Supplementary Material

Table of Contents

Additional Table 1 PRISMA Checklist 2009	3
Additional Table 2A Search terms used in OVID	5
Additional Table 2B Search terms used in PubMed	6
Additional Table 3A Newcastle Ottawa study quality scoring system (cohort studies)	7
Additional Table 3B Newcastle Ottawa study quality scoring system (case-control studies)	8
Additional Table 3C Newcastle Ottawa study quality scoring system (cross-sectional studies)	9
Additional Table 4A Circulating 25(OH)D threshold levels used in the selected studies	10
Additional Table 4B Circulating 25(OH)D threshold levels used in the selected studies for prevalen in sepsis	
Additional Table 5 Studies with thresholds other than < 50 nmol/L	14
Additional Table 6 Excluded studies	15
Additional Table 7 Characteristics of the 52 included studies	16
Additional Table 8 Objectives and outcomes of included studies	22
Additional Table 9 Assay used in each study to measure Vitamin D levels	26
Additional Table 10 Funding and ethical approval of included studies	27
Additional Table 11 Age groups of children in each study	30
Additional Table 12 Prevalence of vitamin D deficiency in each study of acute and critically ill chil (sorted from highest to lowest)	
Additional Table 13 Characteristics of studies used in the meta-analysis of prevalence	33
Additional Table 14 Sensitivity analyses for prevalence of vitamin D deficiency in acute and critica ill children	•
Additional Table 15 Multivariate meta-regression model for prevalence	36
Additional Table 16 Characteristics of studies included in the meta-analysis for prevalence in individuals with sepsis	37
Additional Table 17 Sensitivity analyses for prevalence of vitamin D deficiency in acute and critica ill children with sepsis	•
Additional Table 18 Sensitivity analyses for mortality. Pooled odds ratios for risk of mortality in deficient versus not deficient children	39
Additional Figures	40

Additional Figure 1 Funnel plot of studies of prevalence of vitamin D deficiency in acute and criticall ill children.	
Additional Figure 2. Pooled prevalence estimate for vitamin D deficiency in acute and critically ill children (by country group).	41
Additional Figure 3. Pooled prevalence estimates for vitamin D deficiency in acute and critically ill children (neonates versus all other age groups).	42
Additional Figure 4 Bubble plots of univariate meta-regressions.	43
Additional Figure 5 Funnel plot for prevalence of vitamin D deficiency in acute and critically ill children with sepsis	44
Additional Figure 6 Pooled prevalence estimate for vitamin D deficiency in acute and critically ill children with sepsis (subgroup analysis by study design).	45
Additional Figure 7 Funnel plot of risk of mortality in vitamin D deficient versus vitamin D non- deficient acute and critically ill children	46
Additional Figure 8 Pooled odds ratio (OR) and 95% CI for risk of mortality in vitamin D deficient versus vitamin D non-deficient acute and critically ill children (fixed effects model)	47

Additional Table	1 PRIS	SMA Checklist 2009	
Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2-3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4-5
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	6-8
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	9
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5-7
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	6-7
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	6 and supplementary material
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6-7
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	7
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	7-8
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	8
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	8
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	8-10

Additional Table 1 PRISMA Checklist 2009

Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	8
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta- regression), if done, indicating which were pre-specified.	9-10 and 15
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	10
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	14-19 (supplementary material)
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	5-7 (supplementary material)
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	13,15,18 and supplementary material
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	13 and supplementary material pages 32-36
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	5-7 (supplementary material)
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	supplementary material pages 32-36
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	19-21
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	20-22
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	22
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	22

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097 For more information, visit: <u>www.prisma-statement.org</u>.

Additio	nal Table 2A Search terms used in OVID
1.	Vitamin D
2.	Sepsis or septic shock
3.	Vitamin D or cholecalciferol* or ergocalciferol or 25-hydroxyvitamin D or calcidiol or calcitriol
4.	Intensive care unit* or critical care
5.	Multiple organ dysfunction syndrome or multiple organ failure
6.	(1 and 2) or 5
7.	((1 or 3) and 2 or 4
8.	(1 or 3) and 2
9.	(1 or 3) and 4
10.	(1 or 3) and 5
11.	Sepsis
12.	multi* organ dysfunction syndrome or multiple organ failure
13.	multi* organ dysfunction syndrome or multi* organ failure
14.	(2 or 8) and 3
15.	critical* ill or acute condition* or intensive care unit
16.	child* or pediatric*
17.	vitamin D or cholecalciferol or ergocalciferol or 25-hydroxyvitamin D or calcidiol or calcitriol
18.	15 and 16 and 17
19.	Vitamin D blood levels or 25-hydroxyvitamin
20.	5 and 3 and 15 and 16
21.	2 and 15 and 16 and 17
22.	16 and 2
23.	16 and 2 and 3
24.	Pediatric*
25.	Pediatric* and 5 and 2
26.	24 and 3 and 15

Additi	onal Table 2B Search terms used in PubMed
Term s	earched
1.	Vitamin D.mp.
2.	(sepsis or septic shock).mp.
3.	(vitamin D or cholecalciferol* or ergocalciferol or 25-hydroxyvitamin D or calcidiol or calcitriol).mp.
4.	(intensive care unit* or critical care).mp.
5.	(multi* organ dysfunction syndrome or multiple organ failure).mp.
6.	(critical* ill or acute condition* or intensive care unit).mp.
7.	(toddler or infant or child* or neonate* or baby or teenager or pediatric* or paediatric*).mp.
8.	3 and 6 and 2 and 7

Study			Selection		Comparability		Outcome		
	Represent ativeness of the exposed cohort	Selection of the non-exposed cohort	Ascertainment of exposure	Demonstration that outcome of interest was not present at the start of the study	Comparability of cohorts on the basis of the design or analysis (maximum 2 stars)	Assessment of outcome	Was follow-up long enough for outcome to occur (\geq 28 days after admission to the ICU)	Adequacy of follow up of cohorts	Number of stars (out of 9 total)
Ebenezer 2016	1	1	1	1	0	1	0	1	6
Sankar 2016	1	1	1	1	2	1	0	1	8
Rippel 2012	1	1	1	1	1	1	1	1	8
Madden 2012	1	1	1	1	2	1	0	1	8
McNally 2012	1	1	1	0	1	1	1	1	7
Dayal 2014	1	1	1	1	0	1	0	1	6
Ayulo 2014	1	1	1	1	2	1	0	0	7
Bustos 2016	1	1	1	0	2	1	0	1	7
Prasad 2015	1	1	1	0	2	1	0	1	7
Onwuneme 2015 (2)	1	1	1	1	2	1	0	1	8
Inamo 2011	1	1	1	0	1	1	0	1	6
Shah 2016	1	1	1	1	0	1	0	1	6
Lopez 2016	1	1	1	1	2	1	0	1	8
Garcia-Soler 2017	1	1	1	1	2	1	0	0	7
Sankar 2017	1	1	1	1	2	1	0	1	8
Asilioglu 2017	1	1	1	1	1	1	0	1	7
Halwany 2017	1	1	1	1	1	1	0	0	6
Hurwitz 2017	1	1	1	0	1	1	0	1	6
Banajeh 2009	1	1	1	0	1	1	1	1	7
Badawi 2017	1	1	1	1	1	1	1	1	8
Rey 2014	1	1	1	1	2	0	0	1	7
Ponnarmeni 2016	1	0	1	1	1	1	0	1	6
Onwuneme 2015 (1)	1	1	1	1	1	1	0	1	8
El-Gamasy 2017	1	0	1	1	2	1	0	1	7
Dhandai 2018	1	1	1	1	1	1	0	1	7
Hebbar 2014	1	0	1	1	1	1	0	1	6
Korwutthikulrangsri 2015	1	1	1	1	2	1	0	0	7
Elmoneim 2016	1	1	1	1	0	1	0	1	7
Vo 2018	1	1	1	1	2	1	0	1	8
Mathias 2017	1	1	1	1	0	1	0	1	6
The Newcastle		Scale (NO clinical epidem		sessing the quali	ty of non-randomi	sed studies	in meta-analyses	s. Availab	le at:

Additional Table 3A Newcastle Ottawa study quality scoring system (cohort studies)

Study		SELE	CTION		COMPARABILITY	EXPOSURE			Number of stars (out of 9 total)
	Is the case definition adequate?	Representati veness of the cases	Selection controls	of Definition of controls	Comparability of cases and controls on the basis of the design or analysis (maximum 2 stars)	Ascertainment of exposure	Same method of ascertainment for cases and controls (yes or no or 0 star if no mention)	Non- response rate	
Wayse 2004	1	1	0	0	1	1	1	1	6
Karatekin 2009	1	1	0	0	1	1	1	1	6
Roth 2009	1	1	0	1	1	1	1	0	7
Roth 2010	1	1	1	1	2	1	1	0	8
Cetinkaya 2015	1	1	0	0	0	1	1	1	6
Cizmeci 2015	1	1	0	0	2	1	1	1	7
Narang 2016	1	1	0	0	1	1	1	1	6
Dinlen 2016	1	1	0	0	1	1	1	1	6
Ahmed 2015	1	1	0	1	2	1	1	1	8
Cayir 2014	1	1	0	0	2	1	1	1	7
Say 2017	1	1	0	0	2	1	1	0	6
Basha 2014	1	1	0	1	2	1	1	0	7
Jia 2017	1	1	0	1	1	1	1	1	7
Jat 2016	1	1	0	1	2	1	1	1	8
Moreno-Solis 2015	1	1	0	1	1	1	0	1	6
Sakka 2014	1	1	0	1	2	1	1	1	8
Khakshour 2015	1	1	0	0	1	1	1	0	5
Li 2018	1	1	1	1	2	1	1	0	8

Additional Table 3B Newcastle Ottawa study quality scoring system (case-control studies)

	S	SELECTION (M	aximum 5 stars)		COMPARABILITY (Maximum 2 stars)	OUTCOME (May	ximum 3 stars)	
Study	Representativene ss of the sample	Sample size	Non- respondents	Ascertainment of the exposure (risk factor)	Subjects in different outcome groups are comparable, based on the study design or analysis. Confounding factors are controlled.	Assessment of the outcome (max=2 stars)	Statistical test (max=1 star)	Number of stars (out of 10 total)
Yaghmaie 2017	1	0	0	0	1	1	1	4
Alvarez 2016	1	0	0	1	1	2	1	6
Alonso 2015	1	0	0	1	1	1	1	5
Binks 2014	1	0	0	1	1	2	1	6

The Newcastle-Ottawa Scale (NOS) for assessing the quality of non-randomised studies in meta-analyses. Available at: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.

Study	Number of cases	25(OH)D categories (as given)	Number of cases in category
Asilioglu 2017	250	Deficiency: <20 ng/mL	120
		Sufficiency: >=20 ng/mL	85
Halwany 2017	102	Deficiency: <20 ng/ml	38
		Insufficiency: 20-29.9 ng/ml	39
		"Normal" levels: 30 ng/ml	25
Hurwitz 2017	90	Deficiency: <20 ng/mL	11
Garcia-Soler 2017	340	Deficiency: <20 ng/mL	149
		Insufficiency: 20-30 ng/mL	128
		25(OH)D levels: 30-40 ng/mL	41
		Optimal levels >40 ng/mL	22
Badawi 2017	88	Deficiency: < 50nmol/l	39
		Severe deficiency: <30 nmol/l	30
Jia 2017	110	Severe deficiency: <10 ng/ml	36
		Deficiency: 10-20 ng/ml	56
		Insufficiency: 21-30 ng/ml	17
		Sufficiency: >30 ng/ml	1
Yaghmaie 2017	82	Deficiency: <30 ng/ml	53
-		Sufficiency: >=30 ng/ml	29
Say 2017	100	Severe deficiency (group 1) <5 ng/mL.	63
,		Insufficiency (group2): 5 to 15 ng/mL	24
		Sufficiency (group 3) \geq 15 ng/mL	13
El-Gamasy 2017	80	Serious deficiency: < 30 nmol/L	26
		Insufficiency: 30-75 nmol/L	20
		Adequate levels >75 nmol/L	27
Sankar 2017	43	Severe deficiency: serum 25 (OH) D <10 ng/mL	31
Shah 2016	154	25(OH)D < 20 ng/mL	128
2010	10.1	$\frac{25(OH)D}{250} = 20 \text{ ng/mL}$	26
Ponnarmeni 2016	124	Deficiency: < 50nmol/L	63
romanicin 2010	121	Insufficiency: 50-75 nmol/L	31
		<pre></pre>	94
		Sufficiency: >75 nmol/L	30
Sankar 2016	101	Deficiency: ≤20 ng/mL	75
Salikar 2016	101		62
		Severe deficiency: <15 ng/mL 'No deficiency': > 20 ng/mL	26
Bustos 2016	90	Deficiency: <20 ng/mL	39
Busios 2010	90	Normal levels: >20 ng/ml	51
Ebenezer 2016	52	Deficiency: < 20ng/mL	21
Ebenezer 2016	52	Insufficiency: 20–30 ng/ml	12
El	21	"Normal levels: $\geq 20 \text{ ng/L}$	31
Elmoneim 2016	21	Deficiency: < 20 ng/mL	17
		Insufficiency: 20-30 ng/mL	4
1.0016	50	Normal levels: > 30 ng/mL	9
Jat 2016	50	Deficiency: <20 ng/ml	42
		Insufficiency: 20-30 ng/ml	2
N. 0015		Sufficiency: >=30 ng/ml	1
Narang 2016	50	"Severe deficiency": <20ng/ml	28
Dinlen 2016	30	Deficiency: <=15 ng/mL	26
• • • • • •		Severe deficiency: <=5 ng/mL	3
Lopez 2016	347	25-OHD levels: <10 ng/mL	19
		25-OHD levels: 10-20 ng/mL	65
		25-OHD levels: 20-30 ng/mL	134
Alvarez 2016	50	25(OH) D levels: <20 ng/mL	29
		25(OH) D levels: 20-30 ng/mL	37
Onwuneme 2015 (1)	120	25(OH)D levels: <50nmol/L	71
		25(OH)D levels: ≥50nmol/L	49
Onwuneme 2015 (2)	94	25(OH)D levels: <20 ng/mL	86
		25(OH)D levels: < 30 nmol/L	60
		25(OH)D levels: >=30 nmol/L	34
Prasad 2015	80	Deficiency: < 20 ng/ml	67
		Sufficiency: $\geq 20 \text{ ng/mL}$	13
Moreno-Solis 2015	48	Deficiency: <20 ng/ml	9
	~	Insufficiency: 21–29 ng/ml	16
		Sufficiency: ≥30 ng/ml	23

Alonso 2015	288	Deficiency: <20 ng/ml <10 ng/ml	<u>45</u> 6
Korwutthikulrangsri 2015	32	Deficiency: < 20 ng/ml	25
Korwatankanangsir 2015	52	Insufficiency: 20-29.9 ng/ml	7
		Sufficiency: \geq 30 ng/mL	0
Khakshour 2015	37	Deficiency: <20 ng/mL	9
Cizmeci 2015	40	Deficiency: ≤20 ng/ml	28
		Insufficiency: 21–29 ng/ml	7
		Normal levels: ≥30 ng/ml	5
Cetinkaya 2015	50	Severe deficiency: $<10 \text{ ng ml}^{-1}$	42
5		Insufficiency: 11 to 32 ng ml ⁻¹	8
Ayulo 2014	216	Deficient: < 15 ng/ml	61
-		Insufficient: 15-29 ng/mL	102
		Sufficient: $\geq 30 \text{ ng/mL}$	53
Dayal 2014	92	Deficiency: < 50 nmol/L	23
		Insufficiency: 50–75 nmol/L	41
		Sufficiency: >75 nmol/L	28
		25(OH) D levels: < 75 nmol/L	64
		'Non-deficiency': > 50 nmol/L	69
Hebbar 2014	61	Deficiency: $\leq 10 \text{ ng/mL}$	10
		Insufficiency: 10 to 20 ng/mL	27
		Sufficiency: $\geq 20 \text{ ng/mL}$	24
Rey 2014	156	Deficiency: < 20 ng/mL	46
		$25(OH)D$ levels: ≥ 20 ng/mL	110
Ahmed 2014	50	Deficiency: <50 nmol/L	15
Basha 2014	81	Deficiency: <50 nmol/L	53
		Insufficiency: <75 nmol/L	14
		Normal level: >75 nmol/L	14
Sakka 2014	96	Severe deficiency: 0–5 ng/mL	29
		Deficiency: 5–15 ng/mL	49
		Insufficiency: 15-20 ng/mL	11
		Sufficiency: 20-100 ng/mL	7
Cayir 2014	88	Normal levels: 20 ng/mL	38
		Insufficiency: 15-20ng/mL	18
		Deficiency: <15ng/mL	32
Binks 2014	74	25(OH) D levels: < 50 nmol/L	11
Madden 2012	511	25(OH) D levels: < 10 ng/mL	36
		25(OH) D levels: 10-19.9 ng/mL	169
		Deficiency: < 20 ng/ml	205
		Insufficiency: <30 ng/mL	364
Rippel 2012	316	Deficiency: < 50 nmol/L	109
		'Normal levels': ≥50 nmol/L	207
Madden 2012	511	25(OH)D levels: < 10 ng/mL	36
		25(OH)D levels: 10-19.9 ng/mL	169
		Deficiency: < 20 ng/mL	205
		Insufficiency: <30 ng/mL	364
McNally 2012	326	Deficiency: < 50 nmol/L	225
· · · · · · · · · · · · · · · · · · ·		25(OH)D levels: 50 to 75 nmol/L	75
		'Not deficient': > 50 nmol/L	101
Inamo 2011	28	25(OH)D levels: < 10 ng/mL	4
		25(OH)D levels: < 15 ng/mL	8
		25(OH)D levels: < 25 ng/mL	12
		25(OH)D levels: < 40 ng/mL	28
Roth 2010	25	25(OH)D levels: <40 nmol/L	21
Banajeh 2009	79	Deficiency: <30 nmol/L	29
Karatekin 2009	25	Serum 25(OH)D <10 (deficiency)	19
		Serum 25(OH)D 11 to 20 (deficiency)	4
		Serum 25(OH)D 21 to 32 (insufficiency)	1
		Serum 25(OH)D 32 to 100 (sufficiency)	1
Roth 2009	64	< 40 nmol/L	3
Wayse 2004	80	Plasma 25(OH)D3 > 22.5 nmol/L	26
		Plasma 25(OH)D3 > 50 nmol/L	4
Mathias 2017	41	25(OH)D < 20 ng/ml	28

		25(OH)D < 30 ng/ml	36
Dhandai 2018	60	Deficiency: < 20 ng/ml	38
		Insufficiency: <29 ng/ml	17
		Optimum: 30-50 ng/ml	5
Vo 2018	1016	25(OH)D < 20 ng/ml	298
	Γ	20-29.9 ng/ml	352
	Γ	>=30 ng/ml	366
Li 2018	797	Severe deficiency: < 10 ng/mL	159
		Deficiency: 10-20 ng/mL	286
		Insufficiency: 20– 30 ng/mL	223
		Sufficiency: $> 30 \text{ ng/mL}$	127

Study	Number of cases	25(OH)D categories (as provided by each study)	Number of cases
Asilioglu 2017	30	Deficiency: <20 ng/mL	20
	sepsis	Sufficiency: >=20 ng/mL	10
ay 2017	100	Severe deficiency (group 1) <5 ng/mL.	63
	neonatal sepsis	Insufficiency (group2): 5 to 15 ng/mL	24
		Sufficiency (group 3) ≥15 ng/mL	13
El-Gamasy 2017	46	Serious deficiency: < 30 nmol/L	20
	sepsis	Insufficiency: 30-75 nmol/L	18
		Adequate levels >75 nmol/L	8
ankar 2017	43	Severe deficiency: serum 25 (OH) D <10 ng/mL	31
hah 2016	septic shock 100	25(OH)D <20 ng/mL	84
Shall 2010	sepsis	25(OH)D < 20 ng/mL 25(OH)D >= 20 ng/mL	26
Ponnarmeni 2016	124	Deficiency: <50nmol/L	63
omarmeni 2010		-	05
	sepsis	Insufficiency: 50-75 nmol/L	31
		<75, insufficient + deficient	94
		Sufficiency: >75 nmol/L	30
Bustos 2016	10	Deficiency: < 20 ng/ml	7
	sepsis intraabdominal	Normal levels: $> 20 \text{ ng/mL}$	3
benezer 2016	16	25(OH)D <20 ng/mL	8
	shock	25(OH)D >=20 ng/mL	8
onwuneme 2015 (1)	35	25(OH)D <50 ng/mL	32
	culture positive sepsis	25(OH)D >= 50 ng/mL	3
nwuneme 2015 (2)	46	Deficiency: < 30 nmol/L	32
	culture positive sepsis and late-onset sepsis	Sufficiency: ≥ 30 nmol/L	14
Prasad 2015	11	25(OH)D <20 ng/mL	9
	positive blood culture	25(OH)D >= 20 ng/mL	2
Korwutthikulrangsri 2015	17	25(OH)D <20 ng/mL	14
C	shock and septicaemia	25(OH)D >= 20 ng/mL	3
Cizmez 2015	40	Deficiency: ≤20 ng/ml	28
	suspected sepsis	Insufficiency: 21–29 ng/ml	7
		Normal levels: ≥30 ng/ml	5
Dayal 2014	9	25(OH)D <20 ng/mL	4
	nosocomial sepsis	25(OH)D >= 20 ng/mL	5
Hebbar 2014	30	25(OH)D <20 ng/mL	17
	shock and/or Sepsis	25(OH)D >= 20 ng/mL	13
IcNally2012	48	25(OH) D levels: <50 nmol/L	33
icinally2012	48 septic	25(OH) D levels: <50 hmol/L $25(OH)$ D levels: ≥ 50 nmol/L	
Iathias 2017	41	25(OH)D levels: ≥50 nmol/L 25(OH)D < 20 ng/ml	28
1aunas 2017	sepsis, severe sepsis or	25(OH)D < 20 hg/ml 25(OH)D < 30 ng/ml	<u> </u>
	septic shock	23(On)D < 30 lig/lill	50
Dhandai 2018	60	Deficiency: < 20 ng/ml	38
	sepsis	Insufficiency: <29 ng/ml	17
		Optimum: 30-50 ng/ml	5

Additional Table 5 Studies with thresholds other than < 50 nmol/L				
Study	Threshold used by study			
Roth 2009	< 40 nmol/L			
Roth 2010	< 40 nmol/L			
Say 2017	<=15 ng/mL (37.4 nmol/L)			
Inamo 2011	<=15 ng/mL (37.4 nmol/L)			
Ayulo 2014	<=15 ng/mL (37.4 nmol/L)			
Dinlen 2016	<=15 ng/mL (37.4 nmol/L)			
Onwuneme 2015 (2)	< 30 nmol/L			
Yaghmaie 2017	< 30 ng/mL (74.88 nmol/L)			
El-Gamasy 2017	< 30 nmol/L			
Banajeh 2009	< 30 nmol/L			
Sankar 2017	<= 10 ng/mL (24.9 nmol/L)			
Cetinkaya 2015	<= 10 ng/mL (24.9 nmol/L)			
25(OH) D values nmol/L =	25(OH) D values nmol/L = ng/mL * 2.496			

Additional Tal	Additional Table 6 Excluded studies							
Study	Design	Sample size	Characteristics of pediatric population	Country	Reasons for exclusion of paper			
Seliem 2016	Hospital-based case-control	Cases, n= 30 Controls, n= 30	Cases: group 1, full-term neonates with EOS and their mothers. Controls, group 2: 30 full-term healthy neonates and their mothers with no clinical or laboratory evidence of sepsis.	Egypt	Requested data without reply or data not available			
Gamal 2017	Case-control	Cases, n= 50 Control, n= 30	Cases: neonates with early onset neonatal sepsis that occurred at <72 hours Controls: Age and sex healthy neonates with no prenatal risk factor for early neonatal sepsis enrolled in the study as a control group.	Egypt	Requested data without reply or data not available			
Aydemir 2014	Hospital-based case control	Cases, n=40 Controls, n= 20	Cases: children with sepsis between 1 and 16 years old Controls: children without sepsis	Turkey	Requested data without reply or data not available			
Garg 2016	Hospital-based case-control	Cases, n= 40 Controls, n= 40	Cases: children from 6 months to 5 years of age admitted or attending OPD in department of Pediatrics. Controls: children receiving care at the Hospital's ambulatory, emergency or in-patient units and presenting with non-respiratory complaints also not having any clinical indication of vitamin D deficiency.	India	Requested data without reply or data not available			

Study	Design	Number of cases (controls, where appropriate)	Characteristics of population	Country and setting	Vitamin D thresholds as defined by the study	Quality score (NOS)
Asilioglu 2017	Historical cohort (single centre)	250	Cases: aged 1 month to ≤ 18 years	Turkey, PICU	Deficiency: <20 ng/mL	7
Halwany 2017	Cohort (single centre)	102	Cases: children aged >1 month to ≤ 5 years	Egypt, PICU	Deficiency: <20 ng/ml Insufficiency: 20-29.9 ng/ml "Normal" levels: 30 ng/ml	6
Hurwitz 2017	Prospective cohort (single centre)	90	Cases: aged <5 years hospitalized with LRTI and RSV and/or hMPV	USA, PICU	Deficiency: <20 ng/mL	6
Garcia-Soler 2017	Cohort (single centre)	340	Cases: aged 6 months to 17 years Critically ill with various conditions	Spain, PICU	Deficient: <20 ng/mL Insufficiency: 20-30 ng/mL 25(OH)D levels: 30-40 ng/mL Optimal levels >40 ng/mL	7
Badawi 2017	Cohort (single centre)	88	Cases: 1 month to 12 years	Egypt, PICU	Deficiency: < 50nmol/l, Severe deficiency: <30 nmol/l	8
Jia 2017	Hospital- based case- control (single centre)	110 (110)	Cases: infants (< 1 year of age) with ALRTI Controls: Healthy from similar areas attending the hospital for vaccination during study period	China, PICU	Severe deficiency: <10 ng/ml Deficiency: 10-20 ng/ml Insufficiency: 21-30 ng/ml Sufficiency: >30 ng/ml	7
Yaghmaie 2017	Cross sectional (single centre)	82	Cases: hospitalized in PICU	Iran, PICU	Deficiency: <30 ng/ml	4
Say 2017	Case- control (single centre)	100 (13)	Cases: premature infants less than 37 weeks diagnosed with early or late -onset neonatal sepsis Controls: From same population of neonates with sepsis but not vitamin D deficient	Turkey, NICU	Severe deficiency (group 1) <5 ng/mL. Insufficiency (group2): 5 to 15 ng/mL Sufficiency (group 3) ≥15 ng/mL	6

El-Gamasy 2017	Cohort (single centre)	80 (20)	Cases: 3 months to 12 years hospitalized with acute kidney injury Controls: completely healthy subjects	Egypt, PICU	Seriously deficient: < 30 nmol/L Insufficient: 30-75 nmol/L Adequate >75 nmol/L	7
Sankar 2017	Cohort (single centre)	43	Cases: <=17 years of age	India, PICU	Severe vitamin D deficiency: serum 25 (OH) D <10 ng/mL	8
Shah 2016	Cohort (single centre)	154	Cases: aged between 1 month and 15 years	India, PICU	Deficiency: <20 µg/mL	6
Ponnarmeni 2016	Cohort (single centre)	124 (338)	Cases: aged 1–12 years admitted with a diagnosis of sepsis Controls: from previous prospective study, apparently healthy children of upper socioeconomic status who attended the out-patient department for immunization or with minor ailments	India, PICU	Deficiency: < 50 nmol/L Insufficiency: 50-75 nmol/L Sufficiency: > 75 nmol/L	6
Sankar 2016	Cohort (single centre)	101	Cases: aged 1 month to 17 years	India, PICU	Deficiency: ≤20 ng/ml Severe deficiency: <15 ng/mL	8
Bustos 2016	Cohort (single centre)	90	Cases: critically ill, greater than 37 weeks and less than 15 years of age	Chile, PICU	Deficiency: < 20 ng/ml Normal levels: > 20 ng/mL	7
Ebenezer 2016	Cohort (single centre)	52	Cases: <18 years of age; medical and surgical diagnoses	India, PICU	Deficiency: < 20 ng/ml Insufficiency: 20–30 ng/ml Normal levels: ≥ 20 ng/L	6
Elmoneim 2016	Cohort (single centre)	30	Cases: aged less than 14 years Controls: with "normal" vitamin D levels	Saudi Arabia, PICU	Deficiency: < 20ng/ml Insufficiency: 20-30 ng/mL Normal: > 30 ng/mL	7
Jat 2016	Hospital- based case- control (single centre)	50 (50)	Cases: 1 month to 12 years of age admitted with pneumonia Controls: admitted for reasons other than respiratory symptoms, required blood sampling	India, PICU	Deficiency: < 20 ng/ml Insufficiency: 20-30 ng/ml Sufficiency: >= 30 ng/ml	8
Narang 2016	Hospital- based case- control (single centre)	50 (50)	Cases: 2 months to 5 years of age admitted as in-patients or seen in the outpatient department with ALRI Controls: healthy, same age group, attending outpatients' service for immunization or admitted for minor conditions other than ALRI	India, PICU	Severe deficiency: < 20ng/ml	6

Dinlen 2016	Hospital- based case- control (single centre)	30 (30)	Cases: term neonates with ALRI Controls: healthy neonates, same age as the study group.	Turkey, NICU	Deficient: <= 15 ng/mL Severe deficiency: <= 5 ng/mL	6
Lopez 2016	Prospective cohort (multi centre)	347	Cases: 0 to >48 months admitted to hospital with ALRI prospectively recruited through the GENDRES (GENetic,vitamin D and RESpiratory infections research network)	Spain, PICU	25-OHD levels: <10 ng/mL 25-OHD levels: 10-20 ng/mL 25-OHD levels: 20-30 ng/mL	8
Alvarez 2016	Cross- sectional (single centre)	50	Cases: patients aged 0 to 18 years	USA, PICU	25(OH)D < 20 ng/mL 25(OH)D < 30 ng/mL	6
Onwuneme 2015 (1)	Cohort (single centre)	120 (30)	Cases: with suspected sepsis (<12 years old) Controls: paediatric controls admitted for elective day case surgery during the same study period and were not suspected of having sepsis	Ireland , PICU	25(OH) D levels: <50 nmol/L 25(OH) D levels: ≥50 nmol/L	8
Onwuneme 2015 (2)	Cohort (single centre)	94	Cases: preterm infants <32 weeks gestation	Ireland, NICU	Deficiency: < 30 nmol/L Sufficiency: ≥ 30 nmol/L	8
Prasad 2015	Cohort (single centre)	80	Cases: 2 months to 12 years old	India, PICU	Deficiency: < 20 ng/ml Sufficient: ≥ 20 ng/mL	7
Moreno-Solis 2015	Hospital- based case- control (single centre)	48 (30)	Cases: aged 1–11 months with acute bronchiolitis Controls: healthy, <12 months, admitted to the outpatient clinic without respiratory symptoms or history of hospitalization for bronchiolitis or wheezing	Spain, PICU	Deficiency: < 20 ng/ml Insufficiency: 21–29 ng/ml Sufficiency: ≥ 30 ng/ml	6
Alonso 2015	Cross sectional (single centre)	288	Cases: aged 1 month to 13 years	Spain, PICU	Deficient: < 20 ng/ml and < 10 ng/ml	5
Korwutthikulrangsri 2015	Cohort (single centre)	32 (36)	Cases: requiring PICU admission Controls: Healthy, enrolled during the same period of time and served as the control group (age in months)	Thailand, PICU	Deficiency: < 20 ng/mLl Insufficiency: 20-29.9 ng/ml Sufficiency: ≥ 30 ng/mL	7
Khakshour 2015	Case- control	37 (53)	Cases: below 5 years of age and suffering from respiratory infections Controls: those who were not suffering from respiratory infections	Iran, PICU	Deficiency: < 20 ng/mL	5

Cizmeci 2015	Case- control (single centre)	40 (43)	Cases: infants with suspected early-onset neonatal sepsis. Controls: For each newborn of group 1, one healthy infant selected as a control	Turkey, NICU	Deficiency: ≤ 20 ng/ml Insufficiency: 21–29 ng/ml Normal levels: ≥ 30 ng/ml	7
Cetinkaya 2015	Hospital- based case- control (single centre)	50 (50)	Cases: term infants with clinically suspected (probable) early infection (early-onset sepsis) within the first 3 postnatal days of life and were >37 weeks of gestational age Controls: healthy infants with no signs of clinical/laboratory infection	Turkey, NICU	Severe deficiency: <10 ng ml ⁻¹ Insufficiency: 11 to 32 ng ml ⁻¹ Adequacy: 32 to 100 ng ml ⁻¹	6
Ayulo 2014	Cohort (single centre)	216	Cases: between the ages of 1 and 21 years	Spain, PICU	Deficient: < 15 ng/ml Insufficient: 15-29 ng/mL Sufficient: ≥ 30 ng/mL	7
Dayal 2014	Cohort (single centre)	92	Cases: Children aged 3 months to 12 years	India, PICU	Deficiency: < 50 nmol/L Insufficiency: 50–75 nmol/L Sufficiency: > 75 nmol/L 25(OH) D levels: < 75 nmol/L	6
Hebbar 2014	Cohort (single centre)	61 (46)	Cases: children 0 to 18 years Controls: patients recruited among children in the magnetic resonance imaging suite.	USA, PICU	Deficient: $\leq 10 \text{ ng/ml}$ Insufficient: 10 to 20 ng/ml Sufficient: $\geq 20 \text{ ng/mL}$	6
Rey 2014	Cohort (single centre)	156 (289)	Cases: heterogeneous group of critically ill children aged <16 years Control group for comparison: population of healthy children	Spain, PICU	Deficient: < 20 ng/ml	7
Ahmed 2014	Hospital- based case- control (single centre)	50 (50)	Cases: aged 2–60 months hospitalized with ALRI Controls: age-matched with cases within 1 or 2 months, attending well-child clinics or general clinics without evidence of respiratory infection or admitted to the hospital for elective surgery	Africa, PICU	Deficiency: <50 nmol/L	8
Basha 2014	Hospital- based case- control (single centre)	81 (89)	Cases: under 5 years old with severe pneumonia selected from the inpatient departments and emergency units of the hospital Controls: healthy, selected from the outpatient surgical clinics of the hospital during their visit for umbilical or inguinal hernia repair and not suffering	Egypt, PICU	Deficiency: < 50 nmol/L Insufficiency: < 75 nmol/L Sufficiency: > 75 nmol/L	7

			from upper or lower respiratory infections			
Sakka 2014	Population based case- control (single centre)	96 (96)	Cases: <2 years old with ALRI, 48 diagnosed with pneumonia and 48 with bronchiolitis Controls: age and sex matched with no respiratory symptoms or signs from the Health office	Egypt, PICU	Severe deficiency: 0–5 ng/mL Deficiency: 5– 15 ng/mL Insufficiency: 15– 20 ng/mL Sufficiency: 20–100 ng/mL	8
Cayir 2014	Hospital- based case- control (single centre)	88 (81)	Cases: 1 to 13 years diagnosed with acute otitis media Controls: Healthy same age range	Turkey, PICU	Normal levels: 20 ng/mL Insufficiency: 15- 20ng/mL Deficiency: <15ng/mL	7
Binks 2014	Cross- sectional	74	Cases: aged <3 years admitted with acute lower respiratory infections (ALRIs) or other conditions	Australia, PICU	25(OH) D levels: < 50 nmol/L	6
Madden 2012	Cohort (single centre)	511	Cases: less than 21 years old	USA, PICU	25(OH) D levels: < 10 ng/mL 25(OH) D levels: 10- 19.9 ng/mL Deficiency: < 20 ng/ml Insufficiency: < 30 ng/mL	8
Rippel 2012	Cohort (single centre)	316	Cases: children aged 16.5 (3.1–75.2) months	Australia, PICU	Deficiency: < 50 nmol/L "Normal" levels: ≥ 50 nmol/L	8
McNally 2012	Cohort (multi- centre)	326	Cases: Newborn to 17 years of age	Canada, PICUs	Deficiency: < 50 nmol/L 25(OH) D levels: 50 to 75 nmol/L	7
Inamo 2011	Cohort (single centre)	28	Cases: between 1 and 48 months hospitalized with ALRI, 26 diagnosed with bronchiolitis and two as having pneumonia	Japan, PICU	Deficiency: ≤ 15ng/ml Severe deficiency: ≤ 5ng/mL	6
Roth 2010	Hospital- based case- control (single centre)	25 (25)	Cases: 1–18 months hospitalized with ALRI Controls: selected by population-based sampling. aged 1–23 months, and matched to cases on age (±2 months) and sex	Bangladesh, PICU	Deficiency: < 40 nmol/L	8
Banajeh 2009	Prospective cohort (single centre)	79	Cases: 2–59 months with WHO-defined very severe community acquired (VSP) pneumonia	Iran, PICU	Deficiency: < 30 nmol/L	7
Karatekin 2009	Hospital- based case-	25 (15)	Cases: newborns with acute respiratory infections	Turkey, NICU	Deficiency: < 20 ng/ml	6

	control, (single centre)		Controls: healthy, age matched from outpatients' service where they went for immunization.			
Roth 2009	Hospital- based case- control (single centre)	64 (65)	Cases: aged 1-25 months admitted with ALRI Controls: aged 1-25 months undergoing elective surgery, no history of hospitalization for ALRI	Canada, PICU	Deficiency: < 40 nmol/L	7
Wayse 2004	Hospital- based case- control, (single centre)	80 (70)	Cases: < 5 years with severe ALRI Controls: healthy, attending outpatients service for immunization	India, PICU	Deficiency: Plasma 25(OH)D3 < 50 nmol/L	6
Mathias 2017	Prospective cohort (single centre)	41	Cases: less than 18 years admitted with diagnosis of sepsis, severe sepsis or septic shock.	USA, PICU	25(OH)D levels < 20 ng/ml 25(OH)D levels <30 ng/ml	6
Dhandai 2018	Cohort (multi- centre)	60 (60)	Cases: neonates admitted with late-onset sepsis (LOS) Controls: neonates admitted during same period with clinically significant physiological hyperbilirubinaemia (without sepsis)	India, NICU	Deficiency: < 20 ng/ml Insufficiency: <29 ng/ml Optimum: 30-50 ng/ml	7
Vo 2018	Prospective cohort (multi- centre)	1016	Cases: Infants less than twelve months old hospitalized for bronchiolitis	USA, PICU	25(OH)D < 20 ng/ml 25(OH)D: 20-29.9 ng/ml 25(OH)D >= 30 ng/ml	8
Li 2018	Case- control (single- centre)	797 (785)	Cases: children with pneumonia or pneumonia-induced sepsis group	China, PICU	Severe deficiency: < 10 ng/mL Deficiency: 10–20 ng/mL Insufficiency: 20– 30 ng/mL Sufficiency: > 30 ng/mL	8

LRTI = lower respiratory tract infection; PICU = paediatric intensive care unit; RSV = respiratory syncytial virus; ALRI = acute lower respiratory infection; WHO = World Health Organization; VSP = very severe community acquired pneumonia; NICU = neonatal intensive care unit.

Study	Objectives/aims of study	Main outcome(s) and conclusion(s)
Madden 2012	Prevalence of vitamin D deficiency in critically ill children and factors influencing admission 25-hydroxyvitamin D (25(OH)D) levels	Identified high prevalence of vitamin D deficiency and insufficiency in critically ill children. Inverse association severity of illness on admission and 25(OH) levels
Lopez 2016	Role of Vitamin D in Children hospitalized with Lower Tract Acute Respiratory Infections	25-hydroxyvitamin D levels of study population below normal range. Correlation of higher disease severity with lower levels of 25-hydroxyvitamin D.
Garcia-Soler 2017	Prevalence and risks factors of vitamin D deficiency, as well as its relationship with length of PICU stay morbidity and mortality in a PICU.	Vitamin D deficiency is frequent in paediatric critical patients. It also has an association with higher severity scores, season of year and parental educational attainment. Vitamin D levels associated with various laboratory parameters of SIRS. Vitamin D deficiency associated with increased risk of morbidity and mortality. Inconclusive findings on its association with PICU length of stay were inconclusive
McNally 2012	Prevalence of vitamin D deficiency, risk factors and potential association with clinically relevant outcomes in critically ill children in Canada.	Most of critically ill children vitamin D deficient at PICU admission. Lower 25(OH) D levels associated with increased catecholamine requirements, fluid bolus administration, hypocalcemia, and longer PICU admission.
Rippel 2012	Prevalence of hypovitaminosis D and association with outcome in critically ill children requiring admitted in intensive care.	Hypovitaminosis D is frequent in critically ill children in PICU, especially in infants and children with heart disease. Hypovitaminosis D associated with hypocalcemia in non-cardiac population, and increased need for calcium replacement in the cardiac population. No association between vitamin D status and survival or PICU length of stay. Strong association with early postoperative inotropic needs in the cardiac population.
Alonso 2015	Investigate relationship of serum 25-hydroxyvitamin D concentrations with serum parathyroid hormone (PTH) levels, body mass index (BMI), and environmental factors in a population of Caucasian children living at latitude 43°N.	Results doubt the assumption that a serum 25OH D threshold indicates vitamin D deficiency in children.
Asilioglu 2017	Measure occurrence of VDD in critically ill children. Assess determinants of vitamin D status and compare vitamin D deficient and sufficient cases in respect of severity of illness.	Hypovitaminosis D occurrence high in critically ill children and associated with higher vasopressor requirement. Not associated with other markers of illness severity including mortality.
Ayulo 2014	Prevalence of vitamin D deficiency among children in PICU	Vitamin D deficiency common. No significant correlation between disease severity and vitamin D levels levels of vitamin D. Mortality associated with vitamin D levels
Rey 2014	Identify prevalence of 25 hydroxivitamin D or 25(OH) vitamin D deficiency on pediatric intensive care unit (PICU) admission, and if associated with increased prediction of mortality risk scores.	Hypovitaminosis D incidence high in PICU patients. Hypovitaminosis D not associated with higher prediction of risk mortality scores.
Shah 2016	Determine prevalence of vitamin D deficiency in critically ill children its association with illness severity, parathyroid response and clinical outcomes.	High prevalence of vitamin D deficiency. Parathyroid gland response secondary vitamin D deficiency or hypocalcemia impaired in critically ill.
Ponnarmeni 2016	Vitamin D deficiency in critically ill children with sepsis admitted to PICU and its association with: mortality, length of stay, illness severity, requirement for ventilation and catecholamines	High prevalence of vitamin D deficiency No significant association between vitamin D deficiency and other outcomes such as mortality
Onwuneme 2015 (1)	Assess vitamin D status, and its determinants, in chidren with suspected sepsis admitted to PICU. Also investigated association between vitamin D status and clinical outcomes.	Children admitted to the PICU with suspected sepsis lower 25OH D compared to controls. Inadequate 25 OH D levels associated with confirmed sepsis and poor outcomes.
Jia 2017	Association of vitamin D with ALRTI in Chinese infants	Lowered plasma level of 25-OH Vitamin D makes children susceptible to ALRTI.
Halwany 2017	Frequency of vitamin D deficiency in critically ill pediatric intensive care unit [PICU] patients and relation to state of serum 25(OH) D to disease severity.	High prevalence of vitamin D deficiency in critically ill children. Negative correlation of Vitamin D level with PELOD score. Recommend screening of critically ill children for vitamin D deficiency to restore their serum levels.

Additional Table 8 Objectives and outcomes of included studies

Sankar 2016	Prevalence of vitamin D deficiency on admission and examine association with length of ICU stay	High prevalence of vitamin D deficiency. Vitamin D deficient children with longer ICU stay duration or mortality
Say 2017	Evaluate effects of low vitamin D levels in cord blood on neonatal	No significant relationship between the cord blood vitamin D levels and the risk
Say 2017	sepsis in preterm infants.	of neonatal sepsis in premature infants.
Sakka 2014	Determine the relation between vitamin D deficiency, anemia and	Vitamin D deficiency, low BMI, low hemoglobin level, rachitic signs were risk
	the severity of ALRTIS in hospitalized children.	factors for the severity of ALRTIS.
Onwuneme2015 (2)	Investigate the association between serum 25-hydroxyvitamin D (250HD) levels and outcomes in preterm infants (<32 weeks gestation).	High prevalence of low 25OHD. Association between vitamin D status and acute respiratory morbidity in preterm infants after birth. In none of the following outcomes was the difference statistically significant: surfactant use, inotrope requirement, RDS, pneumothorax, pulmonary hemorrhage, chronic lung disease, sepsis, retinopathy of prematurity, intraventricular hemorrhage, periventricular leucomalacia, patent ductus arteriosus, and mortality
Dayal 2014	Prevalence of vitamin D deficiency	Reduced serum vitamin D levels in children
	Association of serum vitamin D levels with duration of stay in	
Bustos 2016	hospital, mortality and requirement of ventilation	
Bustos 2016	Determine prevalence of vitamin D deficiency and its association with other clinically relevant outcomes in children admitted to Paediatric Intensive Care Unit	Vitamin D deficiency was prevalent in critically ill children and associated with adverse clinical outcomes.
Hurwitz 2017	Measure retinol binding protein and vitamin D in children aged <5 years hospitalized with lower respiratory tract infection and respiratory syncytial virus and/or human meta pneumovirus detections	Low vitamin levels in 50% of the children and associated with significantly elevated risk of the need for intensive care unit admission and invasive mechanical ventilation.
Cayir 2014	Investigate the relationship between Vitamin D deficiency and acute otitis media infection	Serum 25-hydroxy vitamin D levels significantly lower in children with acute otitis media compared to the controls. Vitamin D deficiency plays a role in otitis media infection.
Badawi 2017	Investigated if VDD is related to higher severity scores and organ dysfunction. Primary objective of study was to estimate the prevalence of VDD in a group of critically ill children, and secondary objectives was to correlate vitamin D status with pediatric logistic organ dysfunction (PELOD) and pediatric risk ofmortality III (PRISM III) scores.	VDD prevalence was reported in about half of the critically ill patients, and it was observed to be related to multiple organ dysfunctions and rapid clinical deterioration.
Yaghmaie 2017	Investigate relation of vitamin D deficiency with potential demographic and clinical factors.	Vitamin D deficiency among paediatric intensive care unit patients similar to western countries, also with similar age and BMI distribution. Significant relation observed between age and serum level of vitamin D.
Basha 2014	Aimed to evaluate vitamin D status as a risk factor for severe pneumonia in Egyptian hospitalized children under 5 years	Significant association between vitamin D deficiency and severe pneumonia in Egyptian children below 5 years
Prasad 2015	Prevalence of vitamin D deficiency in critically ill children and association with illness severity& other outcomes	High prevalence of vitamin D deficiency in critically ill children and association with PRISM III scores in a developing country. Groups did not differ in terms of PICU stay, duration of hospital stay, culture positivity, biochemical parameters (serum calcium, serum phosphate), need of ventilation or steroids, presence of coagulopathy and mortality.
Wayse 2004	If vitamin D deficiency in Indian children under 5 years old of age is risk factor for severe acute lower respiratory infection (ALRI).	Subclinical vitamin D deficiency & nonexclusive breastfeeding in four first months of life found to be significant risk factors for severe ALRI in Indian children.
El-Gamasy 2017	Assess serum 25 (OH)D level in critically ill paediatric patients with AKI at PED of Tanta University Emergency Hospital (TUEH) within the first 24 hours of admission and evaluate its correlation with duration of hospital stay and mortality outcome.	Vitamin D deficiency associated with higher incidence of sepsis and mortality.

Banajeh 2009	Determine if rickets and VDD predict the outcomes in very severe pneumonia (VSP).	In WHO-defined VSP, nutritional rickets was strongly associated with a reduced successful treatment outcome, and VDD was a significant and independent predictor of reduced circulating PMNs and persistent hypoxemia.
Binks 2014	Aimed to determine prevalence of vitamin D insufficiency among children hospitalised with ALRI in the Northern Territory.	Vitamin D insufficiency was observed in about one-third of these hospitalised children. Children hospitalised with an ALRI less likely to have vitamin D insufficiency compared with children hospitalised for other conditions (predominantly gastroenteritis).
Roth 2009	Test the hypothesis that vitamin D status is associated with the risk of ALRI in Canadian children (1 month to 2 years old)	Among children aged 1 month to 2 years, vitamin D status not associated with ALRI requiring hospitalization
Hebbar 2014	Prevalence of vitamin D insufficiency and relationship between vitamin D levels infection and innate immunity	High prevalence of vitamin D deficiency Serum vitamin D levels - no correlation with illness severity score
Ebenezer 2016	Determine vitamin D status and association with outcomes	Vitamin D deficiency common among pediatric patients No association between vitamin D status and admission and mortality such as higher mortality and/or longer PICU stay Deficiency associated with mechanical ventilation severity of illness, vasopressor need
Narang 2016	Identify an effective nutritional agent that reduces the need for antibiotics, duration of pneumonia and length of hospitalization would be highly cost-beneficial.	Severe vitamin D deficiency (<20 ng/ml), nonexclusive breastfeeding in the first six months of life, inadequate sun exposure found to be significant risk factors for ALRTI in Indian children.
Alvarez 2016	Study aimed to investigate relationship between vitamin D status and plasma markers of lutathione (GSH) and cysteine (Cys) redox and immunity in critically ill children	Vitamin D sufficiency was associated with more reduced plasma hCySS, indicative of lower oxidative stress, in critically ill children. Plasma GSH, GSSG, and glutamine, however, were lower in the vitamin D sufficient group. Vitamin D role in maintaining redox status during pediatric critical illness requires further study.
Cetinkaya 2015	Evaluate the effect of vitamin D levels on early-onset sepsis (EOS) in term infants	Lower maternal and neonatal 25-OHD levels associated with EOS. Suggest that adequate vitamin D supplementation during pregnancy may be helpful to prevent EOS in term neonates.
Ahmed 2014	Examine relationship between vitamin D status and hospitalization for ALRTI in Nigerian children.	ALRTI not associated with vitamin D status, but associated with less exposure to sunlight. Exposure to sunlight & vitamin D supplementation contributed to vitamin D status in this population.
Jat 2016	Evaluate Vitamin D levels and its correlation with severity and outcome of pneumonia in children.	Majority (86.4%) of children were vitamin D deficient. Vitamin D levels were found different in cases and controls and were not related to severity and outcome of pneumonia.
Sankar 2017	Evaluate association of severe vitamin D deficiency with clinically important outcomes in children with septic shock.	Prevalence of severe vitamin D deficiency is high in children with septic shock admitted to pediatric intensive care unit. Severe vitamin D deficiency at admission seems to be associated with lower rates of shock reversal at 24 hours of ICU stay.
Cizmeci 2015	Investigate if neonates with early-onset neonatal sepsis (EONS) had lower levels of vitamin D	Cord-blood 25(OH) D levels of neonates with EONS significantly lower than that of the healthy controls, and a low level of cord-blood vitamin D was found to be associated with an increased risk of EONS. Further studies are warranted to confirm this association.
Khakshour 2015	Clarify the association between vitamin D deficiency and acute respiratory infection in children below age 5 years.	The group of children with respiratory disorders, 9 (42.9%) exhibited vitamin D deficiency. No meaningful statistical relation vitamin D deficiency with acute respiratory infections (p>0.05)
Korwutthikulrangsri 2015	Determine vitamin D status in critically ill children and its relationship with adrenal function	Higher prevalence of vitamin D deficiency in critically ill children in comparison to controls. Patients vitamin D deficiency had higher median (IQR) PRISM III score and higher proportion of mortality than those with serum 25-OHD of equal or more than 12 ng/mL.
Elmoneim 2016	Association of the level of vitamin D on admission & length of stay in the PICU, or duration of mechanical ventilation.	High prevalence of vitamin D deficiency among PICU patients & significant association with increased LOS and need for mechanical ventilation. Not significant association with mortality rate.

Dinlen 2016	Determine the encodedies between encoded 25 headers with the D	Lemme black (OLI) D lembers i state server i state i side i server desiste de DTL is
Dinien 2016	Determine the association between serum 25-hydroxy vitamin D	Lower blood 25(OH) D levels might be associated with increased risk of ALRTI in
	[25(OH)D] levels and acute respiratory tract infections (ALRTI) in	term newborn babies. Appropriate vitamin D supplementation during pregnancy
	newborns	and early childhood may enhance newborns' respiratory health.
Moreno-Solis 2015	Examine prevalence of hypovitaminosis D in infants with acute	Prevalence of hypovitaminosis D is high in Spanish infants with bronchiolitis. The
	bronchiolitis compared with control subjects and to evaluate the	severity of acute bronchiolitis increases with a decline in serum 25 (OH) D level.
	relationship between serum 25-hydroxyvitamin D (25(OH) D) and	
	the severity of bronchiolitis.	
Inamo 2011	Relationship between serum vitamin D concentrations and severity	Significantly more children with ALRI that required supplementary oxygen and
	of ALRI in hospitalized children in Japan.	ventilator management were vitamin D deficient. Findings suggest:
		immunomodulatory properties of vitamin D may influence the severity of ALRI.
Karatekin 2009	Association of serum 25-hydroxy vitamin D concentrations in	Newborns with subclinical vitamin D deficiency may have an increased risk of
	newborns with acute lower respiratory infection (ALRI) and without	suffering from ALRI. Strong positive correlation between newborns' and mothers'
	clinical signs of rickets, and their mothers	25(OH) D concentrations indicates that adequate vitamin D supplementation of
		mothers should be emphasized during pregnancy especially in winter months.
Roth 2010	Investigate association between vitamin D status and ALRI	Vitamin D status associated with ALRI in early childhood.
		Randomized trials needed to establish if interventions to improve vitamin D status
		could reduce burden of ALRI in early childhood.
Mathias 2017	Determination of association of 25(OH)D with cathelicidin and DBP	No association between vitamin D and cathelicidin or DBP (D binding protein)
	(D binding protein) in children with sepsis	levels
Dhandai 2018	Assess vitamin D deficiency as possible risk factor for late-onset	Vitamin D deficient neonates are at greater risk for late onset sepsis compared to
	sepsis in term and late preterm neonates	those with sufficient vitamin D levels
Vo 2018	Investigate the association between circulating 25-hydroxyvitamin	Infants with total 25 (OH) D < 20 ng/ml had higher risk of intensive care and longer
	D status upon admission and disease severity in infants hospitalized	hospital length-of-stay
	for bronchiolitis. Also, to determine if the association differs by the	
	form of 25(OH)D (total, bioavailable or free 25 (OH) D.	
Li 2018	Assess vitamin D nutritional status of children of 3 days to 14 years	Children with low serum 25 (OH) D levels may be at higher risk of receiving
	and investigated the relationship between community-acquired	mechanical ventilation and presenting with multiple organ dysfunction. Vitamin D
	pneumonia and serum 25(OH)D level	supplementation could be beneficial for the treatment and prevention of CAP

Assay	Paper	Total Number of studies	
Radioimmunoassay	Madden 2012; Inamo 2011; Karatekin 2009; Roth 2009; Roth 2010; Sakka 2014; Moreno-Solis 2015; Khashour 2015	8	
Competitive binding enzyme linked immunoassay	Basha 2014	1	
Binding protein assay	Onwuneme 2015 (2)	1	
Liquid chromatography-mass spectrometry	McNally 2012; Korwutthikulrangsri 2015; Binks 2014; Cetinkaya 2015; Cizmeci 2015; Asilioglu 2017; Onwuneme (1)	7	
Chemiluminescence immunoassay or chemiluminescent tracer	Alonso 2015; Rey 2014; Sankar 2016; Shah 2016; Prasad 2015; Ahmed 2015; Lopez 2016; Alvarez 2016; Say 2017; Sankar 2017; Jat 2017; Mathias 2017; Li 2018	13	
ELISA	Ponnarmeni 2016; Hebbar 2014; Elmoneim 2016; Narang 2016; Jia 2017; El-Gamasy 2017; Halwany 2017; Banajeh 2009; Badawi 2017	9	
ELFA (enzyme linked fluorescent assay)	Bustos 2014	1	
Electrochemiluminescence Immunoassay (ECLIA)	Dayal 2014, Ebenezer 2016, Garcia Soler 2017; Cayir 2014;	4	
Clinical Laboratory Improvement Amendments–approved Vitamin D assay (Elecsys; Roche Diagnostics, Indianapolis, Indiana)	Hurwitz 2017	1	
Commercial immunoassay lit (I RIA Diasorin UK)	Wayse 2004, Ayulo 2014,	2	
Immunoassay analyzer	Rippel 2012	1	
APPLIED 3200 Biosystem	Dinlen 2016	1	
Not reported	Yaghmaie 2017; Dhandai 2018	2	
Abbott Architect assay (Abbott, Waukegan, Illinois)	Vo 2018	1	

Study	Funding	Approval of study and ethics						
Madden 2012	Reported	Children's Hospital Boston institutional review board. Informed consent obtained from family.						
Lopez 2016	Reported	Approved by the Ethical Committee of Clinical Investigation of Galicia (CEIC ref 010/015) and all of the regional ethic committees of the participant centres informed consent forms were obtained from either a parent or legal guardian for each subject before study inclusion.						
Garcia-Soler 2017	Not reported	Study protocol approved by regional research ethics committee. Obtained informed consent from family of patients. Data recorded anonymously (encrypted electronic database). Project adhered to the principles of Declaration of Helsinki and standards for good clinical practice.						
McNally 2012	Reported	Research ethics board approval for vitamin D sub study obtained from 6 centers, representing 337 of the original 389 study participants.						
Rippel 2012	Not Reported	Approved by Ethics Committee of The Royal Children's Hospital Melbourne						
Alonso 2015	Reported	Regional Ethics Committee of the Principality of Asturias						
Asilioglu 2017	Not reported	Approval of study by the Local Ethics Committee of Ondokuz Mayıs University (Samsun, Turkey).						
Ayulo 2014	Not reported	Institutional Review Board: Montefiore Medical Centre						
Rey 2014	Reported	Hospital Ethics Committee						
Shah 2016	Reported	Ethical approval obtained from Institutional ethics committee. Parents of children satisfying criteria gave written informed consent for participation of their child in the study.						
Ponnarmeni 2016	Not reported	The institution's ethics committee. Informed consent obtained						
Onwuneme 2015 (1)	Reported	Approval by ethics committees of: Children's University Hospital, Temple Street and Our Lady's Children's Hospital, Dublin, Ireland. Participants were informed and provided written consent before recruitment.						
Jia 2017	Not reported	Approved by Human Ethical Committee of Affiliated Hospital of Yan'an University, Yan'an. Informed consent was taken from mothers and/or parent of infants.						
Halwany 2017	Not reported	Approval by the Medical Ethics Committee of the Faculty of Medicine, Alexandria University						
Sankar 2016	Not reported	Institutional Ethics committee. Informed consent obtained						
Say 2017	Not reported	Approval by the local Ethics Committee and informed parental consent was obtained for all infants.						
Sakka 2014	Not reported	Not reported						
Onwuneme2015 (2)	Reported	Ethics Committee of National Maternity Hospital. Informed written consent obtained from parents before recruitment						
Dayal 2014	Not reported	Ethics Committee of the Institute. Informed consent obtained.						
Bustos 2016	Reported	Comité Ético Científico del Servicio de Salud de Concepción						
Hurwitz 2017	Reported	Informed consent obtained and study protocol approved by the Institutional Review Boards at the University of Tennessee, St Jude Research Hospital, and the Centers for Disease Control and Prevention.						
Cayir 2014	Not reported	Approval from the institutional ethics committee and consent from the parents of all children in the study.						
Badawi 2017	Not reported	Children's Cairo University institutional review board approved study. Informed consent obtained from parents						
Yaghmaie 2017	Not reported	Study carried out in accordance with the Declaration of Helsinki, and the ethics committee of the Tehran University of Medical Sciences approved the protocols of the study. Records of patients' were kept confidential. Patients' consent provided						

		for blood sampling and vitamin D serum level was assessed from patients' files, so no invasive method or extra blood sampling was done.
Basha 2014	Not reported	Oral consent from the mothers.
Prasad 2015	Not reported	Institutional review board approved the protocol. Written informed consent obtained from parents or guardians.
Wayse 2004	Reported	Information not provided
El-Gamasy 2017	Not reported	Study approved from the Ethical Committee of the Faculty of Medicine, Tanta University. Informed verbal or written parental consents from all subjects involved in the study.
Banajeh 2009	Reported	Protocol approved and described in previous paper
Binks 2014	Reported	Testing performed after approval by the Human Research Ethics Committee of the Northern Territory Department of Health and Menzies School of Health Research
Roth 2009	Reported	Caregiver of each participant provided written informed consent and completed a questionnaire Study approved by the Human Research Ethics Board of the University of Alberta Health Sciences Faculties
Hebbar 2014	Reported	Institutional Review Boards of Emory University and Children's Healthcare Atlanta Informed consent obtained
Ebenezer 2016	Reported	Institutional Review Board (IRB), Informed consent from parents
Narang 2016	Not reported	Not reported
Alvarez 2016	Reported	Study approved by both the Emory University and Children's Healthcare of Atlanta Institutional Review Boards, and informed consent was obtained from patients' guardians prior to any study procedures
Cetinkaya 2015	Not reported	Study protocol approved by the local Ethics Committee. Informed parental consent was obtained for all infants
Ahmed 2014	Not reported	Informed written or oral consent obtained from the parents, and the study was approved by the National Hospital Abuja Ethics Committee
Jat 2016	Not reported	Ethics committee approval was taken before commencing the study. Parent's informed consent was taken before enrolling children into study.
Sankar 2017	No funding	Study approved by the institutional ethics committee.
Cizmeci 2015	Reported	Acquisition of cord-blood was approved by the local ethics committee of Fatih University Medical School.
Khakshour 2015	Not reported	Obtained informed consent from parents, data collection done using demographic questionnaire and serum level of 25-dehydroxycalcciferol was measured. Samples taken by a trained nurse at admission based on physician's orders.
Korwutthikulrangsri 2015	Not reported	Ramathibodi Hospital Ethics Committee. Written informed consent from legal guardians of all participants
Elmoneim 2016	Reported	MCH hospital Ethics Committee approved study protocol
Dinlen 2016	Not reported	Study approved by the Local Ethics Committee. All parents fully informed about this investigation as well as its aim. Written consent was obtained from all parents.
Moreno-Solis 2015	Reported	Written informed consent obtained from parents or legal guardian of all enrolled children. Protocol of study approved by the Ethics Committee before the beginning of this study.
Inamo 2011	Not reported	Ethics Committee of Nihon University Nerima-Hikarigaoka Hospital. Informed consent obtained from the parents of all patients before inclusion in the study.
Karatekin 2009	Not reported	Study approved by the Institution's Ethics Committee, and informed consent was obtained from the study participants.
Roth 2010	Reported	Approved by The Johns Hopkins Bloomberg School of Public Health Institutional Review Board and the ethics committee of the Bangladesh Institute for Child Health at the Dhaka Shishu Hospital, Bangladesh. Signed permission prior to enrolment from parents/guardians.

Mathias 2017	Reported	The institution's Human Investigation Committee approved the study after a full board review and informed consent obtained
Dhandai 2018	Not reported	The institute's ethics committee approved the study and informed written consent had been given by their parents or guardians
Vo 2018	Reported	The institutional review boards at all participating sites approved the protocol and informed consent obtained from the infants' parents/legal guardians
Li 2018	Not reported	Protocols for the study and written consent approved by the ethics committee of the Capital Institute of Pediatrics at Beijing, China

First author, dateAge groupWayse 2004<5 yearsKaratekin 2009NeonatesRoth 20101–18 monthsInamo 2011<4 yearsMadden 2012<21 yearsRippel 201216.5 (3.1 to 75.2) monthsMadden 2012<21 yearsMalden 2012<21 yearsMalden 2012<21 yearsMalden 2012<16.5 (3.1 to 75.2) monthsMeNally 2012Newborn to 17 yearsAyulo 20141 to 21 yearsDayal 2014<10 to 18 yearsHebbar 20140 to 18 yearsRey 2014<16 yearsCetrinkaya 2015>37 weeksOnwuneme (1) 2015<12 yearsOnwuneme (1) 2015<21 yearsOnwuneme (1) 2015<21 wearsOnwuneme (2) 2015YearsCaracti 2015NeonatesShah 20161 month to 13 yearsAlonso 2015NeonatesShah 20161 month to 15 yearsPonammeni 20161 to 12 yearsShaka 2016>37 weeks and <15 yearsBustos 2016<18 yearsElmoneim 2016<18 yearsElmoneim 2016<19 yearsAlvarez 20160 to 18 yearsElmoneim 20161 to 12 yearsSankar 20176 months to 17 yearsAlvarez 20160 to 18 yearsElmoneim 20162 to 60 monthsCarreit 20176 months to 17 yearsSankar 2017<17 yearsSankar 2017<19 yearsSankar 2017<19 yearsSankar 2017<19 years<	Additional Table 11 Age groups of children in each study						
Waye 2004 <5 years Karatekin 2009 Neonates Roth 2009 <2 years Roth 2010 1–18 months Inamo 2011 <4 years Madden 2012 <21 years Madden 2012 <21 years Madden 2012 <16.5 (3.1 to 75.2) months McNally 2012 Newborn to 17 years Ayulo 2014 1 to 21 years Dayal 2014 3 months to 12 years Getasy 2014 <16 years Cetinkaya 2015 >37 weeks Onwuneme (1) 2015 <12 years Onwuneme (2) 2015 <32 weeks gestation Prasad 2015 2 months to 12 years Alonso 2015 1 month to 13 years Korwuthikulrangsri 2015 No fonates Shah 2016 1 month to 13 years Somates 31 weeks and <15 years Bastos 2016 1 month to 17 years							
Karatekin 2009NeonatesRoth 2009<2 years							
Roth 2009<2 yearsRoth 20101–18 monthsInamo 2011<4 years							
Roth 2010 1-18 months Inamo 2011 <4 years							
Inamo 2011 <4 years	Roth 2010						
Madden 2012 <21 years							
Rippel 201216.5 (3.1 to 75.2) monthsMcNally 2012Newborn to 17 yearsAyulo 20141 to 21 yearsDayal 20140 to 18 yearsHebbar 20140 to 18 yearsRey 2014<16 years							
McNally 2012Newborn to 17 yearsAyulo 20141 to 21 yearsDayal 20143 months to 12 yearsHebbar 20140 to 18 yearsRey 2014<16 years							
Ayulo 20141 to 21 yearsDayal 20143 months to 12 yearsHebbar 20140 to 18 yearsRey 2014<16 years							
Dayal 20143 months to 12 yearsHebbar 20140 to 18 yearsRey 2014<16 years							
Hebbar 2014 0 to 18 years Rey 2014 <16 years							
Rey 2014<16 yearsCetinkaya 2015>37 weeksOnwuneme (1) 2015<12 years							
Cetinkaya 2015>37 weeksOnwuneme (1) 2015<12 years							
Onwuneme (1) 2015<12 yearsOnwuneme (2) 2015<22 weeks gestation							
Onwuneme (2) 2015 <32 weeks gestationPrasad 20152 months to 12 yearsAlonso 20151 month to 13 yearsKorwuthikulrangsri 201579 (61) cases; 92 (40) controls monthsCizmeci 2015NeonatesShah 20161 month to 15 yearsPonnarmeni 20161 to 12 yearsSankar 20161 month to 17 yearsBustos 2016>37 weeks and <15 years							
Prasad 20152 months to 12 yearsAlonso 20151 month to 13 yearsKorwutthikulrangsri 201579 (61) cases; 92 (40) controls monthsShah 20161 month to 15 yearsPonnarmeni 20161 to 12 yearsSankar 20161 month to 17 yearsBustos 2016>37 weeks and <15 years							
Alonso 20151 month to 13 yearsKorwuthikulrangsri 201579 (61) cases; 92 (40) controls monthsCizmeci 2015NeonatesShah 20161 month to 15 yearsPonnarmeni 20161 to 12 yearsBustos 2016>37 weeks and <15 years							
Korwutthikulrangsri 201579 (61) cases; 92 (40) controls monthsCizmeci 2015NeonatesShah 20161 month to 15 yearsPonnarmeni 20161 to 12 yearsSankar 2016 >37 weeks and <15 years							
Cizmeci 2015NeonatesShah 20161 month to 15 yearsPonnarmeni 20161 to 12 yearsSankar 20161 month to 17 yearsBustos 2016>37 weeks and <15 years							
Shah 20161 month to 15 yearsPonnarmeni 20161 to 12 yearsSankar 20161 month to 17 yearsBustos 2016>37 weeks and <15 years							
Ponnarmeni 20161 to 12 yearsSankar 20161 month to 17 yearsBustos 2016 >37 weeks and <15 yearsEbenezer 2016 <18 yearsElmonein 2016 <14 yearsNarang 20162 months to 5 yearsDinlen 2016NeonatesLopez 20160 to >48 monthsAlvarez 20160 to 18 yearsGarcia-Soler 20176 months to 17 yearsSankar 2017 <17 yearsSankar 2017 <17 yearsSankar 2017 <17 yearsSankar 2017 <17 yearsSankar 2017 <19 weeksAsilioglu 2017 $<=18$ yearsBasha 2014 <5 yearsJa 2017 <1 yearJa 2017 <19 yearJat 2017 <19 yearsBasha 2014 <5 yearsBasha 2017 <19 yearJat 2017 <19 yearJat 2017 $<1000000000000000000000000000000000000$							
Sankar 20161 month to 17 yearsBustos 2016 >37 weeks and <15 years							
Bustos 2016>37 weeks and <15 yearsEbenezer 2016<18 years							
Ebenezer 2016<18 yearsElmoneim 2016<14 years							
Elmoneim 2016<14 yearsNarang 20162 months to 5 yearsDinlen 2016NeonatesLopez 20160 to >48 monthsAlvarez 20160 to 18 yearsGarcia-Soler 20176 months to 17 yearsSankar 2017<17 years							
Narang 20162 months to 5 yearsDinlen 2016NeonatesLopez 20160 to >48 monthsAlvarez 20160 to 18 yearsGarcia-Soler 20176 months to 17 yearsSankar 2017<17 years							
Dinlen 2016NeonatesLopez 20160 to >48 monthsAlvarez 20160 to 18 yearsGarcia-Soler 20176 months to 17 yearsSankar 2017<17 years							
Lopez 20160 to >48 monthsAlvarez 20160 to 18 yearsGarcia-Soler 20176 months to 17 yearsSankar 2017<17 years							
Alvarez 20160 to 18 yearsGarcia-Soler 20176 months to 17 yearsSankar 2017<17 years							
Garcia-Soler 20176 months to 17 yearsSankar 2017<17 years							
Sankar 2017<17 yearsAhmed 20152 to 60 monthsCayir 20141 to 13 yearsSay 2017<37 weeks							
Ahmed 20152 to 60 monthsCayir 20141 to 13 yearsSay 2017 <37 weeksAsilioglu 2017 $<=18$ yearsBasha 2014 <5 yearsJia 2017 <1 yearJat 20171 month to 12 yearsYaghmaie 2017Age range not statedEl-Gamasy 20173 months to 12 yearsBinks 2014 <3 yearsHalwany 2017>1 month to $<=5$ yearsBadawi 20171 month to 12 yearsHurwitz 20171 month to $<=5$ yearsBadawi 20171 to 11 monthsSakka 2014 <2 yearsHurwitz 2017 <5 yearsBanajeh 20092 to 59 monthsKhakshour 2015 $<=18$ years							
Cayir 20141 to 13 yearsSay 2017 <37 weeksAsilioglu 2017 $<=18$ yearsBasha 2014 <5 yearsJia 2017 <1 yearJat 20171 month to 12 yearsYaghmaie 2017Age range not statedEl-Gamasy 20173 months to 12 yearsBinks 2014 <3 yearsHalwany 2017>1 month to $<=5$ yearsBadawi 20171 month to 12 yearsHurwitz 20171 to 11 monthsSakka 2014 <2 yearsHurwitz 2017 <5 yearsBanajeh 20092 to 59 monthsKhakshour 2015 <5 yearsMathias 2017 $<=18$ years							
Say 2017 <37 weeksAsilioglu 2017 $<=18$ yearsBasha 2014 <5 yearsJia 2017 <1 yearJat 20171 month to 12 yearsYaghmaie 2017Age range not statedEl-Gamasy 20173 months to 12 yearsBinks 2014 <3 yearsHalwany 2017>1 month to $<=5$ yearsBadawi 20171 month to $<=5$ yearsBadawi 20171 to 11 monthsSakka 2014 <2 yearsHurwitz 2017 <5 yearsBanajeh 20092 to 59 monthsKhakshour 2015 $<=18$ years							
Asilioglu 2017 $<=18$ yearsBasha 2014 <5 yearsJia 2017 <1 yearJat 20171 month to 12 yearsYaghmaie 2017Age range not statedEl-Gamasy 20173 months to 12 yearsBinks 2014 <3 yearsHalwany 2017>1 month to $<=5$ yearsBadawi 20171 month to 12 yearsMoreno-Solis 20151 to 11 monthsSakka 2014 <2 yearsHurwitz 2017 <5 yearsBanajeh 20092 to 59 monthsKhakshour 2015 <5 yearsMathias 2017 $<=18$ years							
Basha 2014<5 yearsJia 2017<1 year							
Jia 2017<1 yearJat 20171 month to 12 yearsYaghmaie 2017Age range not statedEl-Gamasy 20173 months to 12 yearsBinks 2014<3 years	2						
Jat 20171 month to 12 yearsYaghmaie 2017Age range not statedEl-Gamasy 20173 months to 12 yearsBinks 2014 <3 yearsHalwany 2017>1 month to $<=5$ yearsBadawi 20171 month to 12 yearsMoreno-Solis 20151 to 11 monthsSakka 2014 <2 yearsHurwitz 2017 <5 yearsBanajeh 20092 to 59 monthsKhakshour 2015 <5 yearsMathias 2017 $<=18$ years							
Yaghmaie 2017Age range not statedEl-Gamasy 20173 months to 12 yearsBinks 2014 <3 yearsHalwany 2017>1 month to $<=5$ yearsBadawi 20171 month to 12 yearsMoreno-Solis 20151 to 11 monthsSakka 2014 <2 yearsHurwitz 2017 <5 yearsBanajeh 20092 to 59 monthsKhakshour 2015 <5 yearsMathias 2017 $<=18$ years							
El-Gamasy 2017 3 months to 12 years Binks 2014 <3 years							
Binks 2014 <3 years Halwany 2017 >1 month to <= 5 years							
Halwany 2017 >1 month to <= 5 years							
Badawi 2017 1 month to 12 years Moreno-Solis 2015 1 to 11 months Sakka 2014 <2 years							
Moreno-Solis 2015 1 to 11 months Sakka 2014 <2 years	2						
Sakka 2014 <2 years Hurwitz 2017 <5 years							
Hurwitz 2017 <5 years Banajeh 2009 2 to 59 months Khakshour 2015 <5 years	Moreno-Solis 2015						
Banajeh 2009 2 to 59 months Khakshour 2015 < 5 years							
Khakshour 2015 < 5 years Mathias 2017 <= 18 years							
Mathias 2017 <= 18 years	5						
	Khakshour 2015						
Dhandai 2018 Neonates	Mathias 2017						
Difinition Toolines	Dhandai 2018	Neonates					
Vo 2018 < 12 months	Vo 2018						
Li 2018 3 days to 14 years		3 days to 14 years					

tically ill children (sorted Study	Prevalence of vitamin D deficiency (%)	Number of vitamin D deficient children	Total number of children	
Wayse 2004	95.00	76	80	
Sakka 2014	92.70	89	96	
Karatekin 2009	92.00	23	25	
Onwuneme2015 (2)	91.48	86	94	
Say 2017	87.00	87	100	
Dinlen 2016	86.70	26	30	
Cetinkaya 2015	84.00	42	50	
Jat 2016	84.00	42	50	
Roth 2010	84.00	21	25	
Prasad 2015	83.75	67	80	
Jia 2017	83.64	92	110	
Shah 2016	83.11	128	154	
Korwutthikulrangsri 2015	78.12	25	32	
Sankar 2016	74.26	75	101	
Sankar 2017	72.09	31	43	
Cizmeci 2015	70.00	28	40	
Mathias 2017	70.00	28	41	
McNally 2012	69.02	225	326	
Basha 2014	65.43	53	81	
Yaghmaie 2017	64.63	53	82	
Dhandai 2018	63.30	38	60	
Hebbar 2014	60.66	37	61	
Onwuneme 2015 (1)	59.16	71	120	
Alvarez 2016	58.00	29	50	
Cayir 2014	56.82	50	88	
Elmoneim 2016	56.67	17	30	
Narang 2016	56.00	28	50	
Li 2018	55.83	445	797	
Ponnarmeni 2016	50.81	63	124	
Asilioglu 2017	48.00	120	250	
Badawi 2017	44.30	39	88	
Garcia-Soler 2017	43.82	149	340	

Additional Table 12 Prevalence of vitamin D deficiency in each study of acute and critically ill children (sorted from highest to lowest)

Bustos 2016	43.30	39	90
Ebenezer 2016	40.38	21	52
Madden 2012	40.12	205	511
Halwany 2017	37.25	38	102
Banajeh 2009	36.71	29	79
Rippel 2012	34.49	109	316
El-Gamasy 2017	32.50	26	80
Ahmed 2014	30.00	15	50
Rey 2014	29.49	46	156
Vo 2018	29.33	298	1,016
Inamo 2011	28.50	8	28
Dayal 2014	25.00	23	92
Khakshour 2015	24.32	9	37
Lopez 2016	24.20	84	347
Alonso 2015	15.63	45	288
Ayulo 2014	15.63	61	216
Binks 2014	14.86	11	74
Moreno-Solis 2015	13.33	9	48
Hurwitz 2017	12.22	11	90
Roth 2009	4.69	3	64

Study	Total number of patients	Total number of vitamin D deficient patients	Country, setting	Age range	Design	Qualit score (NOS)
Vo 2018	1,016	298	USA, PICU	< 12 months	cohort	8
Li 2018	797	445	China, PICU	3 days to 14 years	case-control	8
Madden 2012	511	205	Boston US, PICU	< 21 years	cohort	8
Lopez 2016	347	84	Spain, hospitalised	0 to >48 months	cohort	8
Garcia-Soler 2017	340	149	Spain, PICU	6 months to 17 years	cohort	7
McNally 2012	326	225	Canada, PICU	newborn to 17 years of age	cohort	7
Rippel 2012	316	109	Australia, PICU	16.5 (3.1–75.2) months	cohort	8
Alonso 2015	288	45	Spain, PICU	1 month to 13 years	cross sectional	5
Asilioglu 2017	250	120	Turkey, PICUs	<= 18 years	cohort	6
Ayulo 2014	216	61	Spain, PICU	1 month to 13 years	cross sectional	5
Rey 2014	156	46	Spain, PICU	<16 years	cohort	7
Shah 2016	154	128	India,PICU	1 month-15 years	cohort	6
Ponnarmeni 2016	124	63	India, PICU	aged 1-12 years	cohort	6
Onwuneme 2015 (1)	120	71	Ireland, PICU	<12 years old	cohort	8
Jia 2017	110	92	China, PICU	infants <1 years old	case-control	7
Halwany 2017	10238Alexandria, PICU>1 month to \leq 5 years		cohort	6		
Sankar 2016	101	75	India, PICU	1 month to 17 years	cohort	8
Say 2017	100	87	Turkey, NICU	gestational age <37 weeks	case-control	6
Sakka 2014	96	89	Egypt, hospitalized	infants (<2 years old)	case-control	8
Onwuneme 2015 (2)	94	86	Ireland, NICU	preterm infants at <32 weeks gestation	cohort	8
Dayal 2014	92	23	India, PICU	3 months to 12 years	cohort	6
Bustos 2016	90	39	Chile, PICU	>37 weeks and <15 years	cohort	7
Hurwitz 2017	90	11	USA, hospitalised	<5 years old	cohort	6
Cayir 2014	88	50	Turkey, PICU	1 to 13 years	case-control	7
Badawi 2017	88	39	Cairo, Egypt PICU	1 month to 12 years	cohort	7
Yaghmaie 2017 82 53		Iran, PICU	children undefined	cross sectional	4	
Basha 2014	Basha 2014 81 53 Cairo Egypt, PICU <5 years old		<5 years old	case-control	7	
Prasad 2015	Prasad 2015 80 67 India, PICU 2 months-12 years		2 months-12 years	cohort	7	
Wayse 2004	Vayse 2004 80 76 Indapur India, <5 years PICU		<5 years	case-control	6	
El-Gamasy 2017			Egypt, PICU	3 months to 12 years	cohort	7
Banajeh 2009	9 79 29 Iran, hospitalised aged 2–59 months		cohort	7		
Binks 2014	74	11	Australia, PICU	<3 years old	cross sectional	6
Roth 2009	64	3	Canada, PICU	aged 1-25 months	case-control	7
Hebbar 2014	61	37	Atlanta, PICU	0 to 18 years	cohort	6
Dhandai 2018	60	38	India, NICU	neonates	cohort	7

Additional Table 13 Characteristics of studies used in the meta-analysis of prevalence

Ebenezer 2016	52	21	India, PICU	<18 years	cohort	6
Narang 2016	50	28	Punjab, India, PICU	2 months to 5 years	case-control	6
Alvarez 2016	50	29	Atlanta, PICU	0 to 18 years	cross sectional	6
Cetinkaya 2015	50	42	Instabul/Turkey, NICU	l/Turkey, neonates		6
Ahmed 2014	50	15	Nigeria, PICU	2–60 months	case-control	8
Jat 2016	50	42	India, PICU	1 month to 12 years	case-control	8
Sankar 2017	43	31	India, PICU	<=17 years	cohort	8
Mathias 2017	41	28	USA, PICU	<= 18 years	cohort	6
Cizmeci 2015	40	28	Instabul/Turkey, NICU	neonates	case-control	7
Khakshour 2015	37	9	Iran, hospitalized	<5 years	case-control	5
Korwutthikulrangsri 2015	32	25	Bangkok, PICU	months not more specific range	cohort	7
Elmoneim 2016	30	17	Saudi Arabia, PICU	<14 years	cohort	7
Dinlen 2016	30	26	Ankara Turkey, NICU	neonates	case-control	6
Moreno-Solis 2015	48	9	Spain, PICU	infants 1-11 months	case-control	6
Inamo 2011	28	8	Tokyo Japan, PICU	1-48 months	cohort	6
Karatekin 2009	25	23	Istanbul Turkey, NICU	neonates	case-control	6
Roth 2010	25 21 Bangladesh 1-18 months case-con			case-control	8	

Patient category	Number of studies (Total number of individuals; number of vitamin D deficient individuals)	Pooled proportion % (95% CI) Random effects model	95% PI	Pooled proportion % (95% CI) Fixed effects model	Heterogeneity (I ²) % (95% CI)	Q value, d.f. p-value for heterogeneity	Median % (IQR) of vitamin D deficiency
Acute and critically ill children, excluding studies that used other thresholds	40 (6,543; 3,000)	53.0 (46.4-59.5)	17.7-85.5	45.1 (43.8-46.5)	95.5 (94.5-96.2)	859.8, 39, < 0.0001	55.9 (33.4-55.9)
Sample size >= 82 (large)	26 (6,094; 2,731)	51.5 (43.6-59.4)	16.5-85.2	44.0 (42.6-45.3)	96.8 (96.0-97.4)	773.1, 25, < 0.0001	46.2 (30.7-67.9)
Sample size < 82 (small)	26 (1,340; 742)	58.2 (47.5-68.2)	13.2-92.8	54.8 (51.7-58.0)	90.9 (87.9-93.2)	275.4, 25, < 0.0001	62.0 (33.6-82.3)
Cohort studies	30 (5,119; 2,197)	49.6 (42.7-56.4)	17.6-81.9	42.1 (40.7-43.6)	94.9 (93.6-95.9)	567.0, 29, < 0.0001	44.1 (33.0-67.1)
Case-control	18 (1,821; 1,138)	68.1 (56.5-77.8)	19.3-95.0	60.8 (58.2-63.3)	93.0 (90.4-94.9)	243.9, 17, 0.0001	76.8 (55.9-86.0)
Cross sectional	4 (494; 138)	34.8 (12.8-66.0)	0.10-99.6	30.3 (25.9-35.2)	96.7 (94.0-98.2)	90.4, 3, < 0.0001	36.8 (15.4-59.7)
Studies from India	11 (886; 592)	68.9 (54.9-80.1)	18.3-95.6	64.0 (60.4-67.5)	96.7 (94.0 98.2)	140.2, 10, < 0.0001	72.1 (53.4-83.4)
Studies from Turkey	7 (583; 376)	76.3 (60.9-87.0)	20.9-97.5	61.0 (56.6-65.2)	91.1 (84.2-95.0)	67.5, 6, < 0.0001	84 (63.4-86.8)
Studies that only recruited neonates	7 (399; 330)	83.0 (73.1-90.0)	42.4-97.0	80.7 (76.1-84.5)	76.6 (51.0-88.9)	25.7, 6, 0.0003	86.7 (77.0-89.2)
Studies with children of all other ages except neonates	45 (7,035; 3,143)	49.7 (43.5-55.8)	16.1-83.5	44.2 (43.0-45.5)	95.2 (94.3-96.0)	919.9, 44, < 0.0001	48.0 (29.5-68.3)

 $CI = confidence intervals; I^2 = heterogeneity; df = degrees of freedom. Vitamin D deficiency defined in our study as <50 nmol/L (20 ng/mL) I² statistic used to estimate heterogeneity between pooled studies: I²>= 75% was considered as high heterogeneity, PI= Prediction interval; IQR = interquartile range: Lower (Q1) to Upper (Q3) quartile$

Predictors	k	b- coefficient	se	t-value	p-value	ci.lb	ci.ub	F-value	I^2 (%)	R^2 (%)	QE
Full model: year + clinical setting + quality score + design + country group + total sample size	52							4.57	95.7	32.9	702.6, p < 0.0001
year		-0.015	0.058	-0.256	0.799	-0.132	0.103				
total study sample size		-0.001	0.001	-0.731	0.469	-0.002	0.001				
country group (group 1 or 2 versus group 3)		1.009	0.356	2.831	0.007	0.291	1.726				
clinical setting (NICU versus PICU)		-1.573	0.465	-3.384	0.002	-2.510	-0.637				
design group (cohort vs other i.e. case-control or cross sectional)		0.482	0.324	1.488	0.144	-0.170	1.135				
quality score		0.296	0.170	1.744	0.088	-0.046	0.637				

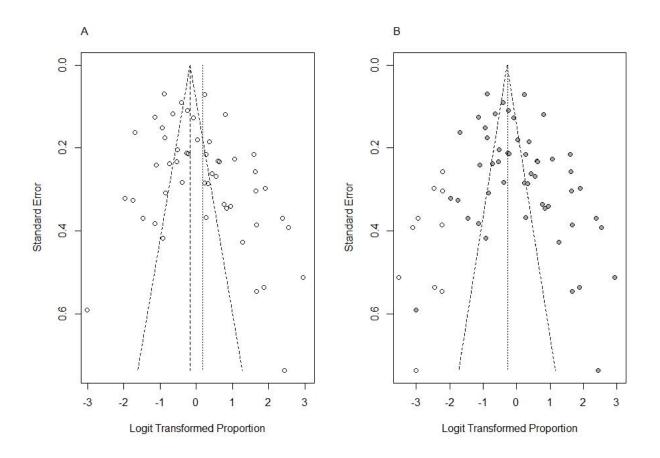
Additional Table 15 Multivariate meta-regression model for prevalence

k = number of outcomes included in the model fitting; se = standard errors of the coefficients; ci.lb = lower bound of the confidence intervals for the coefficients; ci.lb = upper bound of the confidence intervals for the coefficients; QE = test statistic for the test of (residual) heterogeneity; I^2 = residual heterogeneity / unaccounted variability; R^2 (amount of heterogeneity accounted for; PICU = pediatric intensive care units, NICU = neonatal intensive care units

Study	Total number of patients with sepsis	Total number of vitamin D deficient patients with sepsis	Country, setting	Age	Design	Quality score (NOS)
Shah 2016	160	135	India, PICU	1 month to 16 years	cohort	6
Asilioglu 2017	120	20	Turkey, PICU	Turkey, PICU 1 month to ≤18 years		7
Say 2017	100	87	Turkey, NICU	v, NICU preterm infants at <37 weeks gestation		6
Dhandai 2018	60	38	India, NICU	neonates	cohort	7
Ponnarmeni 2016	62	32	India, PICU	1 to 12 years	cohort	6
McNally 2012	48	33	Canada, PICU	newborn to 17 years	cohort	7
Onwuneme 2015 (2)	46	32	Ireland, NICU	preterm infants at <32 weeks gestation	cohort	8
El-Gamasy 2017	46	20	Egypt, pediatric emergency department	3 months to 12 years	cohort	7
Sankar 2017	43	31	India, PICU	<=17 years	cohort	8
Mathias 2017	41	28	USA, PICU	<=18 years	cohort	6
Cizmeci 2015	40	28	Turkey, NICU	neonates	case-control	7
Onwuneme 2015 (1)	35	32	Ireland, PICU	<12 years old	cohort	8
Hebbar 2014	30	17	Atlanta, PICU	0 to 18 years	cohort	6
Ebenezer 2016	16	8	India, PICU	<18 years	cohort	6
Korwutthikulrangsri 2015	12	4	Bangkok, PICU	moths (<8/9)	cohort	7
Prasad 2015	11	9	India, PICU	2 months to 12 years	cohort	7
Bustos 2016	10	7	Chile, PICU	>37 weeks and < than 15 years	cohort	7
Dayal 2014	9	4	India, tertiary care hospital	3 months to 12 years	cohort	6

	Sensitivity analyses for	1 *				1	
Patient category	Number of studies (Total number of individuals; number of vitamin D deficient individuals)	Pooled proportion (%, 95% CI)	95% PI	Pooled proportion (%, 95% CI)	Heterogeneity (I ²) %, 95% CI	Q value, d.f. p-value for heterogeneity	Median % (IQR) of vitamin D deficiency
		Random effects		Fixed effects			
Excluding studies that used other thresholds	14 (654; 395)	62.0 (47.3-74.7)	13.3-94.5	60.4 (56.0-64.7)	89.7 (84.5-93.2)	126.5, 13, < 0.0001	65.8 (50.4-70.0)
Sample size >= 42 (large)	9 (685; 428)	63.2 (44.6-78.5)	9.4-96.6	62.5 (58.2-66.6)	94.3 (91.1-96.3)	139.2, 8 < 0.0001	68.8 (51.6-72.1)
Sample size < 42 (small)	9 (204; 137)	64.7 (52.5-75.3)	29.5-89.0	64.7 (57.4-71.4)	57.9 (11.8-79.9)	19.0, 8, 0.0148	68.3 (50.0-70.0)
Cohort studies	16 (749; 450)	61.4 (48.6-72.8)	15.5-93,2	60.0 (55.9-63.9)	88.8 (83.5-92.4)	134.2, 15, < 0.0001	65.8 (48.6-70.5)
Case-control	2 (140; 115)	80.0 (58.8-91.8)	NA	81.0 (73.3-86.9)	81.3 (20.5-95.6)	5.35, 1, 0.0207	78.5 (74.2-82.8)
Studies from India	7 (361; 257)	66.0 (51.4-78.1)	21.3-93.3	69.2 (63.9-74.1)	81.1 (61.8-90.6)	31.7, 6 < 0.0001	63.3 (50.8-77.0)
Studies from Turkey	3 (260; 135)	59.2 (13.6-93.1)	0.00-100	51.2 (43.2-59.3)	97.8 (95.8- 98.8)	90.0, 2, < 0.0001	70.0 (43.3-78.5)
Studies that only included neonates	4 (246; 185)	73.7 (60.3-83.8)	15.9-97.7	73.5 (67.3-78.9)	76.0 (34.1-91.3)	12.5, 3, 0.0058	69.8 (68.0-74.3)
Studies that included children of all other ages except neonates	14 (643; 380)	60.7 (45.5-74.0)	11.8-94.7	58.7 (54.2-63.0)	90.1 (85.2-93.4)	131.8, 13 < 0.0001	62.5 (45.8-71.6)

 $CI = confidence intervals; I^2 = heterogeneity; df = degrees of freedom. Vitamin D deficiency defined in our study as <50 nmol/L (20 ng/mL). I² statistic used to estimate heterogeneity between pooled studies: I² >= 75% was considered as high heterogeneity; PI= Prediction interval; IQR = interquartile range: Lower (Q1) to Upper (Q3) quartile; NA= Not available$

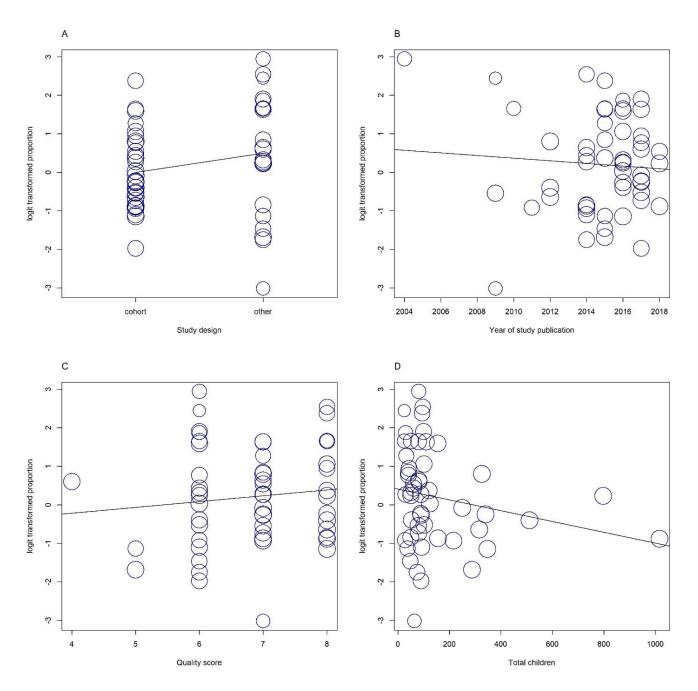

Patient category	Number of studies (Total number	Pooled OR Vitamin D deficient/ V p-va	itamin D non-deficient	Heterogeneity (I ²) % (95% CI)	Q value, d.f. p-value for	Eggers p-value	
	of individuals)	Random effects	Fixed effects		heterogeneity		
Excluding studies that used other thresholds	14 (2,030)	1.59 (1.05-2.41) p-value = 0.028	1.52 (1.08-2.13) p-value = 0.016	24.3 (0.0-59.9)	17.18, 13, 0.1910	p-value = 0.120	
Studies from India	7 (646)	1.08 (0.70-1.69) p-value = 0.710	1.08 (0.70-1.69) p-value = 0.710	0.0 (0.0-62.4)	4.56, 6, 0.589	Number of studies too small to test for small study effects (k.min=10	

 $CI = Confidence Intervals; I^2 = I$ squared statistic used to estimate heterogeneity (inconsistency); df = degrees of freedom, results reported in 1 decimal place; OR = odds ratio. Vitamin D deficiency defined as < 50 nmol/L or 20 ng/ml. We used the I² statistic to estimate heterogeneity between pooled studies: I² >= 75% was considered as high heterogeneity.

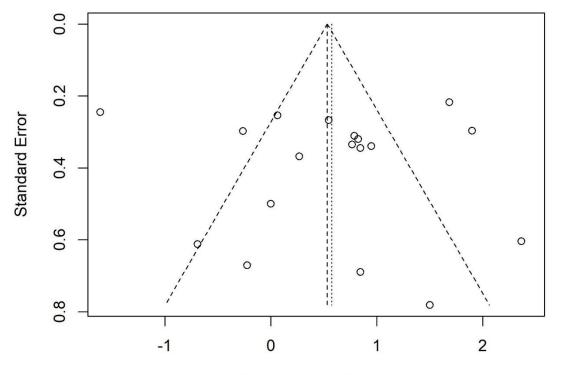
Additional Figures

Additional Figure 1 Funnel plot of studies of prevalence of vitamin D deficiency in acute and critically ill children. Horizontal axis shows logit transformed proportion and the standard error of the logit transformed proportion is plotted on the vertical axis. Each dot represents an individual study and the vertical line represents the pooled proportion from a random-effects meta-analysis. The diagonal lines represent pseudo 95% confidence limits (p=0.01, Egger's test).

Plot A shows the funnel plot before trim and fill method was applied and B after. Solid circles in plot B represent original data and open circles represent imputed filled studies (11 studies added) on the left-hand side of the funnel plot.


Additional Figure 2. Pooled prevalence estimate for vitamin D deficiency in acute and critically ill children (by country group). Forest plot shows results from the random effects model. Diamonds represent pooled proportion of vitamin D deficiency for the countries in each subgroup (group 1, group2, group 3). The diamond at the bottom shows the overall pooled estimate of all the 52 studies. Each square shows the prevalence estimate of each study and the horizontal line across each square represents the 95% confidence interval (CI) of the prevalence estimate.

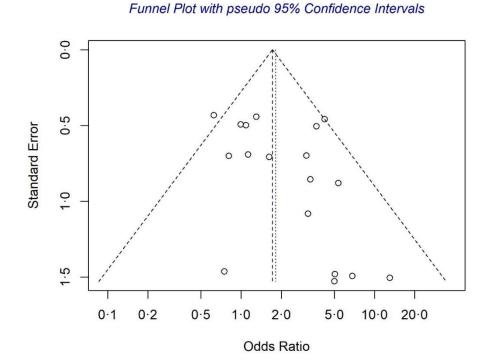
Study	VD deficient (n)	Total (N)		Prevalence	95% CI	Weight
group1 Vo 2018 Madden 2012 Lopez 2016 Garcia-Soler 2017 McNally 2012 Rippel 2012 Alonso 2015 Ayulo 2014 Rey 2014 Onwuneme 2015 (1) Onwuneme 2015 (2) Bustos 2016 Hurwitz 2017 Binks 2014 Alvarez 2016 Mathias 2017 Moreno-Solis 2015 Inamo 2011 Random effects model Heterogeneity: I^2 = 95.5%, r		1016 511 347 340 326 316 156 120 94 90 90 74 64 61 50 41 48 28 8 28 4276		$\begin{array}{c} 0.29\\ 0.40\\ 0.24\\ 0.44\\ 0.69\\ 0.34\\ 0.16\\ 0.28\\ 0.29\\ 0.59\\ 0.91\\ 0.43\\ 0.12\\ 0.15\\ 0.05\\ 0.61\\ 0.58\\ 0.68\\ 0.19\\ 0.29\\ 0.37\\ \end{array}$	$\begin{bmatrix} 0.27; \ 0.32 \\ 0.36; \ 0.45 \\ 0.20; \ 0.29 \\ 0.38; \ 0.49 \\ 0.64; \ 0.74 \\ 0.29; \ 0.40 \\ 0.12; \ 0.20 \\ 0.22; \ 0.35 \\ 0.22; \ 0.37 \\ 0.50; \ 0.68 \\ 0.84; \ 0.96 \\ 0.33; \ 0.54 \\ 0.06; \ 0.21 \\ 0.06; \ 0.33; \ 0.45 \\ 0.30; \ 0.45 \end{bmatrix}$	2.1% 2.1% 2.1% 2.1% 2.1% 2.1% 2.1% 2.1%
$\begin{array}{l} \begin{array}{l} \textbf{group2} \\ \textbf{Li 2018} \\ \textbf{Asilioglu 2017} \\ \textbf{Jia 2017} \\ \textbf{Halwany 2017} \\ \textbf{Say 2017} \\ \textbf{Say 2017} \\ \textbf{Say 2017} \\ \textbf{Saka 2014} \\ \textbf{Cayir 2014} \\ \textbf{Badawi 2017} \\ \textbf{Yaghmaie 2017} \\ \textbf{Yaghmaie 2017} \\ \textbf{Basha 2014} \\ \textbf{El-Gamasy 2017} \\ \textbf{Banajeh 2009} \\ \textbf{Cetinkaya 2015} \\ \textbf{Ahmed 2014} \\ \textbf{Cizmeci 2015} \\ \textbf{Ahmed 2014} \\ \textbf{Cizmeci 2015} \\ \textbf{Khakshour 2015} \\ \textbf{Elmoneim 2016} \\ \textbf{Dinlen 2016} \\ \textbf{Karatekin 2009} \\ \textbf{Random effects model} \\ \textbf{Heterogenety: } I^2 = 91.5\%, r^2 \end{array}$		797 250 110 102 96 88 88 82 81 80 79 50 50 40 37 30 30 30 25 2215		0.56 0.48 0.87 0.93 0.57 0.44 0.65 0.65 0.32 0.37 0.84 0.30 0.70 0.24 0.57 0.84 0.57 0.84	$\begin{matrix} 0.52; \ 0.59 \\ 0.42; \ 0.54 \\ 0.75; \ 0.90 \\ 0.28; \ 0.47 \\ 0.79; \ 0.93 \\ 0.86; \ 0.97 \\ 0.46; \ 0.67 \\ 0.34; \ 0.55 \\ 0.53; \ 0.75 \\ 0.54; \ 0.76 \\ 0.22; \ 0.44 \\ 0.26; \ 0.48 \\ 0.71; \ 0.93 \\ 0.12; \ 0.41 \\ 0.37; \ 0.75 \\ 0.69; \ 0.96 \\ 0.74; \ 0.99 \\ 0.53; \ 0.70 \\ 0.53; \ 0.70 \\ \end{matrix}$	2.1% 2.0% 2.0% 1.9% 1.8% 2.0% 2.0% 2.0% 2.0% 2.0% 1.9% 1.9% 1.9% 1.8% 1.5% 36.1%
group3 Shah 2016 Ponnarmeni 2016 Sankar 2016 Dayal 2014 Prasad 2015 Wayse 2004 Dhandai 2018 Ebenezer 2016 Narang 2016 Sankar 2017 Korwutthikulrangsri 2019 Roth 2010 Random effects model Heterogeneity: <i>I²</i> = 91.8%, t ²	21	154 124 101 92 80 60 52 50 50 50 43 32 25 943		0.83 0.51 0.74 0.25 0.84 0.95 0.63 0.40 0.56 0.84 0.72 0.78 0.84 0.72	$\begin{matrix} 0.76; \ 0.89 \\ 0.42; \ 0.60 \\ 0.65; \ 0.82 \\ 0.17; \ 0.35 \\ 0.74; \ 0.91 \\ 0.50; \ 0.75 \\ 0.27; \ 0.55 \\ 0.41; \ 0.70 \\ 0.71; \ 0.93 \\ 0.56; \ 0.85 \\ 0.60; \ 0.91 \\ 0.58; \ 0.81 \end{matrix}$	2.0% 2.1% 2.0% 1.9% 1.6% 2.0% 1.9% 1.9% 1.8% 1.9% 1.8% 1.5% 24.4%
Random effects model Prediction interval Heterogeneity: <i>I</i> ² = 95.3%, τ ²		7434	0.2 0.4 0.6 0.8	0.55	[0.48; 0.61] [0.18; 0.87]	100.0%


Additional Figure 3. Pooled prevalence estimates for vitamin D deficiency in acute and critically ill children (neonates versus all other age groups). Forest plot shows results from the random effects model. Diamonds represent pooled proportion of vitamin D deficiency for the studies in neonates and all other age groups. The diamond at the bottom shows the overall pooled estimate of all the 52 studies. Each square shows the prevalence estimate of each study and the horizontal line across each square represents the 95% confidence interval (CI) of the prevalence estimate.

Study	VD deficient (n)	Total (N)		Prevalence	95% CI	Weight
neonates Karatekin 2009 Cizmeci 2015 Dinlen 2016 Cetinkaya 2015 Onwuneme2015 (2) Say 2017 Dhandai 2018 Random effects mode Heterogeneity: / ² = 76.6%		25 40 30 50 94 100 60 399		0.92 0.70 0.87 0.84 0.91 0.87 0.63 0.83	[0.74; 0.99] [0.53; 0.83] [0.69; 0.96] [0.71; 0.93] [0.84; 0.96] [0.79; 0.93] [0.50; 0.75] [0.73; 0.90]	1.2% 1.9% 1.5% 1.8% 1.8% 1.9% 2.0% 12.2%
other Mathias 2017 Vo 2018 Li 2018 Rippel 2012 Jia 2017 Sakka 2014 Hurwitz 2017 Sakka 2014 Hurwitz 2017 Basha 2014 Wayse 2004 Banajeh 2009 Binks 2014 Narang 2016 Ahmed 2014 Khakshour 2015 Moreno-Solis 2015 Inamo 2011 Roth 2010 Roth 2010 Roth 2010 Roth 2010 Garcia-Soler 2017 MoNally 2012 Alonso 2015 Asilioglu 2017 Ayulo 2014 Rey 2014 Shah 2016 Ponnarmeni 2016 Onwuneme 2015 (1) Sankar 2016 Dayal 2014 Badawi 2017 Yaghmaie 2017 Yaghmaie 2017 Yaghmaie 2017 Hebbar 2014 Ebenezer 2016 Alvarez 2016 Sankar 2017 Korwutthikulrangsri 201 Elmoneim 2016 Random effects mode Random effects mode	17 , $\tau^2 = 0.6427$, $p < 0.01$	41 1016 797 316 110 102 96 90 80 79 74 50 50 50 37 48 28 25 64 511 347 340 326 2166 156 156 154 124 120 2166 156 154 124 120 90 0 01 88 88 82 50 216 50 50 50 50 50 50 50 70 73 73 74 74 74 74 74 74 74 74 74 74 74 74 74		0.68 0.29 0.56 0.34 0.84 0.37 0.12 0.65 0.37 0.15 0.56 0.30 0.24 0.19 0.29 0.29 0.24 0.29 0.44 0.69 0.24 0.29 0.44 0.28 0.29 0.44 0.25 0.37 0.51 0.51 0.51 0.52 0.43 0.51 0.52 0.44 0.55 0.57 0.50	[0.52; 0.82] [0.27; 0.32] [0.52; 0.59] [0.29; 0.40] [0.75; 0.90] [0.28; 0.47] [0.86; 0.97] [0.64; 0.76] [0.54; 0.76] [0.54; 0.76] [0.54; 0.76] [0.42; 0.41] [0.64; 0.95] [0.41; 0.70] [0.42; 0.41] [0.64; 0.95] [0.20; 0.29] [0.64; 0.95] [0.20; 0.29] [0.64; 0.95] [0.22; 0.37] [0.42; 0.54] [0.42; 0.54] [0.42; 0.54] [0.42; 0.54] [0.42; 0.54] [0.42; 0.55] [0.33; 0.75] [0.33; 0.72] [0.74; 0.91] [0.27; 0.55] [0.43; 0.72] [0.74; 0.91] [0.27; 0.55] [0.44; 0.56] [0.44; 0.56]	1.9% 2.1% 2.1% 2.0% 1.8% 1.9% 2.0% 1.9% 1.9% 1.9% 1.9% 1.8% 1.7% 2.1% 2.1% 2.1% 2.1% 2.1% 2.1% 2.1% 2.1
Random effects mode Prediction interval Heterogeneity: / ² = 95.3%		7434		0.55	[0.48; 0.61] [0.18; 0.87]	100.0%
			0.2 0.4 0.6 0.8			

Additional Figure 4 Bubble plots of univariate meta-regressions. Each study is represented by a circle. Predictor variables: A study design, B year of publication, C quality score and D total children are plotted on the x-axis with the effect measure logit transformed proportion shown on the vertical (y-axis).

Additional Figure 5 Funnel plot for prevalence of vitamin D deficiency in acute and critically ill children with sepsis. Horizontal axis shows logit transformed proportion and the standard error of the logit transformed proportion is plotted on the vertical axis. Each dot represents an individual study and the vertical line represents the pooled proportion from a random-effects meta-analysis. The diagonal lines represent pseudo 95% confidence limits (p=0.81, Egger's test).


Funnel Plot with pseudo 95% Confidence Intervals

Logit Transformed Proportion

Additional Figure 6 Pooled prevalence estimate for vitamin D deficiency in acute and critically ill children with sepsis (subgroup analysis by study design). Forest plot shows results from the random effects model. Diamonds represent the pooled proportion of vitamin D deficiency for the studies in each subgroup (case-control and cohort). The diamond at the bottom shows the overall pooled estimate of all the 18 studies. Each square shows the prevalence estimate of each study and the horizontal line across each square represents the 95% confidence interval (CI) of the prevalence estimate.

Study	VD deficient (n)	Total (N)		Prevalence	95% CI	Weight
case_control Say 2017 Cizmeci 2015 Random effects mo Heterogeneity: / ² = 81.3	87 28 del %, τ ² = 0.4514, <i>p</i> = 0.02	100 40 140		0.87 0.70 0.80	[0.79; 0.93] [0.53; 0.83] [0.59; 0.92]	6.0% 5.9% 11.9%
cohort Shah 2016 Asilioglu 2017 Ponnarmeni 2016 Dhandai 2018 McNally 2012 Onwuneme 2015 (2) El-Gamasy 2017 Sankar 2017 Mathias 2017 Onwuneme 2015 (1) Hebbar 2014 Ebenezer 2016 Korwutthikulrangsri 2 Prasad 2015 Bustos 2016 Dayal 2014 Random effects mo Heterogeneity: J ² = 88.8	9 7 4	160 120 60 48 46 43 41 35 30 16 12 11 10 9 749		0.84 0.17 0.52 0.63 0.69 0.70 0.43 0.72 0.68 0.91 0.57 0.50 0.33 0.82 0.70 0.44 0.61	[0.78; 0.90] [0.10; 0.25] [0.39; 0.65] [0.50; 0.75] [0.54; 0.82] [0.29; 0.59] [0.56; 0.85] [0.77; 0.75] [0.77; 0.98] [0.37; 0.75] [0.25; 0.75] [0.48; 0.98] [0.35; 0.93] [0.14; 0.79] [0.49; 0.73]	6.3% 6.2% 6.1% 6.0% 6.0% 5.9% 5.9% 5.8% 5.2% 4.0% 4.0% 4.4% 88.1%
Random effects mo Prediction interval Heterogeneity: <i>I</i> ² = 89.3	del %, τ ² = 0.9673, <i>p</i> < 0.01	889	0.2 0.4 0.6 0.8	0.64	[0.52; 0.74] [0.17; 0.94]	100.0%

Additional Figure 7 Funnel plot of risk of mortality in vitamin D deficient versus vitamin D non-deficient acute and critically ill children. Horizontal axis shows logit transformed odds ratio and the standard error of the log odds ratio is plotted on the vertical axis. Each dot represents an individual study and the vertical line represents the overall pooled odds ratio from random-effects meta-analysis. The diagonal lines represent pseudo 95% confidence limits (p=0.084, Egger's test).

Additional Figure 8 Pooled odds ratio (OR) and 95% CI for risk of mortality in vitamin D deficient versus vitamin D non-deficient acute and critically ill children (fixed effects model). Diamond represents the overall odds ratio (with corresponding 95% Confidence Interval). Each square shows the odds ratio of each study and the horizontal line across each square represents the 95% confidence interval (CI) of the estimate.

Study		cient Total (N)	Not o Dead (n)	leficient Total (N)		C	Odds Ratio	D		OR	95% CI	Weight
Ebenezer 2016 Ponnarmeni 2016 Sankar 2016 Rippel 2012 Dayal 2014 Shah 2016 Prasad 2015 Bustos 2016 McNally 2012 Elmoneim 2016 Korwutthikulrangsri 2015 Ayulo 2014 Garcia-Soler 2017 Onwuneme 2015 (2) Asilioglu 2017 El-Gamasy 2017 Badawi 2017 Sankar 2017	5 10 23 3 3 54 14 4 5 5 6 6 6 4 7 5 6 6 4 7 5 16 14 27 19	21 63 75 109 23 128 67 39 225 61 149 60 120 26 39 31	5 9 8 7 3 14 1 0 0 1 0 2 3 0 9 13 17 7	31 61 207 69 26 13 51 101 13 7 155 191 34 85 54 49 12			╼╪ ╌ ╋┥ <u>╋</u> ┥┥┥┥┥╸┥╸┿╸┿			$\begin{array}{c} 1.62 \\ 1.09 \\ 1.00 \\ 0.81 \\ 3.30 \\ 0.63 \\ 3.17 \\ 13.06 \\ 5.06 \\ 0.75 \\ 5.00 \\ 5.37 \\ 3.09 \\ 6.84 \\ 1.30 \\ 3.68 \\ 4.24 \\ 1.13 \end{array}$	$ \begin{bmatrix} 0.41; & 6.51 \\ 0.41; & 2.90 \\ 0.38; & 2.62 \\ 0.20; & 3.19 \\ 0.62; & 17.65 \\ 0.27; & 1.46 \\ 0.38; & 26.50 \\ 0.68; & 250.17 \\ 0.28; & 92.45 \\ 0.04; & 13.24 \\ 0.25; & 100.15 \\ 0.96; & 30.11 \\ 0.79; & 12.16 \\ 0.37; & 127.56 \\ 0.55; & 3.10 \\ 1.36; & 9.92 \\ 1.72; & 10.41 \\ 0.29; & 4.39 \\ \end{bmatrix} $	$\begin{array}{c} 4.9\% \\ 9.8\% \\ 10.0\% \\ 5.0\% \\ 3.3\% \\ 13.0\% \\ 2.1\% \\ 1.1\% \\ 1.1\% \\ 1.0\% \\ 3.1\% \\ 5.0\% \\ 12.4\% \\ 9.5\% \\ 11.5\% \\ 5.1\% \end{array}$
Fixed effect model Heterogeneity: $I^2 = 25.7\%$, τ^2	= 0.1564, p	1278 = 0.15		1185		T	+	1		1.72	[1.27; 2.33]	100.0%
					0.01	0.1	1	10	100			