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Methods 

 

Prediction Models 

     Our prediction models use % of predicted rather than raw numbers, such as liters for 

FEV1 or ml/min/mm Hg for DLCO.  The reasons for this are several.  First, existing 

guidelines use % of predicted.(1)  Using liters for the postoperative value is not as 

informative, since the same number may constitute a sufficient value of postoperative 

function for a smaller person while being insufficient for a larger person.  Using raw 

numbers makes graphical interpretation of the data less informative and makes the LOA 

not as useful clinically. Second, when assessing selection bias, it is easy to miss the 

impact of selection bias when you evaluate only the raw numbers rather than the % of 

predicted.  For example, consider the scatter plots in figure 5 and e-figures 1-3.  If we 

had used liters for FEV1 in the scatter plot, the truncation of the normal distribution 

would not be as obvious.  Using % of predicted, it is clear that patients with ppo values 

under 40% are not likely to get surgery.  But if you use liters for FEV1, because there is 

wide variation in patient height and weight, the truncation becomes less obvious unless 

you plot the distribution in 3 or 4 dimensions. There is still selection bias present, but the 

bias is not based on a metric that uses liters, but rather on a metric based on % of 

predicted. The same applies for DLCO. 

     We can verify this by looking at the scatter plots from other studies. Scatter plots 

from studies that use liters for FEV1 rather than % of predicted do not demonstrate 

truncation as clearly,(2) since no single number in liters constitutes the prediction 

threshold below which surgery would be ill advised.  Conversely, those studies that use 



% predicted demonstrate truncation in their scatter plots (3), with the thresholds 

corresponding to local clinical practice guidelines (e.g. 30% of predicted).   

 

Assessing and Correcting for Selection Bias 

     Because MDACC is a tertiary referral center, many patients have all their follow-up 

care provided locally.  Because of this only a fraction of patients return for longitudinal 

care.  This is not problematic in terms of analyzing the data if we look only at patients 

that had surgery (Cohort A) since the data is missing completely at random (MCAR).  

However, it leads to a problem when including surgical candidates that did not have 

surgery because of limited pulmonary reserve, since we do not know which patients 

would have returned and which would have had their care locally.  We cannot include all 

of them since this would overweight the natural distribution towards the low end of the 

spectrum.  But we do know the percentage of patients that returned for longitudinal care 

among patients that had surgery.  We therefore randomly selected the same 

percentage of non-surgery patients to combine with the surgery patients to generate 

cohort B. 

 

Multiple Imputation 

     In cohort B, patients that did not have surgery due to limited pulmonary reserve had 

preoperative data and predictions but no postoperative FEV1 or DLCO.  It was therefore 

necessary to impute what the postoperative values would have been had surgery been 

performed.  We did this by using the multiple imputation method (proc MI procedure in 

SAS). 



     The SAS multiple imputation procedure assumes that the missing data is missing at 

random (MAR), that is, the probability that an observation is missing may depend on the 

observed part of the data but not on a missing part of the data.(4)  So it is acceptable if 

the missing postoperative FEV1 depends on ppoFEV1 using the quantitative perfusion 

(Q) or the segment counting 18 (SC18) or segments counting 19 (SC19) methods. 

There were 4 variables associated with FEV1: the actual postoperative FEV1 and three 

different predictions of it (Q, SC18, and SC19 models).  Patients that had surgery had 

all 4 of these variables while patients that did not have surgery had 3 of these variables. 

We used a parametric regression method for monotone missing data patterns for FEV1 

imputation.  Using the data from the patients that had surgery, we fit a model where 

actual postoperative FEV1 was the dependent variable and the other three variables 

(ppoFEV1 using Q, SC18, and SC19 models) were the independent variables.  For 

each variable with missing values, the previous variables were used as covariates. The 

process was then repeated sequentially for variables with missing values. 

     We generated 30 sets of imputed data.  The statistical efficiency of multiple 

imputation methods is maximized when the number of repetitions (M) is infinite.  If the 

fraction of missing information is modest (<20%), multiple imputation methods based on 

as few as M=5 or M=10 repetitions will achieve >96% of the maximum statistical 

efficiency.  However, for inferential goals, such as confidence intervals and p-values, a 

small number of imputations might not be adequate.(4) The work of Graham, 

Olchowski, and Gilreath, suggests that multiple imputation with 20 imputations for 30% 

missing information is sufficient to achieve a 1% power fall off tolerance as compared to 



an infinite number of imputations.(5)  We therefore chose to generate 30 imputed sets 

of data. 

     Once we had the 30 sets of imputed data we compared agreement between “actual” 

postoperative values (which consisted of real or imputed values) and predicted values 

using Bland-Altman plots as described above. Note that in each set the surgical patients 

(corresponding to Cohort A) would remain the same but what varied between the 30 

sets was the imputed values for the non-surgical patients.  With 30 imputations, we 

compute 30 different sets of the point and variance estimates for bias.  The point 

estimate of bias from multiple imputations is the average of the 30 bias estimates. The 

variance estimate associated with the mean bias is the sum of within-imputation 

variance, which is the average of the 30 variance estimates, and (1+1/m) multiplied by 

the between-imputation variance where m is the number of imputations.(6) 

 

Determining Threshold values  

     Among patients that had surgery, the predicted and actual postoperative values were 

truncated because of selection bias as noted above.  What we need to do is adjust for 

the truncation of the normal distribution that was created by the selection bias in order 

to derive the parameters of the non-truncated/non-biased distributions.  We used the 

data from patients that had surgery (cohort A) and the tmvnorm function in R to estimate 

the parameters (mean=(m1, m2), sigma (v1, v2, covariance between actual and 

predicted) of the true bivariate normal distribution. 

     We then use m1, m2, s1, s2, and r (s1, s2, and r can be estimated from sigma) (s1, 

s2: standard deviation) to calculate the conditional distribution desired.  The conditional 



distribution of actual post FEV1 given predicted FEV1=x will be distributed as a normal 

distribution with mean=(m1+s1/s2*r*(x-m2)) and variance=(1-r2)s12. 

     Clinically, we want to identify x which satisfies Pr(Actual FEV1 > minimum sufficient 

postoperative FEV1 | ppoFEV1 = x) = desired level of clinical certainty.  This can be 

read as the probability that the actual postoperative FEV1 will be greater than our 

minimum sufficient posteroperative FEV1 is equal to our desired level of clinical 

certainty, given that the ppoFEV is x.  Note that the minimum sufficient postoperative 

value must be determined by the physician, although based on current guidelines this 

would usually be either 30% or 40%.(1)  The desired level of clinical certainty is chosen 

by the surgeon and multidisciplinary team and must consider other factors such as 

alternative treatment modalities, their relative efficacy, and patient preferences.  For this 

analysis we chose to analyze three levels of clinical certainty, 95%, 97.5%, and 99%, 

but the same method can be used to derive thresholds for any chosen level of certainty.  

We used the same method for DLCO. 

     To visualize the adjusted bivariate normal distribution, we used scatter plots and 

contour plots.  In each instance we began with the original data, then generated 1,000 

pairs of the underlying bivariate normal distributions that were obtained using the 

tmvnorm function as described above. 

 

Bland-Altman Limits of Agreement and Confidence Intervals 

     For table 3 using imputed data, the 95% limits of agreement are provided by the 

formula: mean(diff)+/-1.96*SDimputed(diff), assuming normality. The lower limit ± t(n-1, 

0.025)*sqrt (3*Varimputed(diff)/n); describes a possible error in the estimate due to a 



sampling error. The upper limit ± t(n-1, 0.025)*sqrt (3*Varimputed(diff)/n); describes a possible 

error in the estimate due to a sampling error. The SDimputed(diff) is estimated utilizing a 

method of combining m imputed data sets which is described by Yang in 

http://www.ats.ucla.edu/stat/sas/library/multipleimputation.pdf.(6) 

 

 

Results 

 

Cohort B Missing Data Patterns 

     We first examined the data to describe the pattern of missingness.  The missing data 

followed a monotone missing pattern.  Monotone patterns are those in which 

missingness occurs when data is available for all assessments until a time at which the 

patient drops out and provides no further assessments. An intermittent pattern is when 

there are missing observations in between assessments that are observed. A mixed 

patterns is one which starts off as mixed and then becomes monotone. Since all the 

patients with missing data were missing their last measurement (i.e. postoperative 

value) the pattern was a pure monotone pattern. 

     Next we compared patients that had missing data to those that had complete data to 

determine if the data was missing completely at random (MCAR).  Patients that had 

surgery had complete information on all 4 variables (Q, SC18, SC19, and actual 

postoperative value) while those with missing data (i.e. non-surgical) had information on 

3 of the variables (Q, SC18, and SC19).   The missing data had a very different 

distribution of values (e-tables 1 and 2), indicating that the data may not be MCAR. 

http://www.ats.ucla.edu/stat/sas/library/multipleimputation.pdf


     We then identified auxiliary variables correlated with actual postoperative values.  All 

three models (Q, SC18, and SC19) were strongly correlated with each other and with 

actual postoperative values (e-tables 3 and 4) and were associated with missingness. 

     Using the proc MI procedure in SAS to perform parametric regression we generated 

M=30 sets of missing FEV1 and DLCO data.  Variance information for FEV1 and DLCO 

imputation is shown in e-table 5.  The relative efficiency with M=30 was 99% (as 

compared to an infinite number of repetitions) for both FEV1 and DLCO. 

 

Selection Bias 

     The most recent ACCP guidelines use % of predicted rather than raw values (e.g. 

liters/second for FEV1).(1)  The care pathway for preoperative assessment for 

lobectomy at MD Anderson includes a quantitative perfusion scan as part of the 

assessment if patients have borderline pulmonary function or performance status. The 

segment counting methods are not really used.  Our institutional guidelines use a 

threshold ppoFEV1 and ppoDLCO of 40% of predicted to guide decision making.  When 

both ppoFEV1 and ppoDLCO are greater than 40% of predicted patients are deemed as 

acceptable surgical risks from a pulmonary perspective. When either or both ppoFEV1 

or ppoDLCO are 30-39% of predicted, pulmonary exercise testing is used to further 

inform the decision.  If either ppoFEV1 or ppoDLCO are less than 30% this is 

considered high risk for surgery. 

     Looking at the scatter plots of predicted vs. actual postoperative data in figure 5a for 

FEV1 and e-figure 2a for DLCO, we see that there are very few points below the 

horizontal line where the ppo values are equal to 40% of predicted.  This is as per 



institutional and ACCP guidelines since those patients are less likely to get surgery.  But 

while ppoFEV1 and ppoDLCO are normally distributed, once we eliminate patients with 

a ppo value of <40%, we have essentially cut off the left side of the normal distribution, 

truncating the distribution. 

     How will this impact the Bland Altman (BA) plot and interpretation?  This is easier to 

understand by visualizing where the eliminated patients would be in the BA plot.  This is 

shown in e-figures 4 for DLCO and e-figure 5 for FEV1.  The BA plots in panel A include 

only patients that actually had surgery. To analyze the BA plot we need to see if the 

bias changes as the observed postoperative value changes, so we regress the 

difference between predicted and observed on the actual observed value.  This is the 

solid blue line in panel A of e-figures 4 and 5.  Note that the slope is significantly 

different than 0, so we know that the bias is not constant.  Hence we have to report 

regression-based 95% limits of agreement (LOA; shown by the blue dashed lines) 

rather than considering the LOA as fixed (as shown by the horizontal dashed lines).(7)  

The regression-based 95% LOA are shown by the dashed blue lines. 

     Where would patients with a ppo value of 40% or less be located? The heavy red 

dashed line (e-figure 4) represents patients that have a ppo value of exactly 40%. Since 

difference on the vertical axis is ppo value minus actual postoperative value, patients 

with a ppo value of less than 40% will lie below and to the left of this line, while patients 

with ppo values greater than 40% will be above and to the right of it.  There are almost 

no patients in this area since as we observed above the distribution is truncated based 

on guidelines and institutional thresholds. 



     How does missing data impact the slope of the regression line? At the right hand 

side of the BA plot, when the actual postoperative value is above approximately 70%, 

this has no impact. But on the left hand side, this results in an asymmetry since only 

patients above the red line are likely to be observed.  The result is that the regression 

line becomes steeper and more negative than it should be because of the missing data.  

The underlying cause is that for any given patients whose actual postoperative values 

are in the low to mid-range, a prediction which overestimates the true value is more 

likely to be included in the analysis (i.e. received surgery and be observed) than 

predictions that underestimate the true value (i.e. no surgery and therefore 

unobservable).  It is this asymmetry of inclusion based on the direction of the prediction 

error (i.e. over vs. underestimates) that leads to inaccurate estimates of the true 

prediction bias. 

     What happens when we include patients with ppo values that are less than 40%?  

Panel B in e-figures 4 and 5 shows this.  The red dots are the imputed values for a 

proportional sample of patients that did not receive surgery because assessed 

pulmonary reserve was deemed inadequate. Note that many, although not all, are to the 

left of the red dashed line.  This is because in our institution a value of less than 40% on 

either FEV1 or DLCO is enough to warrant further evaluation and many patients have 

only one value (either FEV1 or DLCO) that is less than 40%.  Note the solid blue line 

represents the regression line which includes the original patients (blue dots) and the 

patients with ppo values less than 40% (red dots).  Because the red dots are more often 

down and to the left in the BA plot, the regression line is less steep.  

 



Clinical Implications: Threshold Values 

     Scatter and contour plots of the bivariate normal distribution for FEV1 are shown in 

figure 5 of the main manuscript and e-figures 1.  DLCO plots are show in e-figures 2 

and 3.  Note that the original observed data (e-figure 1a) clearly shows the impact of 

selection bias, manifest as left sided truncation, because there are very few patients 

with a predicted FEV1 less than 40% by Q scan.  E-figure 1b shows the impact of 

correction for truncation (i.e. selection bias) using the tmvnorm function.  Figure c and d 

show the contour plots of the corrected underlying bivariate normal distribution for 

desired postoperative values of 30% and 40% respectively and their corresponding 

predicted value thresholds.  

 

 

  e-Table 1.  Missing Data patterns for FEV1 

 
 
 

Group  Group Means 

Frequency 
(%) 

ppoFEV1 
Q Model 

ppoFEV1 
SC18 

Model 

ppoFEV1 
SC19 

Model 

Actual 
Postoperative FEV1 

Complete 
Data 
(Surgery)  

79 (69) 65.9 65.9 65.8 68.4 

Missing Data  
(No surgery) 

35 (31) 41.1 43.2 42.5  

 
Prediction of postoperative FEV1 (ppoFEV1) models are based on quantitative perfusion scans 
(Q), segment counting with 18 segments (SC18) or segment counting with 19 segments (SC19). 
Group means are for FEV1 % of predicted. 
 



 
e-Table 2. Missing Data Patterns for DLCO 
 

Group  Group Means 

Frequency 
(%) 

ppoDLCO 
Q Model 

ppoDLCO 
SC18 

Model 

ppoDLCO 
SC19 

Model 

Actual 
Postoperative 

DLCO 

Complete 
Data 
(Surgery)  

78 (69) 60.9 61.0 60.9 61.3 

Missing Data  
(No surgery)* 

36 (31)* 35.1 37.0 36.5  

 
Prediction of postoperative DLCO (ppoDLCO) models are based on quantitative perfusion scans 
(Q), segment counting with 18 segments (SC18) or segment counting with 19 segments (SC19). 
Group means are for DLCO % of predicted. 
* One patient did have surgery and had spirometry without a DLCO. So one patient with missing 
DLCO data did have surgery. 
 
 



e-Table 3.  Correlation Between Prediction Models and Actual Postoperative FEV1 % of Predicted 
 
 

 Pearson Correlation Coefficients 
Prob > |r| under H0: Rho=0 

Number of Observations 

Prediction Models SC18 Model SC19 Model Actual 
postoperative FEV1  

Q Model  
 

0.95830 
<.0001 

114 

0.95058 
<.0001 

114 

0.74584 
<.0001 

79 

SC18 Model 
 

 0.99420 
<.0001 

114 

0.78218 
<.0001 

79 

SC19 Model 
 

  0.79499 
<.0001 

79 

 
Prediction of postoperative lung function models are based on quantitative perfusion scans (Q), 
segment counting with 18 segments (SC18) or segment counting with 19 segments (SC19). 
 
 



e-table 4. Correlation Between Prediction Models and Actual Postoperative DLCO % of 
Predicted 
 
 

 Pearson Correlation Coefficients 
Prob > |r| under H0: Rho=0 

Number of Observations 

 SC18 Model SC19 Model Actual 
postoperative DLCO  

Prediction Models 0.96111 
<.0001 

114 

0.95422 
<.0001 

114 

0.66339 
<.0001 

78 

Q Model  
 

 0.99566 
<.0001 

114 

0.70806 
<.0001 

78 

SC18 Model 
 

  0.71062 
<.0001 

78 

 
Prediction of postoperative lung function models are based on quantitative perfusion scans (Q), 
segment counting with 18 segments (SC18) or segment counting with 19 segments (SC19). 
 



e-table 5.  Variance Information on Imputation (M=30)  
 
 
 

Variance Information (30 Imputations) 

Variable Variance DF Relative 
Increase 

in Variance 

Fraction 
Missing 

Information 

Relative 
Efficiency Between Within Total 

Postoperative 
FEV1 

1.101 3.638 4.776 72.572 0.3128 0.2412 0.9920 

Postoperative 
DLCO 

1.331 4.083 5.458 70.293 0.3368 0.2559 0.9916 
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e-Figure 1. Scatter plot of actual FEV1 vs. predicted FEV1 using SC19 method 
 

  
 

  

 

 

a) Top left: Scatter plot of actual FEV1 vs. predicted FEV1 using SC19 method. 
b) Top right: Random samples of 1000 pairs were generated from underlying bivariate normal 

distribution  
c) Bottom left: Contour plot of underlying bivariate normal distribution (actual FEV1 vs. predicted FEV1 

SC19 method) for actual threshold of 30% 
d) Bottom right: Contour plot of underlying bivariate normal distribution (actual FEV1 vs. predicted 

FEV1 SC19 method) for actual threshold of 40% 



e-Figure 2. Scatter plot of actual DLCO vs. predicted DLCO using quantitative perfusion scans 
 

  
 

  
Top left: Scatter plot of actual DLCO vs. predicted DLCO using Q method. 
Top right: Random samples of 1000 pairs were generated from underlying bivariate normal distribution  
Bottom left: Contour plot of underlying bivariate normal distribution (actual DLCO vs. predicted DLCO Q 
method) for actual threshold of 30% 
Bottom right: Contour plot of underlying bivariate normal distribution (actual DLCO vs. predicted DLCO 
Q method) for actual threshold of 40% 

 

 



e-Figure 3. Scatter plot of actual DLCO vs. predicted DLCO using SC19 method 
 

  
 
 

  
 

Top left: Scatter plot of actual DLCO vs. predicted DLCO using SC19 method. 
Top right: Random samples of 1000 pairs were generated from underlying bivariate normal distribution  
Bottom left: Contour plot of underlying bivariate normal distribution (actual DLCO vs. predicted DLCO 
SC19 method) for actual threshold of 30% 
Bottom right: Contour plot of underlying bivariate normal distribution (actual DLCO vs. predicted DLCO 
SC19 method) for actual threshold of 40% 

 



e-Figure 4. Bland Altman Plot of ppoDLCO minus actual postoperative DLCO vs. actual postoperative 
DLCO 

 

 



e-Figure 5.  Bland Altman Plot of ppoFEV1 minus actual postoperative FEV1 vs. actual postoperative 
FEV1 

 

 

 

 


