Supplemental Figure 1. Gating Strategy for CNS Infiltrating Cells. EAE was induced and at the indicated times, mice were perfused and CNS tissues isolated. Infiltrating immune cells were then isolated by 30%/70% Percoll gradient centrifugation. Subsets of immune cells were gated as follows: Microglia (CD45^{lo}CD11b⁺); Neutrophils (CD45⁺CD11b⁺Ly6C^{lo}Ly6G⁺); Ly6C⁺ Monocytic Cells (CD45⁺CD11b⁺Ly6C⁻Ly6G⁻); Ly6C⁻ Monocytic Cells (CD45⁺CD11b⁺Ly6C⁻Ly6G); and CD3+ T-cells (CD45⁺CD11b⁻CD3⁺). Supplemental Figure 2. ROS Scavenger Treatment Does Not Affect T-cell Priming or Classical EAE. EAE was induced in $Socs3^{\Delta LysM}$ mice. Beginning at day 7, ROS scavenger cocktail (FeTPPS 20 mg/kg, PBN 50 mg/kg and EUK134 15 mg/kg) was administered i.p. twice per day for 5 days. (**A**, **B**) At day 13, mice were sacrificed, and immune cells isolated from inguinal lymph nodes. Cells were then stimulated with MOG₃₅₋₅₅ (20 µg/ml) for 24 h and T-cell subsets were determined by intracellular staining followed by flow cytometry analysis. Cells were gated on CD45⁺CD3⁺CD4⁺CD44^{hi} (n= 4). (**C**, **D**) At day 13, immune cells were isolated from the indicated tissues and stained with MOG₃₈₋₄₉ tetramer antibody (n = 3). (**C**) Representative dot plot and (**D**) statistical analysis of tetramer positive CD4+ T-cells (n = 3). Cells were gated on CD45⁺CD3⁺CD4⁺. (**E**) Classical EAE score of mice treated with ROS scavenger cocktail (n = 14) or vehicle control (n = 14). Mice that did not develop EAE (classical or atypical) were excluded. ns = not significant by two-tailed Student's t test (**A**) or Mann-Whitney rank sum test (**E**). Supplemental Figure 3. Response of *Socs3*-deficient Neutrophils to Other Cytokines. Bone marrow neutrophils were isolated from $Socs3^{fl/fl}$ or $Socs3^{fl/fl}$ or $Socs3^{fl/fl}$ mice. (A, B) Neutrophils were stimulated with IL-23 (10 ng/ml) for the indicated times, followed by intracellular staining for pSTAT3 (Y705) (n = 3). (C, D) Neutrophils were stimulated with IFN- γ (10 ng/ml) for the indicated times, followed by intracellular staining for pSTAT3 (Y705) (n = 3). (E) Neutrophils were stimulated with the indicated cytokines for 8 h, and expression of surface markers was analyzed. Plots are representative of three independent experiments. All flow cytometry results were gated on live, single CD45 $^+$ CD11b $^+$ Ly6G $^+$ neutrophils. Supplemental Figure 4. Gene Set Enrichment Analysis Examining Gene Sets Derived from Previously Reported Activated Neutrophil Gene Sets. Differentially expressed genes ($Socs3^{ALysM}$ G-CSF vs $Socs3^{fl/fl}$ G-CSF) were ranked based on the adjusted p value and Log2 fold change. GSEA was performed using the following previously reported data sets. Top 200 up-regulated (left) and down-regulated (right) genes from the data sets were used, respectively. (A) GSE37416. (B) GSE55385. (C) GSE69886. NES, normalized enrichment score; FDR, false discovery rate. Supplemental Figure 5. G-CSF Levels in $Socs3^{fl/fl}$ and $Socs3^{\Delta LysM}$ Mice with EAE. EAE was induced in $Socs3^{fl/fl}$ and $Socs3^{\Delta LysM}$ mice. (A) On days 7, 10, and 13, plasma samples were collected (n = 5-9) and (B) Cerebellar tissues were homogenized and supernatants collected. G-CSF levels were determined by ELISA (n = 3-5). **p < 0.01 by two-tailed Student's t test. Supplemental Figure 6. G-CSF Neutralization Reduces Circulating Neutrophils. (A-C) EAE was induced in $Socs3^{\Delta LysM}$ mice, and from day 7, anti-G-CSF Ab (20 µg/mouse) or isotype control Ab (20 µg/mouse) were administered i.p. every other day. Mice were sacrificed on day 14 for analysis. (A) Percentage of neutrophils in the blood of isotype and anti-G-CSF Ab-treated mice (n = 4-5). (B) Frequencies of neutrophils, monocytes and CD3⁺ T-cells in the blood of isotype Ab and anti-G-CSF Ab-treated mice (n = 4-5). (C) Frequencies of neutrophils from the spleen of isotype Ab and anti-G-CSF Ab-treated mice (n = 8). *p < 0.05, **p < 0.01, ***p < 0.001, ns = not significant by two-tailed Student's t test. **Supplemental Figure 7. G-CSF Neutralization Does Not Affect Classical EAE.** EAE was induced in $Socs3^{\Delta LysM}$ mice, and from day 7, anti-G-CSF Ab (20 μg/mouse) or isotype control Ab (20 μg/mouse) were administered i.p. every other day. **(A)** Classical EAE scores of mice treated with anti-G-CSF Ab (n = 11) or isotype control Ab (n = 14). **(B)** At days 13-14, mice were sacrificed and immune cells from the spinal cord were isolated by Percoll gradient, and the frequencies of Microglia (CD45^{lo}CD11b⁺); Neutrophils (CD45⁺CD11b⁺Ly6C^{lo}Ly6G⁺); Ly6C⁺ Monocytic Cells (CD45⁺CD11b⁺Ly6C⁻Ly6G⁻); Ly6C⁻ Monocytic Cells (CD45⁺CD11b⁺Ly6C⁻Ly6G⁻); and CD3+ T-cells (CD45⁺CD11b⁻CD3⁺) were determined (n = 4-7). *p < 0.05, ns = not significant by Mann-Whitney rank sum test **(A)** or two-tailed Student's t test **(B)**.