > 30mg/mmol (severely increased). CKD status was categorized according to severity of kidney disease (green, low risk; yellow, moderately increased risk; orange, high risk; and red, very high risk) using the combination of eGFR (G1-G5) and albuminuria (A1-A3) levels defined by the 2012 KDIGO guideline ²³. Due to the small number of participants in the very high risk category of CKD, high and very high risk groups were combined. Reduced eGFR was defined as $eGFR < 60 \text{ mL/min}/1.73 \text{ m}^2$. Because of the small number of participants in the severely increased albuminuria category, we defined albuminuria as ACR \geq 3 mg/mmol by combining the moderately increased (A2) and severely increased (A3) categories.

Patient and Public Involvement

Community leaders were involved in the recruitment of patients. These comprised of religious communities (churches and mosques), endorsement from local key leaders and establishing relationships with healthcare organizations. We also provided information on the study by involving the local media (radio and television stations). We sent letters to all selected health and community authorities to notify

Page 11 of 35

BMJ Open

281 participants of the study. Team members were sent to the various communities to stay among the 282 community and organize mini clinics for a period of 1-2 weeks. Results of the study were disseminated 283 through seminars, durbars and via radio and television stations.

284 Statistical methods

Participants' characteristics were expressed as absolute numbers and percentages for categorical variables and as means and standard deviations (SD) for continuous variables. CKD prevalence with 5% error bars were presented as bar graphs for each SES construct across rural and urban Ghana. Spearman's rank correlation was used to determine correlations between the three SES constructs. Odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were estimated by means of logistic regression analyses to study the odds of albuminuria (ACR>3 mg/mmol, A2-A3, moderately to severely increased albuminuria), reduced kidney function (eGFR< 60 mL/min/1.73 m², G3-G5 moderately to severely decreased kidney function) and increased CKD risk (high and very high CKD risk) by SES, with adjustments for potential confounders (age and sex).²⁴ In addition, the analyses were performed for the total population (using low educational level, low occupational status and low level of wealth index as reference categories). Further analysis was conducted to assess the contribution of SES indicators to rural-urban differences in albuminuria, reduced eGFR and CKD risk using rural Ghana as reference. Tolerance test and variance inflation factor (VIF) showed very small degree of collinearity among SES predictors thus we therefore adjusted for each of SES variables separately. Complete case analysis approach was used. All data available were included in the age-adjusted models. All analyses were performed using STATA, version 14.0 (StataCorp LP).

302 Results

46 303

Table 1 shows characteristics of study participants. Participants in rural Ghana were slightly older than those in urban Ghana. Female preponderance was observed in both rural and urban Ghana, though higher proportions were observed in urban Ghana. Individuals living in rural Ghana were generally less educated compared with those

1	
2	
3	
4	
5	
6	
6 7	
/	
Q	
9 10	
9	
10	
11	
12	
12	
12 13	
14 15 16 17	
15	
15	
16	
17	
10	
18	
19	
20	
20	
21	
22	
25	
23	
24	
18 19 20 21 22 23 24 25	
26 27	
20	
27	
28	
20	
29	
30	
31	
21	
32	
33	
31	
34 35 36 37	
35	
36	
27	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

58 59

60

308	living in urban Ghana. There were slightly more individuals with low occupational
309	status in urban Ghana compared with their peers in rural Ghana. People in urban
310	Ghana were wealthier than their rural counterparts. Rural Ghanaians were more
311	physically active compared with their urban peers. Smoking was low among Ghanaians
312	though rural Ghanaians were more likely to smoke compared with their urban peers.
313	Hypercholesterolemia was more prevalent in urban Ghana than in rural Ghana.
314	Hypertension and type 2 diabetes were more prevalent in urban Ghanaians compared
315	with those living in rural Ghana. Urban Ghanaians were markedly more obese
316	compared with their rural peers. Except for eGFR, albuminuria and CKD risk
317	prevalence rates were higher in urban Ghana compared with rural Ghana.

318

Table 1: Baseline characteristics by location

	Rural Ghana	Urban Ghana
Number of participants, N (%)	1043 (41.9)	1449 (58.1)
Mean age, years (SD)	46.5 (12.6)	45.2 (11.4)
Females, N (%)	638 (61.2)	1034 (71.4)
Educational level n (%)		
Low	555 (56.9)	614 (43.9)
Middle	311 (31.9)	547 (39.1)
High	108 (11.2)	239 (17.0)
Occupational status, n (%)		
Low	250 (25.7)	374 (26.7)
Middle	628 (64.5)	818 (58.4)
High	96 (9.8)	209 (14.9)
Wealth index, n (%)		
Low	449 (46.5)	368 (26.6)
Middle	276 (28.6)	416 (30.0)

BMJ Open

2 3 4		High	241 (24.9)	602 (43.4)
5		BMI (kg/m²	, , , , , , , , , , , , , , , , , , ,	· · · · ·
6 7		< 25	794 (76.3)	579 (39.9)
8 9		25-29.9	189 (18.2)	495 (34.2)
10 11		≥ 30	58 (5.5)	374 (25.9)
12		Low physical activity, n (%)	663 (47.22)	592 (60.7)
13 14		Smoking, n (%)	22 (2.3)	14 (1.0)
15 16		Hypercholesterolemia, n (%)	78 (7.6)	270 (18.7)
17		Hypertension, n (%)	306 (29.3)	531 (36.7)
18 19			53	
20 21		Diabetes, n (%)	(5.1)	153 (10.6)
22		Albuminuria, n (%)		
23 24			930 (91.6)	
25 26		A1, Normal to mildly increased (ACR <3 mg/mmol)	85	1285 (89.1)
27		A2-A3, moderately to severely increased (ACR≥ 3 i	mg/ (8.4)	158 (10.9)
28 29		eGFR, n (%)		
30 31		G1-G2 (≥ 60 mL/min/1.73m²)	989 (96.3)	1388 (96.3)
32		G3-G5 (<60 mL/min/1.73m ²)	38 (3.7)	54 (3.7)
33 34		CKD risk, n (%)		
35 36		Low risk (green)	916 (90.5)	1281 (88.9)
37		Moderately increased to very high risk		
38 39		(yellow to red)	96 (9.5)	160 (11.1)
40 41	320			
42	321	Abbreviations: N, number of respondents; SD, standard deviation; eGFR, estim	ated glomerular filtration	rate; ACR, albumin

Abbreviations: N, number of respondents; SD, standard deviation; eGFR, estimated glomerular filtration rate; ACR, albumin creatinine ratio; CKD, Chronic kidney disease

Figure 1 shows prevalence of CKD by level of education in urban and rural Ghana. Prevalence of CKD decreased with increasing levels of education in rural Ghana. Higher prevalence of CKD was observed among individuals with low educational level compared with those with middle and high educational level. However, those with high educational level in urban Ghana had higher prevalence of CKD compared with those

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

with middle level education. For occupational status, prevalence of CKD was higher among individuals with low occupational status in urban Ghana. Similar patterns were observed in rural Ghana; however, those with higher occupational status had higher prevalence of CKD compared with those with middle occupational status (Figure 2). Figure 3 shows prevalence of CKD by level of wealth index. CKD prevalence among the levels of wealth index varied between urban and rural Ghana. Those with middle level wealth index had higher prevalence of CKD compared with those with low or high CKD prevalence in both rural and urban Ghana. CKD prevalence rate for low and high level wealth index in urban Ghana was the same while that of rural Ghana was slightly different.

339	Among the whole g	group, educational le	vel was positively ass	ociated with we	alth index (p<0.01) and composite SES
340	(P<0.01). Occupation	nal level was also in	versely associated with	educational leve	el (p<0.01) and wealth index (p<0.01). In
341	urban Ghana, high	educational level w	as positively associate	d with high wea	alth index but inversely associated with
342	occupation (p<0.01).	In rural Ghana, higi	n education was positiv	ely associated w	rith high wealth index (p<0.01), but there
343	was no significant a	ssociation between e	education and occupation	on. High wealth	index was inversely associated with high
344	occupational status i	in both rural and urb	an Ghana (p<0.01) (Ta	ble 2).	
345					
346	Table 2: Relations	hip between SES	constructs (education	nal, occupation	al level and wealth index) by urban
347	rural Ghana				
348 349					
515	Correlation matrix	Educational level	Occupational level	Wealth index	SES
	Whole group			6	
	Educational level	1.000			
	Occupational status	-0.060	1.000		
		0.004			
	Wealth Index	0.282	-0.121	1.000	
		0.001	0.001		
1	SES	1.000	-0.059	0.282	1.000
)		0.003	0.006	0.001	
			14		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Educational level	1.000

Occu	pational status	-0.115	1.000		
		0.001			
Wea	lth Index	0.294	-0.126	1.000	
		0.001	0.001		
SES		1.000	-0.024	0.937	1.000
		0.002	0.001	0.001	
Rura	l Ghana				
Educ	ational level	1.000			
Occu	ipational status	0.017	1.000		
		0.589			
Wea	lth Index	0.219	-0.135	1.000	
		0.001	0.001		
SES		0.504	0.017	0.934	1.000
		0.001	0.587	0.001	
350					

Page 17 of 35

1 2 BMJ Open

57 58 59	Table 3: Association of SES indi	cators (educational level, o	occupational sta	tus and wealth index le	vel) with albun	ninuria, reduced eGFR and CH
57 58	Table 3. Association of SES indi	entars (adjugational lavel of	accumentional ete	tus and wealth index la	val) with album	inuria reduced of FD and CL
67					J	
	ouus of founded off (p (0.01).					
65 66	educational level and occupationa odds of reduced eGFR (p<0.01).	n status were not associa	acu with CKD	prevalence, nigh wea	ini index was	significantly associated with
64 65	urban Ghana. However, middle	C				· · · ·
63	age and sex, we observed no sign				•	,
62	CKD. After adjusting for age and					
61	Table 3 shows association					
60						
59						
58						
57						
56						
55						

Education						
Whole group						
Low	1,152 (11.89)	1.00 (Reference)	1,160 (3.97)	1.00 (Reference)	1.150 (11.91)	1.00 (Reference
Middle	847 (7.32)	0.66 (0.48-0.91)	849 (3.77)	1.36 (0.83-2.22)	845 (8.28)	0.82 (0.59-1.12
High	343 (7.00)	0.67 (0.42-1.07)	345 (3.19)	1.11 (0.55-2.29)	343 (8.75)	0.96 (0.62-1.49
Urban Ghana						X
Low	612 (14.7)	1.00 (Reference)	612 (4.1)	1.00 (Reference)	612 (14.1)	1.00 (Reference)
Middle	546 (7.8)	0.51 (0.34-0.76)	546 (3.7)	1.12 (0.59-2.12)	545 (8.1)	0.59 (0.39-0.89)
High	238 (8.4)	0.53 (0.31-0.91)	238 (3.4)	0.91 (0.37-2.19)	238 (10.9)	0.83 (0.51-1.38)
Rural Ghana						
Low	540 (8.7)	1.00 (Reference)	548 (3.8)	1.00 (Reference)	538 (9.5)	1.00 (Reference)
Middle	301 (6.3)	0.89 (0.51-1.59)	303 (3.9)	1.69 (0.77-3.66)	300 (8.7)	1.33 (0.79-2.25)
High	105 (3.8)	0.66 (0.23-1.95)	107 (2.8)	1.28 (0.35-4.71)	105 (3.8)	0.69 (0.23-2.02)
Occupational	status					
Whole group						
Low	614 (9.93)	1.00 (Reference)	616 (2.76)	1.00 (Reference)	613 (9.46)	1.00 (Reference)
Middle	1,427 (9.25)	0.82 (0.59-1.14)	1,436 (3.34)	0.93 (0.52-1.66)	1,424 (9.90)	0.89 (0.65-1.24)
High	302 (10.26)	0.76 (0.47-1.22)	303 (7.92)	1.33 (0.67-2.62)	302 (12.91)	0.90 (0.57-1.42)
Urban Ghana				Ň Ň		
Low	207 (10.1)	1.00 (Reference)	207 (6.8)	1.00 (Reference)	207 (12.1)	1.00 (Reference)
Middle	817 (11.1)	1.50 (0.88-2.83)	817 (3.6)	1.15 (0.56-2.35)	816 (11.6)	1.37 (0.84-2.56)
High	373 (11.0)	1.57 (0.89-2.53)	373 (2.7)	1.02 (0.41-2.52)	373 (9.7)	1.21 (0.68-2.14)
Rural Ghana						
Low	95 (10.5)	1.00 (Reference)	96 (10.4)	1.00 (Reference)	95 (14.7)	1.00 (Reference)
Middle	610 (6.7)	0.65 (0.31-1.37)	619 (3.1)	0.37 (0.16-0.85)	608 (7.6)	0.55 (0.28-1.08)
High	241 (8.3)	0.99 (0.43-2.28)	243 (2.9)	0.51 (0.18-1.44)	240 (9.2)	0.94 (0.44-2.01)
Wealth index						
Whole group						

	Low	808 (9.65)	1.00 (Reference)	813 (3.32)	1.00 (Reference)	808 (9.16)	1.00 (Reference)
	Middle	678 (10.91)	1.18 (0.84-1.66)	683 (3.81)	1.30 (0.74-2.28)	675 (12.0)	1.43 (1.02-2.01)
	High	835 (8.62)	0.93 (0.66-1.31)	835 (4.19)	1.55 (0.91-2.64)	833 (9.96)	1.21 (0.86-1.69)
	Urban Ghana						
	Low	367 (11.2)	1.00 (Reference)	367 (3.5)	1.00 (Reference)	367 (10.1)	1.00 (Reference)
	Middle	414 (12.3)	1.12 (0.73-1.74)	414 (3.9)	1.30 (0.61-2.80)	413 (13.1)	1.45 (0.93-2.27)
	High	601 (9.8)	0.82 (0.55-1.25)	600 (3.8)	1.13 (0.55-2.31)	600 (10.8)	1.11 (0.72-1.71)
	Rural Ghana						
	Low	441 (7.9)	1.00 (Reference)	446 (3.1)	1.00 (Reference)	441 (8.4)	1.00 (Reference)
	Middle	264 (8.7)	1.13 (0.65-1.98)	269 (3.7)	1.22 (0.52-2.84)	262 (10.3)	1.31 (0.77-2.25)
	High	234 (5.6)	0.78 (0.40-1.53)	235 (5.1)	2.38 (1.03-5.47)	233 (7.7)	1.16 (0.63-2.14)
73 74	total number of individua rural and urban Ghana.	ils in the whole group, r	ural and urban Ghana among tl		ion; eGFR, estimated glomerular constructs; %, proportion of indi	viduals with CKD among	the various levels of SES const
73 74 75 76	rural and urban Ghana. Table 4 shows the	contribution of a	ll three SES constructs	to rural and urba	constructs; %, proportion of indi n CKD prevalence diffe	viduals with CKD among rences. The od	ds of albuminuria
73 74 75 76	rural and urban Ghana. Table 4 shows the	contribution of a	ll three SES constructs	to rural and urba	constructs; %, proportion of indi	viduals with CKD among rences. The od	ds of albuminuria
70 71 72 73 74 75 76 77 78	rural and urban Ghana. Table 4 shows the CKD risk was	contribution of a significantly	ll three SES constructs higher in urban C	to rural and urba	constructs; %, proportion of indi n CKD prevalence diffe	viduals with CKD among rences. The od na. The higher rat	ds of albuminuria
73 74 75 76 77 78	rural and urban Ghana. Table 4 shows the CKD risk was	contribution of a significantly	ll three SES constructs higher in urban C	to rural and urba	constructs; %, proportion of indi n CKD prevalence diffe red with rural Gha	viduals with CKD among rences. The od na. The higher rat	ds of albuminuria
73 74 75 76 77	rural and urban Ghana. Table 4 shows the CKD risk was Ghana was not exp	contribution of a significantly plained by the hig	ll three SES constructs higher in urban C her SES of that popula	to rural and urba Chana compared	constructs; %, proportion of indi n CKD prevalence diffe red with rural Gha	viduals with CKD among rences. The ode na. The higher rat	ds of albuminuria te of CKD observed in t
73 74 75 76 77 78 79 80	rural and urban Ghana. Table 4 shows the CKD risk was Ghana was not exp	contribution of a significantly plained by the hig	ll three SES constructs higher in urban C her SES of that popula	to rural and urba Chana compared	constructs; %, proportion of indi n CKD prevalence diffe red with rural Gha to their rural counterpar	viduals with CKD among rences. The ode na. The higher rat	ds of albuminuria te of CKD observed in t
73 74 75 76 77 78 79	rural and urban Ghana. Table 4 shows the CKD risk was Ghana was not exp Table 4: Cont	contribution of a significantly plained by the hig	ll three SES constructs higher in urban C her SES of that popula	to rural and urba Chana compared	constructs; %, proportion of indi n CKD prevalence diffe red with rural Gha to their rural counterpar	viduals with CKD among rences. The ode na. The higher rat	ds of albuminuria te of CKD observed in t

n cases (%) 1,443 (10.9)	1.37 (1.03- 1.81)	1.70 (1.25-	4 66 /4 46		
(%) 1,443	-	1.70 (1.25-	4 66 /4 46		
(%) 1,443	-	1.70 (1.25-	4 FE /4 4F		
1,443	-	1.70 (1.25-	4 66 /4 46		
	-	1.70 (1.25-	4 66 /4 46		
(10.9)	1 81)		1.55 (1.15-	1.62 (1.18-	1.74 (1.27-
		2.31)	2.10)	2.19)	2.38)
	1.00	1.00	1.00	1.00	1.00
1,015 (8.4)	(Reference)	(Reference)	(Reference)	(Reference)	(Reference)
n cases					
(%)					
	1.27 (0.82-	1.20 (0.76-	1.18 (0.79-	1.12 (0.70-	1.07 (0.67-
1,442 (3.7)	1.97)	1.89)	1.86)	1.78)	1.72)
	1.00	1.00	1.00	1.00	1.00
1,027 (3.7)	(Reference)	(Reference)	(Reference)	(Reference)	(Reference)
n cases					
(%)					
1,441	1.23 (1.01-	1.44 (1.07-	1.38 (1.03-	1.36 (1.01-	1.40 (1.04-
(11.1)	1.62)	1.93)	1.84)	1.83)	1.91)
1,012	1.00	1.00	1.00	1.00	1.00 (Reference
(9.46)	(Reference)	(Reference)	(Reference)	(Reference)	
_		. 19	/ I . / . I II		
-	n cases (%) 1,442 (3.7) 1,027 (3.7) n cases (%) 1,441 (11.1) 1,012 (9.46)	n cases (%) 1.27 (0.82- 1,442 (3.7) 1.97) 1.00 1,027 (3.7) (Reference) n cases (%) 1,441 1.23 (1.01- (11.1) 1.62) 1,012 1.00 (9.46) (Reference)	n cases (%) 1.27 (0.82- 1.20 (0.76-1.442 (3.7) 1.97) 1.89) 1.00 1.00 1,027 (3.7) (Reference) (Reference) n cases (%) 1,441 1.23 (1.01- 1.44 (1.07-(11.1) 1.62) 1.93) 1,012 1.00 1.00 (9.46) (Reference) (Reference)	n cases (%) 1.27 (0.82- 1.20 (0.76- 1.18 (0.79- 1.442 (3.7) 1.97) 1.89) 1.86) 1.00 1.00 1.00 1.00 1,027 (3.7) (Reference) (Reference) (Reference) n cases (%) 1,441 1.23 (1.01- 1.44 (1.07- 1.38 (1.03- (11.1) 1.62) 1.93) 1.84) 1,012 1.00 1.00 1.00 (9.46) (Reference) (Reference) (Reference)	n cases (%) 1.27 (0.82- $1.20 (0.76- 1.18 (0.79- 1.12 (0.70- 1.442 (3.7) 1.97) 1.89) 1.86) 1.78)$ 1.00 1.00 1.00 1.00 1.00 1,027 (3.7) (Reference) (Reference) (Reference) (Reference) n cases (%) 1,441 1.23 (1.01- 1.44 (1.07- 1.38 (1.03- 1.36 (1.01- (11.1) 1.62) 1.93) 1.84) 1.83) 1,012 1.00 1.00 1.00 1.00

 BMJ Open

, e.g. sex ar. del 5: adjusted fo. artic cGFR, estimated glomes .dividuals with CKD among urban and. Model 1#: adjusted for age and sex; Model 2: adjusted for age, sex and education level; Model 3: adjusted for age, sex and occupational status; Model 4: adjusted for age, sex and wealth index; Model 5: adjusted for age, sex, educational level, occupational status and wealth index; Abbreviations: CI, confidence interval; ACR, albumin creatinine ratio; eGFR, estimated glomerular filtration rate; CKD, chronic kidney disease; OR, odds ratio, n= total number of individuals in rural and urban Ghana; %, proportion of individuals with CKD among urban and rural Ghana.

> For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4	388	Discussion
5 6	389	Key findings
7 8 9	390	Our study findings show no association between all three SES constructs and the
10 11	391	prevalence of CKD in both rural and urban Ghana except for wealth index in rural
12 13	392	Ghana, with the risk of CKD being higher in the wealthier populations. The higher rate
14 15 16	393	of CKD observed in urban Ghana could not be attributed to the higher SES of that
17 18	394	population compared to their rural counterparts.
19 20	395	
21 22 23	396	Discussion of key findings
24 25	397	
26 27	398	Association of SES with CKD in rural and urban Ghana
28 29	399	
30 31	400	Our study did not find any significant associations between all three SES constructs
32 33	401	and CKD among rural and urban Ghana except for wealth index in rural Ghana. The
34 35	402	positive association observed between wealth index in rural Ghana may be due to
36 37 38	403	several reasons. A comparison of the three SES constructs showed higher educational
39 40	404	level to be associated with wealth index in both rural and urban Ghana but not
41 42	405	occupational level. This seems to suggest that occupational level may not be
43 44 45	406	adequately capturing the SES status of individuals living in these settings in relation to
45 46 47	407	CKD. For example, Masthi et al, compared different SES scales in rural and urban
48 49	408	India and concluded that Standard of Living Index (SLI) scale was more accurate for classification
50 51	409	of SES in urban and rural settings ²⁵ . Our finding is consistent with other studies, ^{6 26} which
52 53 54	410	reported no association between SES and CKD in high-income countries and LMICs,
55 56 57 58	411	but in contrast with other studies $^{2-4}$ 27 that found positive associations between SES

BMJ Open

and CKD. The reasons for our current finding are unclear. However, it has been suggested that these inconsistent associations may be due to the varying pathways through which the effect of SES on health status is mediated. For example, at a given educational level marked ethnic differences have been reported. Additionally, similar differences were observed for wealth status at a given income level ²⁸⁻³⁰.

Contribution of SES to observed CKD risk differences between rural and urban Ghana

We observed higher rates of CKD in urban Ghana compared with rural Ghana, as expected. The observed higher rates of CKD in our study were not explained by the higher SES of that population as compared to their rural counterparts. Our results indicate that this is due to the lack of a clear difference in the SES distribution of rural and urban Ghana observed in this study, as well as to the lack of associations between SES and CKD. Consistent with our findings, in a study conducted in Northern Tanzania SES did not explain increased risk of CKD in urban Tanzania²⁶. The lack of associations between SES and CKD could probably partly be explained by the process of epidemiological transition in relation to the "diffusion theory" of ischemic heart disease mortality. This theory attributes the commencement of ischemic heart disease to individuals in the high SES group due to their ability to afford behaviours (smoking, alcohol and sedentary lifestyles) which increased risk of ischemic heart disease. The lower SES groups were later affected partially because of improved living standards, imitation and urbanization. The higher SES groups were the first to embrace behavioural changes required to decrease the risk of ischemic heart disease and this resulted in reversing the gradient ³¹. The rapid urbanization of some rural communities in the Ashanti region of Ghana and the imitation of urban lifestyle could account for our finding. Also, it could be that whereas the high SES group in urban Ghana has already embraced favourable behavioural changes, those in rural Ghana are yet to do so ³². This explains the observed association of wealth index with CKD in rural Ghana but not in urban Ghana. Also, the interplay of other less understood or researched factors

(e.g., exposure to nephrotoxins, herbal medications, sepsis, psychosocial factors) may

be influencing the pathway in which SES influences CKD prevalence and progression.

Strength and limitation

Our study presents several strengths. First, we used well-standardized study protocols across rural and urban Ghana. Our study is also the first in Africa to use all three categories of CKD definition (albuminuria, reduced eGFR and CKD risk) by KDIGO 2012 in assessing association of SES with CKD in rural and urban setting, this provided more detailed information on CKD outcomes. The limitation of intra laboratory variability in earlier studies was eliminated using the same standard operating procedures in the same laboratory for running all samples for both rural and urban Ghana. The use of three constructs of SES in this study also provides a much better holistic approach to assessing SES. Also, the distribution of SES in our study reflects on the national data allowing for generalization of our findings. Our study was limited by the use of cross sectional design, which prevented us from determining causality between predictors and CKD progression. Furthermore, there were more women than men in our study due to the higher response rate in women compared with men. However, this applied to both rural and urban Ghana. We therefore do not expect this to influence our results in a significant way.

Conclusion

All three SES constructs appear not to be associated with prevalence of CKD in urban and rural Ghana except for wealth index in rural Ghana. The observed higher prevalence of CKD in urban Ghana was not explained by the higher SES in urban Ghana. Our study seems to suggest that other non-traditional factors such as nephrotoxins, herbal medications, psychosocial stressors and misuse of over the counter drugs may play a role and underscores the need to further explore these factors.

Acknowledgement

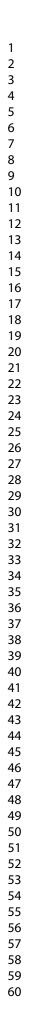
The authors are very grateful to the research assistants, interviewers and other staff of the five research locations who took part in gathering the data and the Ghanaian volunteers in all the participating RODAM sites. We gratefully acknowledge the advisory board members for their valuable support in shaping the RODAM study methods and the Academic Medical Centre Biobank for their support in biobank management and high-quality storage of collected samples.

Contributors

My co-authors have all contributed substantially to this manuscript and approve of this submission. Research idea and study design: DNA, CA, KS, DA, EB, KM, JA; data acquisition and curation: DNA, CA, EB, KM, data analysis/interpretation: DNA, CA, KS, DA, EB, KM, LS, JA, EOD, KKG, FPM, ID, JS, SB, ADA; statistical analysis: DNA, CA, KS, DNA, CA, KS, DA, EB, KM, LS, JA, EOD, KKG, FPM, ID, JS, SB, ADA contributed important intellectual content during manuscript drafting or revision and accepts accountability for the overall work by ensuring that questions pertaining to the accuracy or integrity of any portion of the work are appropriately investigated and resolved. DNA and CA take responsibility that this study has been reported honestly, accurately, and transparently; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned have been explained.

Funding

This work was supported by the European Commission under the Framework Programme (Grant Number: 278901). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The Wellcome Trust supported Professor Smeeth's contribution, grant number WT082178. Professor Joachim Spranger was supported by the DZHK (German Center for cardiovascular research) and the Berlin Institute of Health (BIH).


Competing interest: I have communicated with all my co-authors and obtained their full disclosures. My co-authors and I declare no conflicts of interest.

2		
3 4	498	Patient Consent: None declared
5 6	499	
7	500	Ethics approval: IRBs at each participating site.
8 9	501	
10 11	502	Data sharing statement: Data are available from the RODAM research cohort, a third
12 13	503	party. Dr. Eric Beune affiliated with the RODAM research cohort and a co-author of this paper
14 15	504	in accordance with the RODAM requirements for collaboration. Dr. Beune is the Data Collection
16	505	Coordinator of RODAM and may be contacted with further questions (e.j.beune@amc.uva.nl).
17 18	506	Additionally, researchers interested in further collaboration with RODAM may see the following
19 20	507	URL: <u>http://www.rod-am.eu/</u>
21 22	508	Additionally, researchers interested in further collaboration with RODAM may see the following URL: http://www.rod-am.eu/
23 24	509	
25	510	
26 27	511	
28 29	512	
30	513	
31 32	514	
33 34	515	
35	516	
36 37	517	
38 39	518	
40	519	
41 42	520	
43 44	521	
45	522	
46 47	523	
48 49	524	
50	525	
51 52	526	
53	527	
54 55	528	
56 57		
58		
59 60		25 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
3 4	529	
5 6	530	
7	531	
8 9	532	
10 11	533	
12 13	534	
14	535	
15 16	536	
17 18	537	
19	538	
20	539	References
21 22	540	1. Patzer RE, McClellan WM. Influence of race, ethnicity and socioeconomic status on kidney
22	541	disease. Nature Reviews Nephrology 2012;8(9):533-41.
24	542	2. Merkin SS, Roux AVD, Coresh J, et al. Individual and neighborhood socioeconomic status
25	543	and progressive chronic kidney disease in an elderly population: The Cardiovascular
26	544	Health Study. Soc Sci Med 2007;65(4):809-21.
27	545	3. Bello AK, Peters J, Rigby J, et al. Socioeconomic status and chronic kidney disease at
28 29	546	presentation to a renal service in the United Kingdom. Clin J Am Soc Nephrol
29 30	547	2008;3(5):1316-23.
31	548	4. Crews DC, Charles RF, Evans MK, et al. Poverty, race, and CKD in a racially and
32	549	socioeconomically diverse urban population. Am J Kidney Dis 2010;55(6):992-1000.
33	550	5. Shoham DA, Vupputuri S, Roux AVD, et al. Kidney disease in life-course socioeconomic
34	551	context: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Kidney Dis
35	552	2007;49(2):217-26.
36 37	553	6. Byrne C, Nedelman J, Luke RG. Race, socioeconomic status, and the development of end-
38	554	stage renal disease. Am J Kidney Dis 1994;23(1):16-22.
39	555	7. Popkin BM. The shift in stages of the nutrition transition in the developing world differs from
40	556	past experiences! Public Health Nutr 2002;5(1A):205-14.
41	557	8. Du S, Lu B, Zhai F, et al. A new stage of the nutrition transition in China. <i>Public Health Nutr</i>
42 43	558	2002;5(1a):169-74.
44	559	9. Kim S, Symons M, Popkin BM. Contrasting socioeconomic profiles related to healthier
45	560	lifestyles in China and the United States. Am J Epidemiol 2004;159(2):184-91.
46	561	10. Adler NE, Ostrove JM. Socioeconomic status and health: what we know and what we don't.
47	562	Ann N Y Acad Sci 1999;896(1):3-15.
48	563	11. Anderson NB, Armstead CA. Toward understanding the association of socioeconomic status
49 50	564	and health: A new challenge for the biopsychosocial approach. Psychosom Med
50 51	565	1995;57(3):213-25.
52	566	12. Feinstein JS. The relationship between socioeconomic status and health: a review of the
53	567	literature. The Milbank Quarterly 1993:279-322.
54		
55		
56		
57 58		
58 59		26
60		26 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
3	568	13. Samuel P, Antonisamy B, Raghupathy P, et al. Socio-economic status and cardiovascular risk
4 5	569	factors in rural and urban areas of Vellore, Tamilnadu, South India. Int J Epidemiol
6	570	2012;41(5):1315-27.
7	571	14. Christie S, Fone DL. Does car ownership reflect socio-economic disadvantage in rural areas?
8	572	A cross-sectional geographical study in Wales, UK. Public Health 2003;117(2):112-16.
9	573	15. Agyemang C, Beune E, Meeks K, et al. Rationale and cross-sectional study design of the
10	574	Research on Obesity and type 2 Diabetes among African Migrants: the RODAM study.
11	575	<i>BMJ open</i> 2015;4(3):e004877.
12	576	16. Addo J, Agyemang C, Aikins Ad-G, et al. Association between socioeconomic position and
13 14	577	the prevalence of type 2 diabetes in Ghanaians in different geographic locations: the
14	578	RODAM study. J Epidemiol Community Health 2017: jech-2016-208322.
16	579	17. Adjei DN, Stronks K, Adu D, et al. Relationship between educational and occupational
17	580	levels, and Chronic Kidney Disease in a multi-ethnic sample-The HELIUS study. <i>PLoS</i>
18	581	One 2017;12(11):e0186460.
19	582	18. Consultation WE. Waist circumference and waist-hip ratio. <i>Report of a WHO Expert</i>
20	583	Consultation Geneva: World Health Organization 2008:8-11.
21	584	19. Rutstein SO, Johnson K, MEASURE OM. The DHS wealth index: ORC Macro, MEASURE
22 23	585	DHS 2004.
23 24	586	20. Association AD. Standards of medical care in diabetes—2014. <i>Diabetes Care</i>
25	587	2014;37(Supplement 1):S14-S80.
26	588	21. Stevens LA, Schmid CH, Greene T, et al. Comparative performance of the CKD
27	589	epidemiology collaboration (CKD-EPI) and the modification of diet in renal disease
28	590	(MDRD) study equations for estimating GFR levels above 60 mL/min/1.73 m 2. $Am J$
29 30	591	Kidney Dis 2010;56(3):486-95.
30 31	592	22. Eknoyan G, Lameire N, Eckardt K, et al. KDIGO 2012 clinical practice guideline for the
32	593	evaluation and management of chronic kidney disease. <i>Kidney Int</i> 2013;3:5-14.
33	594	23. KDIGO G. Work Group. KDIGO clinical practice guideline for glomerulonephritis. <i>Kidney</i>
34	595	inter, Suppl 2012;2:139-274.
35	596	24. Collins AJ, Foley RN, Herzog C, et al. US Renal Data System 2010 Annual Data Report.
36	597	American journal of kidney diseases: the official journal of the National Kidney
37	598	Foundation 2011;57(1 Suppl 1):A8, e1.
38 39	599	25. Masthi NR, Gangaboraiah PK. An exploratory study on socio economic status scales in a
40	600	rural and urban setting. <i>Journal of family medicine and primary care</i> 2013;2(1):69.
41	601	26. Stanifer JW, Maro V, Egger J, et al. The epidemiology of chronic kidney disease in Northern
42	602	Tanzania: a population-based survey. <i>PLoS One</i> 2015;10(4):e0124506.
43	603	27. Bruce MA, Beech BM, Crook ED, et al. Association of socioeconomic status and CKD
44	604	among African Americans: the Jackson Heart Study. <i>Am J Kidney Dis</i> 2010;55(6):1001-
45 46	605	08.
40 47	606	28. Braveman PA, Cubbin C, Egerter S, et al. Socioeconomic status in health research: one size
48	607	does not fit all. JAMA 2005;294(22):2879-88.
49	608	29. Gilthorpe MS, Wilson RC. Rural/urban differences in the association between deprivation
50	609	and healthcare utilisation. Soc Sci Med 2003;57(11):2055-63.
51	610	30. Choi AI, Weekley CC, Chen S-C, et al. Association of educational attainment with chronic
52	611	disease and mortality: the Kidney Early Evaluation Program (KEEP). Am J Kidney Dis
53	612	2011;58(2):228-34.
54 55	012	2011, 30(2).220-34.
56		
57		
58		
59		27 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2	613	31. Mackenbach JP, Cavelaars A, Kunst AE, et al. Socioeconomic inequalities in cardiovascular
4	614	disease mortality. An international study. <i>Eur Heart J</i> 2000;21(14):1141-51.
5 6	615	32. McKay L, Macintyre S, Ellaway A. Migration and health: a review of the international
7	616	literature. MRC Social and Public Health Sciences Unit, Occasional Paper No. 12.
8	617	Glasgow: Medical Research Council[Links] 2003
9 10	618	
11	619	
12	620	
13 14	621	
14	622 623	
16	623 624	
17	625	
18 19	626	
20	627	
21	628	
22 23	629	
24	630	Legend for figures
25	631 632	Figure 1: Prevalence of chronic kidney disease (CKD) across level of education among urban
26 27	633	and rural participants Definitions according to 2012 KDIGO (Kidney Disease: Improving Global
28	634	Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very
29	635	high-risk groups.
30 21	636	
31 32	637	
33	638	Figure 2: Prevalence of chronic kidney disease (CKD) across occupational status among urban
34 25	639	and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving
35 36	640	Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk,
37	641	or very high-risk groups.
38	642 643	
39 40	644	
41	645	Figure 3: Prevalence of chronic kidney disease (CKD) across wealth index categories among
42	646	urban and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving
43 44	647	Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk,
45	648	or very high-risk groups.
46	649	
47 48	650 651	
49	652	
50	002	
51 52	653	
53	654	
54		
55 56		
56 57		
58		
59		28 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		

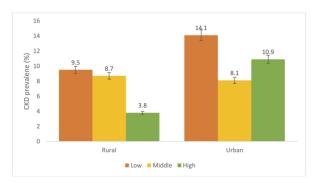


Figure 1: Prevalence of chronic kidney disease (CKD) across level of education among urban and rural participants Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups

Figure 1: Prevalence of chronic kidney disease (CKD) across level of education among urban and rural participants Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups.

279x361mm (300 x 300 DPI)

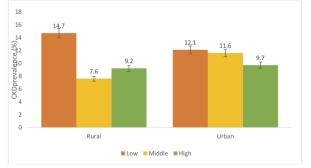
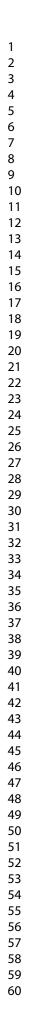



Figure 2: Prevalence of chronic kidney disease (CKD) across occupational status among urban and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups

Figure 2: Prevalence of chronic kidney disease (CKD) across occupational status among urban and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups.

279x361mm (300 x 300 DPI)

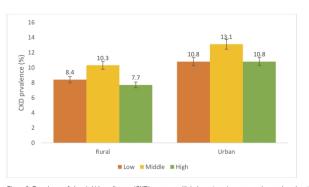


Figure 3: Prevalence of chronic kidney disease (CKD) across wealth index categories among urban and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups

Figure 3: Prevalence of chronic kidney disease (CKD) across wealth index categories among urban and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups.

279x361mm (300 x 300 DPI)

BMJ Open

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No.	Recommendation		Page No.	Relevant text from manuscript
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1,2		We have included a commonly used term in the title and abstract
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2		Our study did not find any associations between SES indicators and CKD in both rural and urban Ghana after age and sex adjustment except in rural Ghana where wealth index was associated with prevalence of CKD. Consequently, the higher SES did not account for the increased rate of CKD among urban dwellers suggesting the need to identify other factors that may be driving this.
Introduction					
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4		The theoretical and scientific background as well as the rationale for conducting the study have been provided in the introduction section.
Objectives	3	State specific objectives, including any prespecified hypotheses	4		We assessed the association o SES with CKD in rural and urban Ghana and studied wha extent the higher SES of peopl- in urban areas could account fo differences in CKD between rural and urban populations
Methods					
Study design	4	Present key elements of study design early in the paper	5-6		Details given in the methods
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-6		Rural or urban Ghana.
		1			
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xh	ıtml		

Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of 6-8 6-8 participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed 6-8 Case-control study—For matched studies, give matching criteria and the number of controls per case 7 Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable 6-8 The main outcomes have clearly defined. Data sources/ 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group 6-8 We defined each variable interest in the me accordingly Bias 9 Describe any efforts to address potential sources of bias 18 Potential sources of bias discussed in the methods se and we have also referred RODAM study methods perfored RODAM study methods perfored RODAM study methods perfored RODAM study methods se and we have also referred RODAM study methods perfored RODAM study methods performed RODAM	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls 		A multi-centre cross-sectional study was conducted among Ghanaian adults (n=2492) aged 25-70 years residing in rural and urban Ghana.
unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable 6-8 The main outcomes have clearly defined. Data sources/ measurement 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group 6-8 We defined each variab interest in the me accordingly Bias 9 Describe any efforts to address potential sources of bias 18 Potential sources of bias discussed in the discu- section Study size 10 Explain how the study size was arrived at 5 Given in the methods see and we have also referred RODAM study methods pare		Cross-sectional study-Give the eligibility criteria, and the sources and methods of selection of	6-8	
case Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable 6-8 The main outcomes have clearly defined. Data sources/ 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group 6-8 We defined each variable interest in the metaccordingly Bias 9 Describe any efforts to address potential sources of bias 18 Potential sources of bias discussed in the discussection Study size 10 Explain how the study size was arrived at 5 Given in the methods search we also referred RODAM study methods pa				
Variables 7 Crearly defined and outcomes, exposures, predictors, potential controlliders, and effect modifiers. 6-8 Clearly defined. Data sources/ measurement 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group 6-8 We defined each variable interest in the me accordingly Bias 9 Describe any efforts to address potential sources of bias 18 Potential sources of bias discussed in the discussed section Study size 10 Explain how the study size was arrived at 5 Given in the methods se and we have also referred RODAM study methods pa				
Data sources/ measurement 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group 6-8 We defined each variable interest in the meta accordingly Bias 9 Describe any efforts to address potential sources of bias 18 Potential sources of bias discussed in the discussed section Study size 10 Explain how the study size was arrived at 5 Given in the methods set and we have also referred RODAM study methods pa	7		6-8	The main outcomes have been clearly defined.
Bins For bescribe any choirs to address potential sources of bias Its discussed in the methods see and we have also referred in RODAM study methods particular to the study study study methods particular to the study	8*	For each variable of interest, give sources of data and details of methods of assessment	6-8	
Continued on next page	9	Describe any efforts to address potential sources of bias	18	
Continued on next page	10	Explain how the study size was arrived at	5	Given in the methods section and we have also referred to the RODAM study methods paper
		7 8* 9	participants. Describe methods of follow-up <i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls <i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed <i>Case-control study</i> —For matched studies, give matching criteria and the number of controls per case 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group 9 Describe any efforts to address potential sources of bias 10 Explain how the study size was arrived at	participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. 6-8 Give diagnostic criteria, if applicable 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group 9 Describe any efforts to address potential sources of bias

BMJ Open

Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	8-9	Please see methods
Statistical	12	(a) Describe all statistical methods, including those used to control for confounding	8-9	Please see methods
methods		(b) Describe any methods used to examine subgroups and interactions	8-9	Please see methods
		(c) Explain how missing data were addressed	8-9	
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	NA	We have reported non-response
		Case-control study—If applicable, explain how matching of cases and controls was addressed		across sites
		Cross-sectional study—If applicable, describe analytical methods taking account of sampling		
		strategy		
		(<u>e</u>) Describe any sensitivity analyses	NA	
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially eligible, examined	5	Non-response analysis was done to
		for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed		shed light on the differential response rates across sites
		(b) Give reasons for non-participation at each stage	5	response rates across sites
		(c) Consider use of a flow diagram	5	We have also referred to RODAM
				methods paper
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on	5	We have also referred to RODAM
		exposures and potential confounders		methods paper
		(b) Indicate number of participants with missing data for each variable of interest	5	We have also referred to RODAM
				methods paper
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)	NA	
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	NA	
		Case-control study-Report numbers in each exposure category, or summary measures of exposure	NA	
		<i>Cross-sectional study</i> —Report numbers of outcome events or summary measures	9-10	Summary measures are given in the results section and in tables and figures
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision	12-16	Unadjusted and adjusted estimates
		(eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were		are given in the results section and
		included		in figures
		(b) Report category boundaries when continuous variables were categorized	12-16	We have provided mean and corresponding standard deviations for the continuous variables.
		3		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xł	atml	

		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time	NA	
Continued on next pa	ige			
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	NA	
Discussion				
Key results	18	Summarise key results with reference to study objectives	8	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	18	Key limitations regarding stuc methods including differenti response rates and samplir methods in the various study site have been provided
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	17-18	Cautious overall interpretation of the key findings have been provided.
Generalisability	21	Discuss the generalisability (external validity) of the study results	17-18	
Other informati	ion			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the	19	The funders had no role in stud design, data collection and analysi
*Give informatio	on sep	original study on which the present article is based	in cohort and	decision to publish, or preparation of the manuscript
Note: An Explan checklist is best v	ation used i	e de la companya de la compa	examples of t licine.org/, An	decision to publish, or preparation of the manuscript cross-sectional studies. ransparent reporting. The STROBE nals of Internal Medicine at
Note: An Explan checklist is best v	ation used i	parately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups and Elaboration article discusses each checklist item and gives methodological background and published n conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmed	examples of t licine.org/, An	decision to publish, or preparation of the manuscript cross-sectional studies. ransparent reporting. The STROBE nals of Internal Medicine at
Note: An Explan checklist is best v	ation used i	parately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups and Elaboration article discusses each checklist item and gives methodological background and published n conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmed	examples of t licine.org/, An	decision to publish, or preparation of the manuscript cross-sectional studies. ransparent reporting. The STROBE nals of Internal Medicine at
Note: An Explan checklist is best v	ation used i	parately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups and Elaboration article discusses each checklist item and gives methodological background and published n conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmed	examples of t licine.org/, An	decision to publish, or preparation of the manuscript cross-sectional studies. ransparent reporting. The STROBE nals of Internal Medicine at
Note: An Explan checklist is best v	ation used i	parately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups and Elaboration article discusses each checklist item and gives methodological background and published n conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmed	examples of t licine.org/, An	decision to publish, or preparation of the manuscript cross-sectional studies. ransparent reporting. The STROBE nals of Internal Medicine at

BMJ Open

A CROSS-SECTIONAL STUDY OF ASSOCIATION BETWEEN SOCIOECONOMIC INDICATORS AND CHRONIC KIDNEY DISEASE IN RURAL-URBAN GHANA: THE RODAM STUDY

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022610.R3
Article Type:	Research
Date Submitted by the Author:	15-Feb-2019
Complete List of Authors:	Adjei Nana, David ; University of Ghana, Department of Medical Laboratory Sciences; University of Amsterdam, Department of Public Health Stronks, Karien; Academic Medical Center , Department of Public Health Adu, Dwomoa; Korle-bu Teaching Hospital, Department of Medicine Beune, Erik; AMC Meeks, Karlijn; AMC, Public Health Smeeth, Liam; London School of Hygiene and Tropical Medicine, Addo, Juliet; London School of Hygiene and Tropical Medicine, Non Communicable Disease Epidemiology Owusu-Dabo, Ellis; Kwame Nkrumah University of Science and Technology, Kumasi Centre for Collaborative Research in Tropical Medicine Klipstein-Grobusch, Kerstin; 1 Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands Mockenhaupt, Frank; Charité – University Medicine, Berlin, Institute of Tropical Medicine and International Health Danquah, Ina; German Institute of Human Nutrition, Molecular Epidemiology; Charite Universitatsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economy Spranger, Joachim; Department of Endocrinology and Metabolism, 1. Charité-University Medicine Berlin, Berlin, Germany. Bahendeka, Silver; 1. MKPGMS - Uganda Martyrs University De-Graft Aikins, Ama; University of Ghana, Regional Institute for Population Studies Agyemang, Charles; Academic Medical centre, University of Amsterdam, Department of Public Health
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health, Epidemiology
Keywords:	Chronic Kidney Disease, Socioeconomic status, Health inequalities, RODAM study, rural, urban

1	
2	
3	
4	SCHOLAR ONE [™]
5	Manuscripts
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
22	
22	
25	
24	
25	
26 27	
28	
29	
30	
31 32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42 43	
43 44	
45	
46 47	
47 48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60	r or peer review only - nitip.//binjopen.binj.com/site/about/guidennes.xhtml

2 3		
4	1	A CROSS-SECTIONAL STUDY OF ASSOCIATION BETWEEN
5 6	2	SOCIOECONOMIC INDICATORS AND CHRONIC KIDNEY DISEASE IN
7	3	RURAL-URBAN GHANA: THE RODAM STUDY
8 9	4	David N. Adjei, MSc, PhD ^{1,2} ; Karien Stronks, MSc, PhD ¹ ; Dwomoa Adu, MD ³ ; Erik Beune,
10	5	MSc, PhD ¹ ; Karlijn Meeks, MSc, PhD ¹ ; Liam Smeeth, MD, PhD ⁴ ; Juliet, Addo, MD, PhD ⁴ ;
11 12	6 7	Ellis Owusu-Dabo, MSc, PhD ⁵ , Kerstin Klipstein-Grobusch, MSc, PhD ^{6,7} ; Frank P. Mockenhaupt, MD, PhD ⁸ ; Ina, Danquah, MSc, PhD ^{9,10} ; Joachim, Spranger, MD, PhD ^{11,12,13} ;
13	8	Silver Bahendeka, MD, PhD ¹⁴ ; Ama de-Graft, Aikins, MSc, PhD ¹⁵ ; Charles Agyemang, MPH,
14 15	9	PHD ¹
16 17	10	1. Department of Public Health, Academic Medical Center, University of Amsterdam,
18	11	Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.
19 20 21	12 13	2. Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana.
22 23	14 15	 Department of Medicine, School of Medicine and Dentistry, University of Ghana and Korle- Bu Teaching Hospital, Accra, Ghana.
24 25 26	16 17	 Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom.
27 28	18 19	5. Kumasi Centre for Collaborative Research, KNUST, Kumasi, Ghana
29 30 31	20 21	 Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Centre, Utrecht University, The Netherlands.
32 33 34	22 23	7. Division of Epidemiology & Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
35 36 37	24 25	8. Institute of Tropical Medicine and International Health, Charité–University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
38 39	26 27	9. Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam- Rehbrücke, Nuthetal, Germany.
40 41 42	28 29	 Charité - Universitaetsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economics, Berlin, Germany.
43 44 45	30 31	11. Department of Endocrinology and Metabolism, Charité-University Medicine Berlin, Berlin, Germany.
46 47	32	12. German Centre for Cardiovascular Research (DZHK), Berlin, Germany.
48 49	33 34	13. Center for Cardiovascular Research (CCR), Charité-University Medicine Berlin, Berlin, Germany.
50 51	35	14. MKPGMS - Uganda Martyrs University, Kampala, Uganda.
52 53	36	15. Regional Institute for Population Studies, University of Ghana, Legon, Ghana.
54	37	
55 56		
57 58		
58 59 60		1 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3	38	Address correspondence to David Nana Adjei, MSc, PhD. Department of Public Health,
4 5	39	Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the
6 7	40	Netherlands. Department of Medical Laboratory Sciences, School of Biomedical and Allied
8	41	Health Sciences, University of Ghana, E-mail: <u>dna@chs.edu.gh</u> , <u>d.n.adjei@amc.uva.nl</u> , Tel:
9 10	42	+233236717850
11 12		
13 14	43 44	
14	44	
16	46	
17	47	
18 19	48	
20	49 50	
21	50	
22	52	
23 24	53	
24 25	54	
26	55	
27	56 57	
28	58	
29 30	59	
31	60	
32	61	
33	62	
34 35	63 64	
36	65	
37	66	
38	67	
39 40	68	
41	69 70	
42	70	
43	72	
44 45	73	
46	74	
47	75 76	
48	70 77	
49 50	78	
51	79	
52	80	
53	81	
54 55	82 83	
56	83 84	
57		
58		_
59 60		2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

85 Abstract

Objectives: Studies from high income countries suggest higher prevalence of Chronic Kidney Disease (CKD) among individuals in low socio-economic groups. However, some studies from low and middleincome countries (LMICs) show the reverse pattern among those in high socioeconomic groups. It is unknown which pattern applies to individuals living in rural and urban Ghana. We assessed the association between Socio-Economic Status (SES) indicators and CKD in rural and urban Ghana and to what extent the higher SES of people in urban areas of Ghana could account for differences in CKD between rural and urban populations.

95 Setting: The study was conducted in Ghana (Ashanti region). We used baseline data from a
96 multi-centre Research on Obesity and Diabetes among African Migrants (RODAM)
97 study.

99 Participants: The sample consisted of 2492 adults (Rural Ghana, 1043, Urban Ghana, 1,449) aged 25 to
70 years living in Ghana.

102 Exposure: Educational level, occupational level and wealth index.103

104 Outcome: Three CKD outcomes were considered using the 2012 KDIGO (Kidney Disease: Improving
 105 Global Outcomes) severity of CKD classification: albuminuria, reduced glomerular filtration rate and
 106 high to very high CKD risk based on the combination of these two.

Results: All three SES indicators were not associated with CKD in both rural and urban Ghana after age and sex adjustment except for rural Ghana where high wealth index was significantly associated with higher odds of reduced eGFR (AOR, 2.38; 95% C.I. 1.03-5.47). The higher rate of CKD observed in urban Ghana was not explained by the higher SES of that population.

Conclusion: SES indicators were not associated with prevalence of CKD except for wealth index and
 reduced eGFR in rural Ghana. Consequently, the higher SES of urban Ghana did not account for the
 increased rate of CKD among urban dwellers suggesting the need to identify other factors that may be
 driving this.

118
 119 Index Words: Chronic kidney disease; socioeconomic status; health inequalities; risk factor; ethnic
 120 minority groups; migrants; RODAM study, Ghana

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3	129	
4 5	129	
6 7	130	
8	131	
9 10	132	
11 12	133	
13	135	
14 15	136	Strengths and limitation of the study
16 17	130	Chenguis and miniation of the study
18	137	> The use of well-standardized study protocols across rural and urban Ghana eliminated intra
19 20	139	protocol variability.
21 22	140	
23 24	141	> Our study is also the first in Africa to use all three categories of CKD definitions (albuminuria,
25	142	reduced eGFR and CKD risk) by KDIGO 2012 in assessing association of SES with CKD in rural
26 27	143	and urban setting. This provides more detailed information on CKD outcomes.
28	144	
29 30	145	> The limitation of intra laboratory variability in earlier studies was eliminated using the same
31 32	146	standard operating procedures in the same laboratory for running all samples for both rural and
33	147	urban Ghana.
34 35	148	
36 37	149	> The use of three constructs of SES (educational level, occupational level and wealth index) in this
38	150	study also provides a much better holistic approach to assessing SES associations with CKD.
39 40	151	
41 42	152	> Our study was limited because of the use of cross sectional design which prevented us from
43	153	determining causality between predictors and CKD progression.
44 45	154	
46 47	155	
48	156	
49 50	157	
51 52	158	
53	159	
54 55	160	
56 57		
58		
59 60		4 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
10	
11 12 13 14 15 16 17 18 19 20	
20 21	
21	
22 23	
23	
24	
25	
26	
27	
20	
28 29 30 31 32 33 34 35 36 37 38	
30	
31	
32	
33	
34	
25	
36	
20	
2/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54 55	
22	
56	
57	
58	
59	
60	

162 163

164

165

166 167

168 169 170

171 172

173 174 175

177

176 Introduction

rc str In general, individuals in lower socio-economic status (SES) groups have been shown to suffer more 178 179 frequently from Chronic Kidney Disease (CKD), often progressing to End Stage Renal Disease (ESRD), 180 and associated with inadequate dialysis treatment, reduced access to kidney transplantation and poor 181 health outcomes ¹. Recent studies have consistently found low SES to be associated with higher risk of 182 CKD among people of African origin ²⁻⁵.

183 However, in some settings the well-known inverse association between SES and CKD 184 seems to be absent, or even reversed. For example, Bryne et al. did not find any association between SES and End Stage Renal Disease ⁶. Other studies have found 185 ⁷⁸. Specifically, as SES improved, 186 a positive association between SES and CKD 187 (unhealthy unhealthful physical lifestyle diet, inactivity, smoking and alcohol 188 consumption) increased in China while that of the United States decreased with

BMJ Open

189
189
190
191
192
193
175
194
174
195
196
197
198
199
200
201
202
203
204
205
205
206
207
208
208 209
209 210
209 210 211
209 210 211 212
209 210 211
209 210 211 212
 209 210 211 212 213 214
 209 210 211 212 213
 209 210 211 212 213 214 215
 209 210 211 212 213 214
 209 210 211 212 213 214 215
 209 210 211 212 213 214 215
 209 210 211 212 213 214 215

Methods

Study population and study design

improved SES ⁹. People with higher incomes, in these contexts, can afford a western 39 90 lifestyle, which is more readily available in the urban areas than in the rural areas. There is therefore an interaction between individual SES and environmental factors, 91 such as food, alcohol, smoking and sedentary life style in such populations ¹⁰⁻¹². 92 93 Consequently, in those settings, people with a higher SES might have higher CKD 94 risk.

95 In urban areas, the population in general has higher SES than in rural areas ¹³. For example, individuals 96 with higher educational level migrate from rural areas to find higher occupations matching their higher 97 education to improve on their wealth. If indeed a positive association between SES and CKD is observed 98 in LMICs, this might underlie the well-known health differences between urban and rural areas, with 99 urban areas having an increased risk of CKD¹⁴. So far, it is unknown whether the reversed SES gradient 00 (higher risk in high SES group) might explain the higher burden of CKD in urban areas as compared to 01 rural areas in Africa.

03 In view of this, we assessed the association of SES with CKD in rural and urban Ghana and studied the)4 extent to which the higher SES of people in urban areas could account for differences in CKD between)5 rural and urban populations.

In the present analyses, data from the RODAM (Research on Obesity & Diabetes

among African Migrants) study, a multi-centre cross-sectional study were used. The

rationale, conceptual framework, design and methodology of the RODAM study have been described in detail elsewhere ¹⁵ ¹⁶. As the Healthy Life in an Urban Setting (HELIUS) study conducted among Ghanaian migrants living in Amsterdam did not find any associations between SES and CKD ¹⁷ the current study focused on rural and urban Ghana (Ashanti region of Ghana). The RODAM study was conducted from 2012 to 2015 and it comprised of individuals aged 25-70 years living in rural and urban Ghana and Ghanaian migrants in Europe. All participants below 25 and above 70 years were excluded in the present analyses. The present analysis was restricted to the rural and urban sites (n=2492) RODAM participants. Specifically, 1043 participants from rural Ghana and 1449 from urban Ghana were used in this study.

Data collection for the study was standardized across all sites. Written informed consent was obtained from each participant prior to enrolment in the study. The respective ethics committees in Ghana and the three European countries approved the study protocols before data collection began. Specifically, we obtained ethical clearance in Ghana from School of Medical Sciences/Komfo Anokye Teaching Hospital Committee on Human Research, Publication & Ethical Review Board. In the Netherlands, the Institutional Review Board of the AMC, University of Amsterdam gave approval for the study. In Germany, approval for the study was obtained from the Ethics Committee of Charite-Universitäts medizin. The London School of Hygiene and Tropical Medicine Research Ethics Committee gave approval for the study in the UK.

The response rate was 76% in rural Ghana and 74% in urban Ghana. In Ghana,
participants were randomly drawn from a list of 30 enumeration areas in the Ashanti

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 9 of 37

BMJ Open

region based on the 2010 population census using the multistage random sampling. These enumeration areas came from two purposively selected urban cities (Kumasi and Obuasi) and 15 randomly selected rural communities in the Ashanti region. Selected health and community authorities were first identified, notified of the study and letters were sent giving detailed explanation of the study. We sent team members to stay among the communities to familiarize with them and organize mini clinics in the field. This lasted between 1-2 weeks depending on the sampled population and responsiveness of respondents.

In Ghana, questionnaires administration and physical examination were done at the same day/time. The participants were instructed to fast from 10.00pm the night before the physical examination. For the current study, 2566 participants with data available on both questionnaire data and physical measurements were used. We excluded (n=74) individuals outside the RODAM age range of 25-70 years resulting in a data set of 2492 for analysis. These comprised 1,449 Urban Ghana and 1043 Rural Ghana. For the final analysis, individuals with no data on CKD status (n=42) were excluded.

255 Measurements

256 Covariates

257 Demographic and lifestyle factors

Information on demographics, educational level, occupational level, wealth index and lifestyle factors (smoking and physical activity) were obtained by questionnaire. Physical examinations were performed with validated devices per standardized operational procedures across all study sites. Weight was measured in light clothing and without shoes with SECA 877 scales to the nearest 0.1 kg. Height was measured without shoes with a portable stadiometer (SECA 217) to the nearest 0.1 cm. Body mass index (BMI) was calculated as weight (kg) divided by height squared (m²). Overweight was defined as BMI of ≥ 25 to $\leq 30 \text{ kg/m}^2$ and obesity as BMI $\geq 30 \text{ kg/m}^2$ ¹⁸. Per participant, all anthropometrics were measured twice by the same assessor and the average of the two measurements were used for analyses.

266 Predictor: SES

Socioeconomic indicators used in this study were educational level, occupational status and level of wealth index. Educational level was determined based on self-reported highest educational qualification accomplished based on the Ghanaian educational system. Occupational level was determined based on self-reported current occupation if employed and/or last occupation before retirement or student. The reported occupations were further coded according to the International Standard Classification of Occupations scheme (ISCO-08). Where 'high' (professionals, managers, clerical support staff, higher grade routine non-manual employees service and sales-related occupations) and 'low' (craft and related trades workers, elementary occupations and farmers) and the rest were categorized into the 'middle'. Wealth index was determined using the World Health Organization (WHO) standard of wealth index classification. Wealth index was based on data collected in the Household Questionnaire. The questionnaire comprised of questions on household's ownership of several consumer items such as television, car, flooring material, toilet facilities etc. Each household was assigned a standard score for each asset. Wealth index was then expressed in five categories. The five categories were further categorized into three categories by combining the second and third as well as fourth and fifth categories due to small numbers ¹⁹. All three SES constructs were further classified as low, medium and high SES and their relationship to each other tested. A composite SES variable (SES) was generated based on the three SES constructs (education, occupation and wealth index) using the EGEN group command in STATA. The codes were combined into numerical variables and their averages computed. The resultant values were recoded into three categories (low, medium and high).

40
41286Co-morbidity factors

Blood pressure (BP) was measured three times using a validated semi-automated device (The Microlife WatchBP home) with appropriate cuffs in a sitting position after at least 5 min rest. The mean of the last two BP measurements was used in the analyses. Hypertension was defined as systolic BP \geq 140 mmHg, and/or diastolic $BP \ge 90$ mmHg, and/or being on antihypertensive medication treatment, and/or self-reported hypertension. Trained research assistants in the two sites collected fasting venous blood samples. All the blood samples were processed and aliquoted immediately (within one hour to maximum three hours of the vena puncture) after collection per standard operation procedures, and then temporarily stored at the local research location at -20° C. The separated samples were then transported to the local research centres laboratories, where they were checked, registered and stored at -80° C. To avoid intra-

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml Page 11 of 37

BMJ Open

laboratory variability, the stored blood samples from the local research centres were transported to Berlin, Germany for biochemical analyses. Fasting plasma glucose concentration was measured using an enzymatic method (hexokinase). Type 2 diabetes was defined according to the WHO diagnostic criteria (fasting glucose \geq 7.0 mmol/L, and/or current use of medication prescribed to treat diabetes, and/or self-reported diabetes)²⁰. Concentration of total cholesterol was assessed using colorimetric test kits. All biochemical analyses were performed using an ABX Pentra 400 chemistry analyzer (ABX Pentra; Horiba ABX, Germany). Hypercholesterolemia was defined as total cholesterol level ≥ 6.22 mmol/L. Serum creatinine concentration (in umol/L) was determined by a kinetic colorimetric spectrophotometric isotope dilution mass spectrometry-calibrated method (Roche Diagnostics). Biochemical analyses were subject to extensive quality checks including blinded serial measurements.

20 306 **Outcome: CKD prevalence**

Participants were asked to bring an early morning urine sample for the analyses of albuminuria and creatinine levels. Urinary albumin concentration (in mg/L) was measured by an immunochemical turbidimetric method (Roche Diagnostics). Urinary creatinine concentration (in umol/L) was measured by a kinetic spectrophotometric method (Roche Diagnostics). Estimated glomerular filtration rate (eGFR) was calculated using the CKDEPI (CKD Epidemiology Collaboration) creatinine equation ²¹. Urinary albumin-creatinine ratio (ACR; expressed in mg/g) was calculated by taking the ratio between urinary albumin and urinary creatinine. eGFR and albuminuria were categorized according to the 2012 KDIGO (Kidney Disease: Improving Global Outcomes) classification 22 . eGFR was categorized as follows: G1, > 90 mL/min/1.73 m² (normal kidney function); G2, 60 to 89 mL/min/1.73 m² (mildly decreased); G3a, 45 to 59 mL/min/1.73 m² (mildly to moderately decreased); G3b, 30 to 44 mL/min/1.73 m² (moderately to severely decreased); G4, 15 to 29 mL/min/1.73 m² (severely decreased); and G5, < 15 mL/min/1.73 m² (kidney failure). Albuminuria categories were derived from ACR and were as follows: A1, < 3mg/mmol (normal to mildly increased); A2, 3 to 30 mg/mmol (moderately increased); and A3, > 30mg/mmol (severely increased). CKD status was categorized according to severity of kidney disease (green, low risk; vellow, moderately increased risk; orange, high risk; and red, very high risk) using the combination of eGFR (G1-G5) and albuminuria (A1-A3) levels defined by the 2012 KDIGO guideline ²³. Due to the small number of participants in the very high risk category of CKD, high and very high risk groups were combined. Reduced eGFR was defined as eGFR $< 60 \text{ mL/min}/1.73 \text{ m}^2$. Because of the small number of participants in the severely increased albuminuria category, we defined albuminuria as ACR >3 mg/mmol by combining the moderately increased (A2) and severely increased (A3) categories.

327 Patient and Public Involvement

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Community leaders were involved in the recruitment of patients. These comprised of religious communities (churches and mosques), endorsement from local key leaders and establishing relationships with healthcare organizations. We also provided information on the study by involving the local media (radio and television stations). We sent letters to all selected health and community authorities to notify participants of the study. Team members were sent to the various communities to stay among the community and organize mini clinics for a period of 1-2 weeks. Results of the study were disseminated through seminars, durbars and via radio and television stations.

335 Statistical methods

Participants' characteristics were expressed as absolute numbers and percentages for categorical variables and as means and standard deviations (SD) for continuous variables. CKD prevalence with 5% error bars were presented as bar graphs for each SES construct across rural and urban Ghana. Spearman's rank correlation was used to determine correlations between the three SES constructs. Odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were estimated by means of logistic regression analyses to study the odds of albuminuria (ACR>3 mg/mmol, A2-A3, moderately to severely increased albuminuria), reduced kidney function (eGFR< 60 mL/min/1.73 m², G3-G5 moderately to severely decreased kidney function) and increased CKD risk (high and very high CKD risk) by SES, with adjustments for potential confounders (age and sex).²⁴ In addition, the analyses were performed for the total population (using low educational level, low occupational status and low level of wealth index as reference categories). Further analysis was conducted to assess the contribution of SES indicators to rural-urban differences in albuminuria, reduced eGFR and CKD risk using rural Ghana as reference. Tolerance test and variance inflation factor (VIF) showed very small degree of collinearity among SES predictors thus we therefore adjusted for each of SES variables separately. Complete case analysis approach was used. All data available were included in the age-adjusted models. All analyses were performed using STATA, version 14.0 (StataCorp LP).

353 Results

Page 13 of 37

BMJ Open

Table 1 shows characteristics of study participants. Participants in rural Ghana were slightly older than those in urban Ghana. Female preponderance was observed in both rural (61.2%) and urban (71.4%) Ghana, though higher proportions were observed in urban Ghana. Individuals living in rural Ghana were generally less educated (56.9%) compared with those living in urban (43.9%) Ghana. There were slightly more individuals with low occupational status in urban Ghana compared with their peers in rural Ghana. People in urban Ghana (43.4%) were wealthier than their rural (24.9%) counterparts. Rural Ghanaians (47.2%) were more physically active compared with their urban peers. Smoking was low among Ghanaians though rural Ghanaians were more likely to smoke compared with their urban peers. Hypercholesterolemia was more prevalent in urban Ghana than in rural Ghana. Hypertension (36.7%) and type 2 diabetes (10.6%) were more prevalent in urban Ghanaians compared with those living in rural Ghana. Urban Ghanaians were markedly more obese compared with their rural peers. Except for eGFR, albuminuria and CKD risk prevalence rates were higher in urban Ghana compared with rural Ghana.

Table 1: Baseline characteristics by loc	ation	
O _c		
	Rural Ghana	Urban Ghana
Number of participants, N (%)	1043 (41.9)	1449 (58.1
Mean age, years (SD)	46.5 (12.6)	45.2 (11.4
Females, N (%)	638 (61.2)	1034 (71.4
Educational level n (%)		
Low	555 (56.9)	614 (43.9
Middle	311 (31.9)	547 (39.1
High	108 (11.2)	239 (17.0
Occupational status, n (%)		
Low	250 (25.7)	374 (26.7
Middle	628 (64.5)	818 (58.4
High	96 (9.8)	209 (14.9
Wealth index, n (%)		
Low	449 (46.5)	368 (26.6
Middle	276 (28.6)	416 (30.0
High	241 (24.9)	602 (43.4
BMI (kg/m²		
< 25	794 (76.3)	579 (39.9
25-29.9	189 (18.2)	495 (34.2
≥ 30	58 (5.5)	374 (25.9
Low physical activity, n (%)	663 (47.2)	592 (60.7

13 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3		Smoking, n (%)	22 (2.3)	14 (1.0)
4			ZZ (Z.J)	14 (1.0)
5 6		Hypercholesterolemia, n (%)	78 (7.6)	270 (18.7)
7		Hypertension, n (%)	306 (29.3)	531 (36.7)
8 9			53	
10 11		Diabetes, n (%)	(5.1)	153 (10.6)
12		Albuminuria, n (%)		
13 14			930 (91.6)	
15 16		A1, Normal to mildly increased (ACR <3 mg/mmol)	85	1285 (89.1)
17		A2-A3, moderately to severely increased (ACR≥ 3 m	ng/ (8.4)	158 (10.9)
18 19		eGFR, n (%)		
20 21		G1-G2 (≥ 60 mL/min/1.73m²)	989 (96.3)	1388 (96.3)
22		G3-G5 (<60 mL/min/1.73m²)	38 (3.7)	54 (3.7)
23 24		CKD risk, n (%)		
25 26		Low risk (green)	916 (90.5)	1281 (88.9)
27		Moderately increased to very high risk		
28 29		(yellow to red)	96 (9.5)	160 (11.1)
30 31	391 392	Abbreviations: N, number of respondents; SD, standard deviation; eGFR, estima creatinine ratio; CKD, Chronic kidney disease	ted glomerular filtration ra	te; ACR, albumin
32	393			
22				

Figure 1 shows prevalence of CKD by level of education in urban and rural Ghana. Prevalence of CKD decreased with increasing levels of education in rural Ghana. Higher prevalence of CKD was observed among individuals with low educational level compared with those with middle and high educational level. However, those with high educational level in urban Ghana had higher prevalence of CKD compared with those with middle level education. For occupational status, prevalence of CKD was higher among individuals with low occupational status in urban Ghana. Similar patterns were observed in rural Ghana; however, those with higher occupational status had higher prevalence of CKD compared with those with middle occupational status (Figure 2). Figure 3 shows prevalence of CKD by level of wealth index. CKD prevalence among

404 the levels of wealth index varied between urban and rural Ghana. Those with middle 405 level wealth index had higher prevalence of CKD compared with those with low or 406 high CKD prevalence in both rural and urban Ghana. CKD prevalence rate for low and 407 high level wealth index in urban Ghana was the same while that of rural Ghana was 408 slightly different.

to beet terien only

409	Among the whole group, educational level was positively associated with wealth index (p<0.01) and composite SES
410	(P<0.01). Occupational level was also inversely associated with educational level (p<0.01) and wealth index (p<0.01). In
411	urban Ghana, high educational level was positively associated with high wealth index but inversely associated with
412	occupation (p<0.01). In rural Ghana, high education was positively associated with high wealth index (p<0.01), but there
413	was no significant association between education and occupation. High wealth index was inversely associated with high
414	occupational status in both rural and urban Ghana (p<0.01) (Table 2).
415	
416	Table 2: Relationship between SES constructs (educational, occupational level and wealth index) by urban
417	rural Ghana
418	
419	
	Correlation matrix Educational level Occupational level Wealth index SES
	Whole group

419					
	Correlation matrix	Educational level	Occupational level	Wealth index	SES
	Whole group			C	
	Educational level	1.000			
	Occupational status	-0.060	1.000		
		0.004			
	Wealth Index	0.282	-0.121	1.000	
		0.001	0.001		
	SES	1.000	-0.059	0.282	1.000
		0.003	0.006	0.001	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Educational level	1.000

Occupational status	-0.115	1.000		
	0.001			
Wealth Index	0.294	-0.126	1.000	
	0.001	0.001		
SES	1.000	-0.024	0.937	1.000
	0.002	0.001	0.001	
Rural Ghana				
Educational level	1.000			
Occupational status	0.017	1.000		
	0.589			
Wealth Index	0.219	-0.135	1.000	
	0.001	0.001		
SES	0.504	0.017	0.934	1.000
	0.001	0.587	0.001	

Page 19 of 37

 BMJ Open

3 4	424	4								
5 6 7	425	5								
, 8 9	426	6								
10 11	427	7								
12 13 14	428	8								
14 15 16	429	9								
17 18	430	0								
19 20 21	431	1 Table 3 shows association between level of education, occupational status, level of wealth index an	d prevalence of							
22 23	432	2 CKD. After adjusting for age and sex for the whole group, albuminuria was associated with middle level education (AC)R=0.66, 0.48-0.91,							
24	433	3 p<0.01). After adjusting for age and sex, we observed no significant association between SES indicators (educational level, occ	upational status and							
25 26	434	4 wealth index) and CKD in urban Ghana. However, middle (AOR=0.51, 0.34-0.76, <0.01) and higher (AOR=0.53, 0.31-	0.91, p<0.01) level							
27	435	education was associated with reduced albuminuria in urban Ghana. Whereas educational level and occupational status were not associated with								
28 29	436	6 CKD prevalence, high wealth index was significantly associated with higher odds of reduced eGFR in rural Ghana (AC)R=2.38, 1.03-5.47,							
30 31	437	7 P<0.01).								
32 33	438	8								
34 35	439	9 Table 3: Association of SES indicators (educational level, occupational status and wealth index level) with albuminuria, reduced	eGFR and CKD risk							
36 37	440	0								
38 39		Albuminuria (ACR ≥ 3 mg/mmol)eGFR < 60 mL/min/1.73 m2	(KDIGO,							
40 41 42		OR (95% CI) OR (95% CI) OR (95% C	(I)							
43 44 45 46 47		18 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml								

	n (%)	Model 1	n (%)	Model 1	n (%)	Model 1
Education						
Whole group						
Low	1,152 (11.89)	1.00 (Reference)	1,160 (3.97)	1.00 (Reference)	1.150 (11.91)	1.00 (Reference)
Middle	847 (7.32)	0.66 (0.48-0.91)	849 (3.77)	1.36 (0.83-2.22)	845 (8.28)	0.82 (0.59-1.12)
High	343 (7.00)	0.67 (0.42-1.07)	345 (3.19)	1.11 (0.55-2.29)	343 (8.75)	0.96 (0.62-1.49)
Urban Ghana				(0.00 2.2))		0.50 (0.02 1.05)
Low	612 (14.7)	1.00 (Reference)	612 (4.1)	1.00 (Reference)	612 (14.1)	1.00 (Reference)
Middle	546 (7.8)	0.51 (0.34-0.76)	546 (3.7)	1.12 (0.59-2.12)	545 (8.1)	0.59 (0.39-0.89)
High	238 (8.4)	0.53 (0.31-0.91)	238 (3.4)	0.91 (0.37-2.19)	238 (10.9)	0.83 (0.51-1.38)
Rural Ghana						
Low	540 (8.7)	1.00 (Reference)	548 (3.8)	1.00 (Reference)	538 (9.5)	1.00 (Reference)
Middle	301 (6.3)	0.89 (0.51-1.59)	303 (3.9)	1.69 (0.77-3.66)	300 (8.7)	1.33 (0.79-2.25)
High	105 (3.8)	0.66 (0.23-1.95)	107 (2.8)	1.28 (0.35-4.71)	105 (3.8)	0.69 (0.23-2.02)
Occupational st	atus					
Whole group						
Low	614 (9.93)	1.00 (Reference)	616 (2.76)	1.00 (Reference)	613 (9.46)	1.00 (Reference)
Middle	1,427 (9.25)	0.82 (0.59-1.14)	1,436 (3.34)	0.93 (0.52-1.66)	1,424 (9.90)	0.89 (0.65-1.24)
High	302 (10.26)	0.76 (0.47-1.22)	303 (7.92)	1.33 (0.67-2.62)	302 (12.91)	0.90 (0.57-1.42)
Urban Ghana						
Low	207 (10.1)	1.00 (Reference)	207 (6.8)	1.00 (Reference)	207 (12.1)	1.00 (Reference)
Middle	817 (11.1)	1.50 (0.88-2.83)	817 (3.6)	1.15 (0.56-2.35)	816 (11.6)	1.37 (0.84-2.56)
High	373 (11.0)	1.57 (0.89-2.53)	373 (2.7)	1.02 (0.41-2.52)	373 (9.7)	1.21 (0.68-2.14)
Rural Ghana						
Low	95 (10.5)	1.00 (Reference)	96 (10.4)	1.00 (Reference)	95 (14.7)	1.00 (Reference)
Middle	610 (6.7)	0.65 (0.31-1.37)	619 (3.1)	0.37 (0.16-0.85)	608 (7.6)	0.55 (0.28-1.08)
High	241 (8.3)	0.99 (0.43-2.28)	243 (2.9)	0.51 (0.18-1.44)	240 (9.2)	0.94 (0.44-2.01)

BMJ Open

	Whole group						
	Low	808 (9.65)	1.00 (Reference)	813 (3.32)	1.00 (Reference)	808 (9.16)	1.00 (Reference)
	Middle	678 (10.91)	1.18 (0.84-1.66)	683 (3.81)	1.30 (0.74-2.28)	675 (12.0)	1.43 (1.02-2.01)
	High	835 (8.62)	0.93 (0.66-1.31)	835 (4.19)	1.55 (0.91-2.64)	833 (9.96)	1.21 (0.86-1.69)
	Urban Ghana						
	Low	367 (11.2)	1.00 (Reference)	367 (3.5)	1.00 (Reference)	367 (10.1)	1.00 (Reference)
	Middle	414 (12.3)	1.12 (0.73-1.74)	414 (3.9)	1.30 (0.61-2.80)	413 (13.1)	1.45 (0.93-2.27)
	High	601 (9.8)	0.82 (0.55-1.25)	600 (3.8)	1.13 (0.55-2.31)	600 (10.8)	1.11 (0.72-1.71)
	Rural Ghana						
	Low	441 (7.9)	1.00 (Reference)	446 (3.1)	1.00 (Reference)	441 (8.4)	1.00 (Reference)
	Middle	264 (8.7)	1.13 (0.65-1.98)	269 (3.7)	1.22 (0.52-2.84)	262 (10.3)	1.31 (0.77-2.25)
	High	234 (5.6)	0.78 (0.40-1.53)	235 (5.1)	2.38 (1.03-5.47)	233 (7.7)	1.16 (0.63-2.14)
443 446 447 448							
449	observed in urban	n Ghana was not ex	xplained by the higher	SES of that popul	ation as compared to the	eir rural counterpar	ts.
450							
451	Table 4: Con	tribution of S	ES indicators to	rural-urban d	ifferences in albu	minuria, reduc	ed eGFR and CKD
452	risk						
453							
							I) OR (95% CI)
	 447 448 449 450 451 	High Urban Ghana Low Middle High Rural Ghana Low Middle High Model 1, adjusted for ag total number of individu rural and urban Ghana. 444 445 446 447 Table 4 shows the 448 CKD risk wa 449 observed in urban 450 451 Table 4: Con 452 risk	Middle $678 (10.91)$ High $835 (8.62)$ Urban GhanaLow $367 (11.2)$ Middle $414 (12.3)$ High $601 (9.8)$ Rural GhanaLow $441 (7.9)$ Middle $264 (8.7)$ High $234 (5.6)$ 441Model 1, adjusted for age and sex; Abbreviations total number of individuals in the whole group, rural and urban Ghana.443444445446447448CKD risk was significantly observed in urban Ghana was not ex 450451Table 4: Contribution of S 452452risk	Middle 678 (10.91) 1.18 (0.84-1.66) High 835 (8.62) 0.93 (0.66-1.31) Urban Ghana Low 367 (11.2) 1.00 (Reference) Middle 414 (12.3) 1.12 (0.73-1.74) High 601 (9.8) 0.82 (0.55-1.25) Rural Ghana Low 441 (7.9) 1.00 (Reference) Middle 264 (8.7) 1.13 (0.65-1.98) High 234 (5.6) 0.78 (0.40-1.53) Model 1, adjusted for age and sex; Abbreviations: CL confidence interval; ACE total number of individuals in the whole group, rural and urban Ghana among the rural and urban Ghana. 444 445 445 446 447 Table 4 shows the contribution of all three SES constructs 448 CKD risk was significantly higher in urban 449 observed in urban Ghana was not explained by the higher in 450 451 Table 4: Contribution of SES indicators to 452 453 453	Middle 678 (10.91) 1.18 (0.84-1.66) 683 (3.81) High 835 (8.62) 0.93 (0.66-1.31) 835 (4.19) Urban Ghana Low 367 (11.2) 1.00 (Reference) 367 (3.5) Middle 414 (12.3) 1.12 (0.73-1.74) 414 (3.9) High 601 (9.8) 0.82 (0.55-1.25) 600 (3.8) Rural Ghana Low 441 (7.9) 1.00 (Reference) 446 (3.1) Middle 264 (8.7) 1.13 (0.65-1.98) 269 (3.7) High 234 (5.6) 0.78 (0.40-1.53) 235 (5.1) Model 1, adjusted for age and sex; Abbreviations: CI, confidence interval; ACR, abbumin creatinine rati 444 Model 1, adjusted for age and sex; Abbreviations: CI, confidence interval; ACR, abbumin creatinine rati 444 Model 1, adjusted for age and sex; Abbreviations: CI, confidence interval; ACR, abbumin creatinine rati 444 444 445 446 444 445 446 445 446 447 446 448 CKD risk was significantly higher in urban Ghana comp 449 observed in urban Ghana was not explained by the higher SES of that popula 450 451	Middle 678 (10.91) 1.18 (0.84-1.66) 683 (3.81) 1.30 (0.74-2.28) High 835 (8.62) 0.93 (0.66-1.31) 835 (4.19) 1.55 (0.91-2.64) Urban Ghana Image: Construct of the state of the	Middle 678 (10.91) 1.18 (0.84-1.66) 683 (3.81) 1.30 (0.74-2.28) 675 (12.0) High 835 (8.62) 0.93 (0.66-1.31) 835 (4.19) 1.55 (0.91-2.64) 833 (9.96) Urban Ghana Image: Construction of the end of the e

		Model 1	Model 2	Model 3	Model 4	Model 5
Albuminuria (ACR ≥ 3						
mg/mmol						
	n cases					
Sites	(%)					
	1,443	1.37 (1.03-	1.70 (1.25-	1.55 (1.15-	1.62 (1.18-	1.74 (1.27-
Jrban Ghana	(10.9)	1.81)	2.31)	2.10)	2.19)	2.38)
		1.00	1.00	1.00	1.00	1.00
Rural Ghana	1,015 (8.4)	(Reference)	(Reference)	(Reference)	(Reference)	(Reference)
eGFR < 60 mL/min/1.73						
m2						
	n cases					
Sites	(%)					
		1.27 (0.82-	1.20 (0.76-	1.18 (0.79-	1.12 (0.70-	1.07 (0.67-
Jrban Ghana	1,442 (3.7)	1.97)	1.89)	1.86)	1.78)	1.72)
		1.00	1.00	1.00	1.00	1.00
Rural Ghana	1,027 (3.7)	(Reference)	(Reference)	(Reference)	(Reference)	(Reference)
High to very high CKD risk						
	n cases					
Sites	(%)					
	1,441	1.23 (1.01-	1.44 (1.07-	1.38 (1.03-	1.36 (1.01-	1.40 (1.04-
Jrban Ghana	(11.1)	1.62)	1.93)	1.84)	1.83)	1.91)
	1,012	1.00	1.00	1.00	1.00	1.00 (Reference
Rural Ghana	(9.46)	(Reference)	(Reference)	(Reference)	(Reference)	
154						
		r review only - http://	21			

 BMJ Open

<text> Model 1#: adjusted for age and sex; Model 2: adjusted for age, sex and education level; Model 3: adjusted for age, sex and occupational status; Model 4: adjusted for age, sex and wealth index; Model 5: adjusted for age, sex, educational level, occupational status and wealth index; Abbreviations: CI, confidence interval; ACR, albumin creatinine ratio; eGFR, estimated glomerular filtration rate; CKD, chronic kidney disease; OR, odds ratio, n= total number of individuals in rural and urban Ghana; %, proportion of individuals with CKD among urban and rural Ghana.

> For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3 4	459	
5 6 7	460	Discussion
7 8 9	461	Key findings
10 11	462	Our study findings show no association between all three SES constructs and the
12 13	463	prevalence of CKD in both rural and urban Ghana except for wealth index in rural
14 15 16	464	Ghana, with the risk of CKD being higher in the wealthier populations. The higher rate
17 18	465	of CKD observed in urban Ghana could not be attributed to the higher SES of that
19 20	466	population compared to their rural counterparts.
21 22 23	467	
23 24 25	468	Discussion of key findings
26 27	469	
28 29	470	Association of SES with CKD in rural and urban Ghana
30 31	471	
32 33	472	Our study did not find any significant associations between all three SES constructs
34 35	473	and CKD among rural and urban Ghana except for wealth index in rural Ghana. The
36 37 38	474	positive association observed between wealth index in rural Ghana may be due to
39 40	475	several reasons. A comparison of the three SES constructs showed higher educational
41 42	476	level to be associated with wealth index in both rural and urban Ghana but not
43 44	477	occupational level. This seems to suggest that occupational level may not be
45 46 47	478	adequately capturing the SES status of individuals living in these settings in relation to
48 49	479	CKD. For example, Masthi et al, compared different SES scales in rural and urban
50 51	480	India and concluded that Standard of Living Index (SLI) scale was more accurate for classification
52 53 54	481	of SES in urban and rural settings ²⁵ . Our finding is consistent with other studies, ^{6 26} which
54 55 56 57	482	reported no association between SES and CKD in high-income countries and LMICs,
57 58		

BMJ Open

but in contrast with other studies ²⁻⁴ ²⁷ that found positive associations between SES and CKD. The reasons for our current finding are unclear. However, it has been suggested that these inconsistent associations may be due to the varying pathways through which the effect of SES on health status is mediated. For example, at a given educational level marked ethnic differences have been reported. Additionally, similar differences were observed for wealth status at a given income level ²⁸⁻³⁰.

9 489

490 Contribution of SES to observed CKD risk differences between rural and 491 urban Ghana

We observed higher rates of CKD in urban Ghana compared with rural Ghana, as expected. The observed higher rates of CKD in our study were not explained by the higher SES of that population as compared to their rural counterparts. Our results indicate that this is due to the lack of a clear difference in the SES distribution of rural and urban Ghana observed in this study, as well as to the lack of associations between SES and CKD. Consistent with our findings, in a study conducted in Northern Tanzania SES did not explain increased risk of CKD in urban Tanzania²⁶. The lack of associations between SES and CKD could probably and partly be explained by the process of epidemiological transition in relation to the "diffusion theory" of ischemic heart disease mortality. This theory attributes the commencement of ischemic heart disease to individuals in the high SES group due to their ability to afford behaviours (smoking, alcohol and sedentary lifestyles) which increased risk of ischemic heart disease. The lower SES groups were later affected partially because of improved living standards, unhealthy life style imitation and urbanization. The higher SES groups were the first to embrace behavioural changes required to decrease the risk of ischemic heart disease and this resulted in reversing the gradient ³¹. The rapid urbanization of some rural communities in the Ashanti region of Ghana and the imitation of urban lifestyle could account for our finding. Also, it could be that whereas the high SES group in urban Ghana has already embraced favourable behavioural changes, those in rural Ghana are yet to do so ³². This explains the observed association of wealth index with CKD in rural Ghana but not in urban Ghana. Also, the interplay of other less

understood or researched factors (e.g., exposure to nephrotoxins, herbal medications,
sepsis, psychosocial factors) may be influencing the pathway in which SES influences
CKD prevalence and progression.

515 Strength and limitation

Our study presents several strengths. First, we used well-standardized study protocols across rural and urban Ghana. Our study is also the first in Africa to use all three categories of CKD definition (albuminuria, reduced eGFR and CKD risk) by KDIGO 2012 in assessing association of SES with CKD in rural and urban setting, this provided more detailed information on CKD outcomes. The limitation of intra laboratory variability in earlier studies was eliminated using the same standard operating procedures in the same laboratory for running all samples for both rural and urban Ghana. The use of three constructs of SES in this study also provides a much better holistic approach to assessing SES. Also, the distribution of SES in our study reflects on the national data allowing for generalization of our findings. Our study was limited by the use of cross sectional design, which prevented us from determining causality between predictors and CKD progression. Furthermore, there were more women than men in our study due to the higher response rate in women compared with men. However, this applied to both rural and urban Ghana. We therefore do not expect this to influence our results in a significant way.

³⁴ 529

36 530

Conclusion

All three SES constructs appear not to be associated with prevalence of CKD in urban and rural Ghana except for wealth index in rural Ghana. The observed higher prevalence of CKD in urban Ghana was not explained by the higher SES in urban Ghana. Our study seems to suggest that other non-traditional factors such as nephrotoxins, herbal medications, psychosocial stressors and misuse of over the counter drugs may play a role and underscores the need to further explore these factors.

1 2	
3 4	540
5 6	541
7 8	542
9 10	543
11	544
12 13	545
14	546
15 16 17	547
18	548
19 20	549
21 22	550
23 24	551
25 26	552
27 28	553
29	554
30 31	555
32 33	556
34 35	557
36	558
37 38	559
39 40	560
40 41	561
42	562
43 44	563
44 45 46	564
47 48	565
49 50	566
51	567
52 53	
54	568
55 56	569
56 57	
58	
59	
60	

541 Acknowledgement

The authors are very grateful to the research assistants, interviewers and other staff of the five research locations who took part in gathering the data and the Ghanaian volunteers in all the participating RODAM sites. We gratefully acknowledge the advisory board members for their valuable support in shaping the RODAM study methods and the Academic Medical Centre Biobank for their support in biobank management and high-quality storage of collected samples.

549 **Contributors**

50 My co-authors have all contributed substantially to this manuscript and approve of this 51 submission. Research idea and study design: DNA, CA, KS, DA, EB, KM, JA; data acquisition 52 and curation: DNA, CA, EB, KM, data analysis/interpretation: DNA, CA, KS, DA, EB, KM, LS, 53 JA, EOD, KKG, FPM, ID, JS, SB, ADA; statistical analysis: DNA, CA, KS, DNA, CA, KS, DA, 54 EB, KM, LS, JA, EOD, KKG, FPM, ID, JS, SB, ADA contributed important intellectual content 55 during manuscript drafting or revision and accepts accountability for the overall work by 56 ensuring that questions pertaining to the accuracy or integrity of any portion of the work are 57 appropriately investigated and resolved. DNA and CA take responsibility that this study has been 58 reported honestly, accurately, and transparently; that no important aspects of the study have been 59 omitted; and that any discrepancies from the study as planned have been explained.

61 Funding

This work was supported by the European Commission under the Framework Programme (Grant Number: 278901). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The Wellcome Trust supported Professor Smeeth's contribution, grant number WT082178. Professor Joachim Spranger was supported by the DZHK (German Center for cardiovascular research) and the Berlin Institute of Health (BIH).

568 **Competing interest:** I have communicated with all my co-authors and obtained their full disclosures. My co-authors and I declare no conflicts of interest.

2	
3 4	570
5	571
6 7	572
7 8	
9	573
10 11	574
12	575
13 14	576
15 16	577
17	578
18 19	
20	579
21 22	580
23 24	581
25	582
26 27	583
28	584
29 30	585
31	586
32 33	587
34 35	588
36	589
37 38	590
39	590 591
40 41	
42 43	592
44	593
45 46	594
47	595
48 49	596
50	597
51 52	598
53	599
54 55	600
56 57	
58	
59 60	
00	

1

0	Patient	Consent:	None	declared
---	---------	----------	------	----------

572 Ethics approval: IRBs at each participating site.

Data sharing statement: Data are available from the RODAM research cohort, a third party. Dr. Eric Beune affiliated with the RODAM research cohort and a co-author of this paper in accordance with the RODAM requirements for collaboration. Dr. Beune is the Data Collection με τ d in furth. Coordinator of RODAM and may be contacted with further questions (e.j.beune@amc.uva.nl). Additionally, researchers interested in further collaboration with RODAM may see the following URL: http://www.rod-am.eu/

> **27** For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
3 4	601	
5 6	602	
7	603	
8 9	604	
10	605	
11 12	606	
13 14	607	
15	608	
16 17	609	
18 19	610	
20	611	
21 22	612	
23 24	612	References
24 25	614	
26 27	615	1. Patzer RE, McClellan WM. Influence of race, ethnicity and socioeconomic status on kidney
27 28	616	disease. <i>Nature Reviews Nephrology</i> 2012;8(9):533-41.
20 29	617	2. Merkin SS, Roux AVD, Coresh J, et al. Individual and neighborhood socioeconomic status
30	618	and progressive chronic kidney disease in an elderly population: The Cardiovascular
31	619	Health Study. Soc Sci Med 2007;65(4):809-21.
32	620	3. Bello AK, Peters J, Rigby J, et al. Socioeconomic status and chronic kidney disease at
33	621	presentation to a renal service in the United Kingdom. <i>Clin J Am Soc Nephrol</i>
34 35	622	2008;3(5):1316-23.
36	623	4. Crews DC, Charles RF, Evans MK, et al. Poverty, race, and CKD in a racially and
37	624	socioeconomically diverse urban population. Am J Kidney Dis 2010;55(6):992-1000.
38	625	5. Shoham DA, Vupputuri S, Roux AVD, et al. Kidney disease in life-course socioeconomic
39	626	context: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Kidney Dis
40	627	2007;49(2):217-26.
41 42	628	6. Byrne C, Nedelman J, Luke RG. Race, socioeconomic status, and the development of end-
43	629	stage renal disease. Am J Kidney Dis 1994;23(1):16-22.
44	630	7. Popkin BM. The shift in stages of the nutrition transition in the developing world differs from
45	631	past experiences! Public Health Nutr 2002;5(1A):205-14.
46	632	8. Du S, Lu B, Zhai F, et al. A new stage of the nutrition transition in China. <i>Public Health Nutr</i>
47	633	2002;5(1a):169-74.
48 49	634	9. Kim S, Symons M, Popkin BM. Contrasting socioeconomic profiles related to healthier
49 50	635	lifestyles in China and the United States. Am J Epidemiol 2004;159(2):184-91.
51	636	10. Adler NE, Ostrove JM. Socioeconomic status and health: what we know and what we don't.
52	637	Ann N Y Acad Sci 1999;896(1):3-15.
53	638	11. Anderson NB, Armstead CA. Toward understanding the association of socioeconomic status
54	639	and health: A new challenge for the biopsychosocial approach. Psychosom Med
55 56	640	1995;57(3):213-25.
50 57		
58		
59		28 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

641
 641
 642
 642
 12. Feinstein JS. The relationship between socioeconomic status and health: a review of the literature. *The Milbank Quarterly* 1993:279-322.

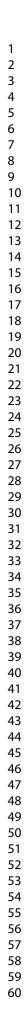
1 2

6

7

8 9

10


15

16 17

50

- 643 13. Samuel P, Antonisamy B, Raghupathy P, et al. Socio-economic status and cardiovascular risk
 644 factors in rural and urban areas of Vellore, Tamilnadu, South India. *Int J Epidemiol*645 2012;41(5):1315-27.
- 646 14. Christie S, Fone DL. Does car ownership reflect socio-economic disadvantage in rural areas?
 647 A cross-sectional geographical study in Wales, UK. *Public Health* 2003;117(2):112-16.
- 648
 15. Agyemang C, Beune E, Meeks K, et al. Rationale and cross-sectional study design of the Research on Obesity and type 2 Diabetes among African Migrants: the RODAM study. *BMJ open* 2015;4(3):e004877.
 - 16. Addo J, Agyemang C, Aikins Ad-G, et al. Association between socioeconomic position and
 the prevalence of type 2 diabetes in Ghanaians in different geographic locations: the
 RODAM study. *J Epidemiol Community Health* 2017:jech-2016-208322.
- 18 654
 17. Adjei DN, Stronks K, Adu D, et al. Relationship between educational and occupational levels, and Chronic Kidney Disease in a multi-ethnic sample-The HELIUS study. *PLoS One* 2017;12(11):e0186460.
- 657 18. Consultation WE. Waist circumference and waist-hip ratio. Report of a WHO Expert
 658 Consultation Geneva: World Health Organization 2008:8-11.
- 659
 25
 660
 19. Rutstein SO, Johnson K, MEASURE OM. The DHS wealth index: ORC Macro, MEASURE DHS 2004.
- 26
27
28661
66220. Association AD. Standards of medical care in diabetes—2014. Diabetes Care
2014;37(Supplement 1):S14-S80.
- 28 662 2014,57 (Supplement 1).514-560.
 29 663 21. Stevens LA, Schmid CH, Greene T, et al. Comparative performance of the CKD epidemiology collaboration (CKD-EPI) and the modification of diet in renal disease (MDRD) study equations for estimating GFR levels above 60 mL/min/1.73 m 2. Am J Kidney Dis 2010;56(3):486-95.
- 667
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
 668
- 669 669 669 670 670
 670 23. KDIGO G. Work Group. KDIGO clinical practice guideline for glomerulonephritis. *Kidney inter, Suppl* 2012;2:139-274.
- 671 24. Collins AJ, Foley RN, Herzog C, et al. US Renal Data System 2010 Annual Data Report.
 672 American journal of kidney diseases: the official journal of the National Kidney Foundation 2011;57(1 Suppl 1):A8, e1.
- 674 674 674 675 75. Masthi NR, Gangaboraiah PK. An exploratory study on socio economic status scales in a rural and urban setting. *Journal of family medicine and primary care* 2013;2(1):69.
- 676
 676
 676
 677
 26. Stanifer JW, Maro V, Egger J, et al. The epidemiology of chronic kidney disease in Northern Tanzania: a population-based survey. *PLoS One* 2015;10(4):e0124506.
- 678
 678
 679
 679
 679
 679
 680
 680
 681
 28
 681
 28
 681
 28
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 681
 <li
 - 681 28. Braveman PA, Cubbin C, Egerter S, et al. Socioeconomic status in health research: one size
 682 does not fit all. *JAMA* 2005;294(22):2879-88.
- 683
 684
 29. Gilthorpe MS, Wilson RC. Rural/urban differences in the association between deprivation and healthcare utilisation. Soc Sci Med 2003;57(11):2055-63.

2		
3	685	30. Choi AI, Weekley CC, Chen S-C, et al. Association of educational attainment with chronic
4	686	disease and mortality: the Kidney Early Evaluation Program (KEEP). Am J Kidney Dis
5 6	687	2011;58(2):228-34.
0 7	688	31. Mackenbach JP, Cavelaars A, Kunst AE, et al. Socioeconomic inequalities in cardiovascular
8	689	disease mortality. An international study. Eur Heart J 2000;21(14):1141-51.
9	690	32. McKay L, Macintyre S, Ellaway A. Migration and health: a review of the international
10	691	literature. MRC Social and Public Health Sciences Unit, Occasional Paper No. 12.
11	692	Glasgow: Medical Research Council/Links/ 2003
12		Studgott informent Research Counter[Linnis] 2005
13	693	
14 15	694	
15 16	695	
17	696	
18	697	
19	698	
20	699	
21	700	
22	701	
23 24	702	
24 25	703	
26	704	
27	705	Legend for figures
28	706	
29	707	Figure 1: Prevalence of chronic kidney disease (CKD) across level of education among urban
30	708	and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving
31 32	709	Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk,
32 33	710	or very high-risk groups.
34	711	
35	712	
36	713	Figure 2: Prevalence of chronic kidney disease (CKD) across occupational status among urban
37	714	and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving
38	715	
39 40		Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk,
40 41	716 717	or very high-risk groups.
42	718	
43	718	
44	720	Figure 2: Dravalance of abranic kidney disease (CKD) across wealth index estagories among
45	720	Figure 3: Prevalence of chronic kidney disease (CKD) across wealth index categories among urban and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving
46 47	721	
47 48	722	Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk,
49		or very high-risk groups.
50	724	
51	725 726	
52	727	
53	121	
54 55	728	
55 56	729	
57	>	
58		
59		30 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

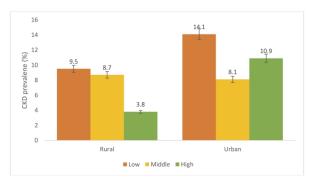


Figure 1: Prevalence of chronic kidney disease (CKD) across level of education among urban and rural participants Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups

Figure 1: Prevalence of chronic kidney disease (CKD) across level of education among urban and rural participants Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups.

279x361mm (300 x 300 DPI)

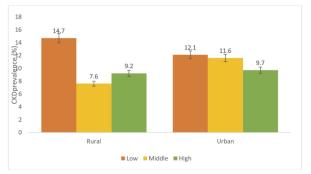
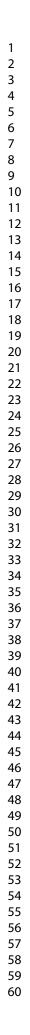



Figure 2: Prevalence of chronic kidney disease (CKD) across occupational status among urban and rural participants. Definitions according to 2012 KDIGO (kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups

Figure 2: Prevalence of chronic kidney disease (CKD) across occupational status among urban and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups.

279x361mm (300 x 300 DPI)

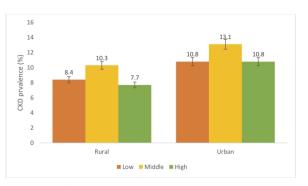


Figure 3: Prevalence of chronic kidney disease (CKD) across wealth index categories among urban and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups

Figure 3: Prevalence of chronic kidney disease (CKD) across wealth index categories among urban and rural participants. Definitions according to 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline. CKD was defined as being in moderately increased risk, high-risk, or very high-risk groups.

279x361mm (300 x 300 DPI)

BMJ Open

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No.	Recommendation		Page No.	Relevant text from manuscript
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1,2		We have included a commonly used term in the title and abstract
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2		Our study did not find any associations between SES indicators and CKD in both rural and urban Ghana after age and sex adjustment except in rural Ghana where wealth index was associated with prevalence of CKD. Consequently, the higher SES did not account for the increased rate of CKD among urban dwellers suggesting the need to identify other factors that may be driving this.
Introduction					
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4		The theoretical and scientific background as well as the rationale for conducting the study have been provided in the introduction section.
Objectives	3	State specific objectives, including any prespecified hypotheses	4		We assessed the association o SES with CKD in rural and urban Ghana and studied wha extent the higher SES of peopl- in urban areas could account fo differences in CKD between rural and urban populations
Methods					
Study design	4	Present key elements of study design early in the paper	5-6		Details given in the methods
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-6		Rural or urban Ghana.
		1			
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xh	ıtml		

Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls 		A multi-centre cross-sectional study was conducted among Ghanaian adults (n=2492) aged 25-70 years residing in rural and urban Ghana.
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of selection of participants	6-8	
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case		
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6-8	The main outcomes have been clearly defined.
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6-8	We defined each variable of interest in the methods accordingly
Bias	9	Describe any efforts to address potential sources of bias	18	Potential sources of bias have discussed in the discussion section
Study size	10	Explain how the study size was arrived at	5	Given in the methods section and we have also referred to the RODAM study methods paper
		2		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xl	ntml	

BMJ Open

Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	8-9	Please see methods
Statistical	12	(a) Describe all statistical methods, including those used to control for confounding	8-9	Please see methods
methods		(b) Describe any methods used to examine subgroups and interactions	8-9	Please see methods
		(c) Explain how missing data were addressed	8-9	
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	NA	We have reported non-response
		Case-control study—If applicable, explain how matching of cases and controls was addressed		across sites
		Cross-sectional study—If applicable, describe analytical methods taking account of sampling		
		strategy		
		(<u>e</u>) Describe any sensitivity analyses	NA	
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially eligible, examined	5	Non-response analysis was done to
		for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed		shed light on the differential response rates across sites
		(b) Give reasons for non-participation at each stage	5	response rates across sites
		(c) Consider use of a flow diagram	5	We have also referred to RODAM
				methods paper
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on	5	We have also referred to RODAM
		exposures and potential confounders		methods paper
		(b) Indicate number of participants with missing data for each variable of interest	5	We have also referred to RODAM
				methods paper
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	NA	
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	NA	
		Case-control study-Report numbers in each exposure category, or summary measures of exposure	NA	
		<i>Cross-sectional study</i> —Report numbers of outcome events or summary measures	9-10	Summary measures are given in the results section and in tables and figures
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision	12-16	Unadjusted and adjusted estimates
		(eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were		are given in the results section and
		included		in figures
		(b) Report category boundaries when continuous variables were categorized	12-16	We have provided mean and corresponding standard deviations for the continuous variables.
		3		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xł	tml	

		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time	NA	
Continued on next pa	ge			
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	NA	
Discussion				
Key results	18	Summarise key results with reference to study objectives	8	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	18	Key limitations regarding stud methods including differentia response rates and samplin methods in the various study site have been provided
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	17-18	Cautious overall interpretation o the key findings have been provided.
Generalisability	21	Discuss the generalisability (external validity) of the study results	17-18	
Other informati	on			
E	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the	19	The funders had no role in stud
Funding *Give informatio		original study on which the present article is based		decision to publish, or preparatio of the manuscript
*Give informatio Note: An Explan checklist is best u	on sep ation	original study on which the present article is based	in cohort and examples of t icine.org/, An	decision to publish, or preparatio of the manuscript cross-sectional studies. ransparent reporting. The STROBE nals of Internal Medicine at
*Give informatio Note: An Explan checklist is best u	on sep ation	original study on which the present article is based parately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups and Elaboration article discusses each checklist item and gives methodological background and published in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmed	in cohort and examples of t icine.org/, An	cross-sectional studies. ransparent reporting. The STROBE nals of Internal Medicine at
*Give informatio Note: An Explan checklist is best u	on sep ation	original study on which the present article is based parately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups and Elaboration article discusses each checklist item and gives methodological background and published in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmed	in cohort and examples of t icine.org/, An	decision to publish, or preparatio of the manuscript cross-sectional studies. ransparent reporting. The STROBE nals of Internal Medicine at
*Give informatio Note: An Explan checklist is best u	on sep ation	original study on which the present article is based parately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups and Elaboration article discusses each checklist item and gives methodological background and published in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmed	in cohort and examples of t icine.org/, An	decision to publish, or preparatio of the manuscript cross-sectional studies. ransparent reporting. The STROBE nals of Internal Medicine at
*Give informatio Note: An Explan checklist is best u	on sep ation	original study on which the present article is based parately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups and Elaboration article discusses each checklist item and gives methodological background and published in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmed	in cohort and examples of t icine.org/, An	decision to publish, or preparatio of the manuscript cross-sectional studies. ransparent reporting. The STROBE nals of Internal Medicine at