
Supplementary information

Below further technical details on the models (Figure A) and parameter sensitivity are
given (Figure B). A flow chart of the model algorithms executed in the simulations is
depicted in Figure C.

Center-based model: friction terms and forces

We look at the Equation of motion (4) for cells in more detail. The general form for the
friction tensors in Equation (4) reads

Γij = γ⊥(~uij ⊗ ~uij) + γ||(I − ~uij ⊗ ~uij), (0.1)

with ~uij = (~rj − ~ri)/||~rj − ~ri||, where ~ri, ~rj denote the position of the centers of cell i
and object j. I is the 3× 3 identity matrix, ⊗ denotes the dyadic product [12]. The
individual cell friction coefficients are γ⊥ and γ||, respectively perpendicular and
parallel to the movement direction. As experiments do not indicate ECM inhomogeneity
or anisotropy, the cell-ECM friction matrix is considered to be diagonal. The ECM was
not represented explicitly as experimental observations indicated that the ECM fraction
is small and approximately homogeneously and isotropically distributed in the
intercellular spaces.

As represented in Equation 5 the interaction force resulting from compression,
deformation and adhesion can be expressed as a sum of a repulsion force, here
represented by a modified Hertz contact force, and an adhesion force. The interaction
force acts along the line connecting the centers of two interacting spherical cells.

The micro-motility force of cell i is mimicked by a Brownian motion term with zero
mean value and are uncorrelated in time:

< ~Fmig,i >= 0 with < ~F (t1)mig,i ⊗ ~F (t2)mig,i >= Aδ(t1 − t2). (0.2)

Based on a formal analogy to colloidal particle systems [19], the autocorrelation
amplitude of the force as approximated A = 2Dγ2I, D being the cell diffusion constant,
γ the friction coefficient of a cell in the medium and I the unity matrix. The scalar γ
emerges in an isotropic environment, for which γ|| = γ⊥(:= γ). In an extracellular
matrix environment, A is largely controlled by the cell itself [3]. The equations of
motion (4) do not conserve total momentum due to the micro-motility term as part of
the momentum is transferred to the ECM, that is not explicitly modeled here.

The system of Equation 4 was integrated numerically until the simulation time
surpasses the total duration of the experiment which is ∼ 10d. Equation 4 results in a
linear problem with a sparse symmetric positive definite matrix, which can be solved
efficiently by a Conjugate Gradient method [12,13] with Jacobi preconditioner to obtain
the cell velocities and an explicit Euler integration scheme to obtain the cell postions.

Deformable Cell Model: friction terms and forces

We recapitulate the basic equation of motion for a DCM denoted in (Equation 13). The
individual elements generating the in-plane elastic forces between the surface nodes
represented by the 1st terms on the lhs and rhs of Equation 13 are modeled by classical
linear spring-damper systems. The force between the nodes captures the elastic
response of the shell-like structure including the cortical cytoskeleton of the cell. When
the elastic and dissipative components are summed up, one acquires a Kelvin-Voigt
element. The vector force between two nodes i and j reads (see Figure A):

~Fij = ~Fe,ij + ~Fv,ij = −ks(~dij − ~d0,ij)− γ~vij , (0.3)
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Fig A. (A) Contact between two cells defining (a) the distance dij , virtual overlap δij ,
reference radius Rref,i, actual radius Ri and volume Vi. (B) (left) DCM representation
of several adjacent cells. (right) Detail of nodal structure building cell surface and
depicting the forces that work on them.

where ~Fe,ij and ~Fv,ij are the elastic and dissipative forces, ks is the spring constant, γ

represents the dissipation, ~d0,ij , ~dij are the initial and actual distance vectors, and ~vij is
the relative velocity between the nodes, respectively.

The second term in Equation 13 representing the surface bending resistance is
incorporated by the rotational resistance of the hinges determined by two adjacent
triangles α =

{
ijk

}
and β =

{
ijl

}
. This defines the bending moment M :

M = kbsin(θ − θ0), (0.4)

where kb is the bending constant, and θ is determined by the normals to the triangles
~nα, ~nβ , with θ0 being the angle of spontaneous curvature. M can be transformed to an

equivalent force system ~Fm acting on each of the nodes of the triangles [13]. Restoring

volume compression / expansion forces ~Fvol,i controlled by the bulk compression
modulus of the cytoplasm are computed from the internal pressure using the volume
change and bulk modulus of the cytoplasm K. In our simulations K reflects the overall
cell compressibility including the cortex, as in its physiological range of elasticity, the
cortex contributes little to the overall bulk modulus of the cell, i.e. K � Ecorhcor/Rcell
( [8], own test runs). In analogy to Equation 8 the pressure applied to the cell is
therefore approximately given by:

p = −K log(
V

V0
). (0.5)

The forces ~Fvol on the nodes are perpendicular to the cell surface and can be
obtained by multiplying the pressure with the surface area assigned to each node (each
node has 6 adjoining triangles which each count for 1/3 of the surface area).

During the simulations, large variations in area of the triangles in the network can
cause numerical artifacts. These can be avoided by adding a force FT , which is
proportional to the area expansion of the individual triangles [15,20]:

FT = kA(A−A0)/A0. (0.6)

Here, A0 and A are the initial and the current areas of the triangle, and kA is the area
compression stiffness. The forces ~FT,i are summed over all triangles of the cell and
transferred to the nodes in the direction perpendicular to the opposite vertex edge of
that node leading to increase (or decrease) the area of one triangle at the expense of a
decrease (or increase) of its neighbor triangles. We chose kA such that the influence on
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the cortex elasticity is minimal, yet triangle deformations are minimized. Note, these
forces do not induce shear elastic effects in the network.

Finally, the interactions between neighboring cells are accounted for by introducing
repulsive forces (~Frep,i) and the adhesive forces (~Fadh,i) between nodes belonging to
different cells. The interaction forces were obtained as detailed in [4, 20]. The model
allows simulating the interaction between two arbitrarily shaped triangulated bodies but
also between a triangulated body and non-triangulated simple geometric objects as
spheres and flat substrates.

Importantly, the parameters of the spring network in Equation 0.3 can be related to
macroscopic elastic constants, approximating the cell cortex by a thin shell. For the six
fold symmetric triangulated lattice on the cell surface, the linear spring constant ks can
be computed from the Young modulus Ecor of the cortex with thickness hcor
by [14,16,18]:

ks ≈
2√
3
Ecorhcor (0.7)

Similarly, the bending stiffness of the cortex can be approximated by

kb ≈
Ecorh

3
cor

12(1− ν2)
, (0.8)

where ν is the Poisson ratio (= 0.3 for an equilateral 2D network of linear springs).

”Global” calibration approach, only valid for confined spheroid

The relationship between forces, inter-cellular volume fraction and pressure established
in section ”Local” calibration approach, needed for experiment II can also be computed
following a simpler, global approach in case of a confined volume as in experiment I. If
compression rates are sufficiently slow as is the case in that experiment, the cells in the
spheroid can reorganize, distributing the stress isotropically and homogeneously over the
cells in the spheroid. For the intercellular spaces in the capsule the global intercellular
volume fraction εint and the cellular fraction εcells are related by εint + εcells = 1 with
εcells = Vcells/Vcaps. We can now use εcells to re-parameterize Equation 14 assuming
cells are homogeneously distributed over the spheroid during compression (compare
Figure 8A). The apparent contact stiffness Ẽi in that case increases for all cells equally
with εcells being the equivalent of 1− d̃ij in the previous approach.

With both different calibration methods, local and global, the CBM simulation
results closely follow the DCM curve (Figure 8D). However, the curve using the global
calibration method is smoother than for the local calibration method as it represents an
average over all cells thus disregarding local fluctuations. For high pressures
(p > 2 kPa), both curves become nearly parallel. On the other hand, as the local
approach does not require the existence of an enclosed (capsule) volume it can be used
more generally as a cell-cell interaction force upon volumetric compression in many
configurations as in experiment II.

We finally point out that no explicit representation of ECM has been considered in
the model based on the observations the ECM fraction is rather small (personal
communication) and approximately homogeneously and isotropically distributed in the
intercellular spaces.

Model parameter and algorithm sensitivity

We also studied the potential influence of parameters calibrated for the free growth
conditions which could not be directly inferred from the experiments. For the friction
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terms, the cell-cell friction, cell -ECM friction and cell-capsule friction were varied
between 1 % (”low”) and 200 % (”high”) of their reference values. The effect is shown
in Figure BA and indicates that even for low friction coefficients the results remain
largely unaffected. For the cell-cell adhesion energy W and cell motility coefficients D,
which were varied between 10 % and 500 % [6] , we did not observe any significant
changes (Figure BE-F). The strength of cell-cell adhesion has been shown to play a role
in detachment, but to be of minor importance for multicellular systems under
compression (e.g. [11]). Note, that also in MCSs growing in absence of externally
applied forces cells are moderately compressed [10].

In conceptual analogy to experimental statistical procedures, we have performed
growth expansion simulations in the thin capsule with the optimal parameter set but
four different random seeds for the cell-specific cycle time, Young modulus and necrotic
pressure threshold to test the effect of stochasticity (see Table 2, Figure BB). Even after
more than 7 days of simulation, only very little mutual differences can be observed,
while the slopes of the curves are the same. This can be attributed to self-averaging
effects such that the variations on the level of individual cells cancel out at the
population level (e.g. ref. [7]).

Comparison of calibration methods

For the local calibration procedure, we used the following constants in Equation 14
assuming strain hardening: a0 = 0.4454 · 105 , a1 = 2.347 · 105 , a2 = −7.918 · 106 ,
a3 = 6.615 · 108 , a4 = −1.206 · 109 , a5 = −3.091 · 109 , a6 = 1.1239 · 1010 , yielding a
force cell - intercellular distance curve that matches well with the one obtained from the
deformable cell simulations experiment (Figure 8). The function for Ẽ(d̃ij) is
monotonically increasing (Figure BD). For the global calibration approach, we obtained
a similar curve. In test simulations for the MCS growth in the thin capsule using
contact inhibited growth for both local and global calibration, we found only a mutual
variation of 5− 7%, see Figure BC. On the other hand, if no calibration was assumed, a
largely unrealistic capsule dilation was obtained (Figure BC), and a consistent relation
between pressure and cell density could not be established.

Influence of cell division algorithms

As far as either the volume or the duration of the cell in the cell cycle have passed a
threshold value, we replace the mother cell by two daughter cells which are placed very
close to each other [17,22]. This algorithm is different from the approach where cells
slowly deform into dumbbells in mitosis phase before splitting into two daughter
cells [11, 21]. In our model two daughter cells are created next to each other
instantaneously. During the mitosis period (which takes about 1.5h) the daughter cells
do not grow. However, the two newly created cells can generate short-time artificial
pressure peaks which disappear during the division time course due to small local
re-arrangements. To test the impact of the pressure peak formation on our growth
simulation results we implemented an smoothing algorithm that reduces these peaks by
ensuring that (1) the mother cell divides in the direction of the least stress as derived
from the local stress tensor (see section Measures for stress and pressure), and (2) a
local energy minimum is sought by varying the distance between the daughter cells and
computing the interactions with the other cells. While the smoothing algorithm reduces
the short-time pressure peaks, we did not see significant differences in the results
compared to simulations where this algorithm had been dropped.
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Fig B. (A) Dependence of simulation results of the thin capsule on a variation on the
friction coefficients. (B) Comparison of 4 simulations with different random seed. (C)
Comparison of the global and local calibration approach for a growing spheroid in the
capsule. (D) Plot of the function Ẽ(d̃ij) used for cell contact stiffening upon spheroid
compression. (E-F) Comparison of 3 simulations of the thin capsule experiment with
different cell-cell adhesion energy W, and cell motility D (G) Simulated thin capsule
dilatation using for cell cycle progression: the proposed Hill-type function, the linear
function (”Linear -I”) as depicted in Figure 3 (which fails to explain the data in
experiment II, see Figure 7), and a linear function (”Linear -II”) optimized to match the
CT26 spheroid expansion in Experiment II (but here fails to reproduce the thin capsule
data). (H) Data plots of MCS growth in a thick large capsule (∼ 400µm) growth. The
stress-dominated growth regime is too short to identify the stress-response.
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Future extension: possible ways to include extracellular matrix

An important future extension would be the inclusion of extracellular matrix (ECM),
which is why we briefly outline how this can be implemented within the current model
framework.

There are three approaches with different degree of detail and effort of
implementation, one requiring an explicit model of ECM, while two of them might be
readily implemented with modest effort.

(i) Approach 1: A sophisticated way would be to model the ECM explicitly e.g., as a
network of visco-elastic springs (e.g. Ban et al., 2018 [23]). Such an approach is
expensive both implementationwise and in terms of computing power. Alternatively, the
effect of ECM can be estimated within two approximations within the framework of the
established model.

(ii) Approach 2: One way is to perform the same simulation and calibration but now
assuming that there is an ECM substance present in the capsule. To compute the
influence of ECM of compression modulus Kecm, one could assume that the ECM is
compressed homogeneously and isotropically (shear elastic effects with cells are
neglected). In a next step the volume occupied by the (DCM) cells and ECM within the
capsule would be estimated prior to compression of the capsule simulation (see
Figure 8A) to obtain a corrected relation between cell-cell interaction force and cell-cell
distance (Figure 8C) that includes the compression and deformation forces of the ECM.
For the Dextran experiment, the volume of the MCS could be estimated by the volume
inside an elastic membrane enclosing the MCS and touching its surface.

The pressure necessary for ECM compression could be calculated from Equation 8
whereby dV then denotes the deviation of the ECM volume from its uncompressed
volume as a consequence of compression leading to a relation p(V ) for the ECM alone.
In the compression simulation used to determine the intercellular forces with cell-cell
distance, the reduction of cell-cell distance would now cause both a compression of
ECM by reducing its volume, and a deformation of the cells. Both, ECM and cell now
resist the compression whereas in neglecting ECM, only the resistance of the cells was
traced. As the volume of ECM can be calculated at any time from the difference of
capsule volume and total volume of all cells, the pressure generated by compression of
ECM during the compression simulations can be calculated, and taken into account in
the calculation of the force on the cell by adding a force to each node that is
proportional to the area to the node’s associated cell surface area. This extends the
curves in Figure 8C,D by the effect of ECM. For small compression modulus the force
would be expected to be small. If at the same time, the compression modulus of the cell
would be much larger than order (kPa) (see the discussion of cell compression moduli in
the introduction), the repulsive branch of the curves in Figure 8 would become steeper.
Approach 2 is a global approximation as it needs information from the entire MCS (the
MCS or capsule volume) to estimate the effect of ECM and the simplest approximation.

(iii) Approach 3: The approximation could be based on a composite material
approach in which the object that in the main body of the paper mimics the deformable
cell, would instead be associated with a tissue unit composed of the cell plus a shell of
ECM (for the concept in agent-based models, see Drasdo et. al. (2007) [11]). To
determine the relation between force and cell-cell distance in such an approach, the
radius of the object now composed of cell and ECM shell would be chosen larger than
the cell radius alone to reflect the observed volume percentages of cells and ECM inside
the MCS. The Young modulus of the cell cortex in the current approach would be
replaced by an effective Young modulus taking into account the Young modulus of the
ECM and the Young modulus of the cell cortex. As a simple illustrative example in
point mechanics, it is conceptually equivalent to replacing two linear springs of spring
constants k1 (e.g. for the cell cortex) and k2 (e.g. for the ECM) connected in series by
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one effective spring with spring constant k = 1/(1/k1 + 1/k2) (e.g. for cell cortex plus
ECM). Similarly, the compression modulus of the cortex (that emerges from its Young
modulus and Poisson ratio) can be replaced by an effective compression modulus, that
other than the spring constants also contain the thicknesses of ECM and the cellular
cortex. The effective compression modulus again contains information on compression
moduli and volumes. This makes it possible to use the same approach as in the body of
this paper by only re-parameterization of the cortex variables and the cell radius.
However, in a configuration where cells touch each other, the ECM shell is already under
slight compressive stress, which in reality might not be the case. From the definition of
the composite material parameters and the geometrical quantities it is possible to track
the position of the cell surface (such as its is possible to calculate in the above point
mechanics example the contact point between the two springs). In the extremal case
where the cell (including cortex) compression and Young moduli would be much larger
than the compression modulus of the ECM, deformation and compression of a cell /
ECM unit would basically extend solely on the ECM shell. Approach 3 would be local
and is expected to give reasonable approximations in particular if the compressibility of
the ECM is much bigger than that of a cell. Performing simulations with a DCM with
composite parameters would lead to a different relationship of interaction force versus
distance, which then could again be used within CBM simulations.

Fig C. Model algorithm flow chart.
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