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Abstract
Background Chemicals induce compound speci�c changes on the transcriptome of an organism (toxicogenomic
�ngerprints). This provides potential insights about the cellular or physiological responses to chemical exposure and
adverse e�ects, which is needed in assessment of chemical related hazards or environmental health. In this regard,
comparison or connection of di�erent experiments becomes important when interpreting toxicogenomic experiments. Due
to lack of capturing response dynamics, comparability is often limited. In this study, we aim to overcome these constraints.
Results We developed an experimental design and bioinformatic analysis strategy to infer time and concentration-resolved
toxicogenomic �ngerprints. We projected the �ngerprints to a universal coordinate system (toxicogenomic universe), based
on a self-organizing map of toxicogenomic data retrieved from public databases. Genes clustering together in regions of
the map indicate functional relation due to co-expression under chemical exposure. To allow for quantitative description
and extrapolation of the gene-expression responses we developed a time and concentration-dependent regression model.
We applied the analysis strategy in a microarray case study exposing zebra�sh embryos to three selected model compounds
including two cyclooxygenase inhibitors. After identi�cation of key responses in the transcriptome we could compare and
characterise their association to developmental, toxicokinetic, and toxicodynamic processes using the parameter estimates
for a�ected gene clusters. Furthermore, we discuss an association of toxicogenomic e�ects with measured internal
concentrations. Conclusions The design and analysis pipeline described here could serve as a blueprint for creating
comparable toxicogenomic �ngerprints of chemicals. It integrates, aggregates, and models time and
concentration-resolved toxicogenomic data.
Key words: risk assessment; environmental monitoring; Adverse Outcome Pathway (AOP); mode of action; ’omics time
course; dose response; machine-learning; diuron; diclofenac; naproxen

Background

Chemical risk assessment and environmental monitoring are
challenged to �nd ways of accounting for a large variety and

quantity of chemicals [1], which are developed, used, and dis-
charged by modern societies [2], and to which wildlife [3]
and humans [4] are exposed during the course of their life-
times. Hence, methodological innovation for an improved and
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Key Points

i. Comparability between toxicogenomic experiments can be improved with the help of:
• the zebra�sh toxicogenomic universe – a self-organising map (SOM) of various toxicogenomic datasets providing a
common reference frame for biological interpretation, and

• a regression model allowing quantitative characterisation of biological responses and inference on a concentration and
time scale.

ii. In a case study the dynamics of key responses (related to e.g. developmental delay, stress response and cyclooxygenase
(COX) inhibition) could be identi�ed and discriminated.

more comprehensive characterisation of human and environ-
mental exposures to chemicals [5] and their related e�ects [6]
is sought.
O�ering comprehensive response detection, toxicogenomic

methods are suggested for an improved assessment of chem-
ical related hazards [7] or environmental health [8]. Because
chemicals induce characteristic transcriptome changes (toxi-
cogenomic �ngerprints) in tissues [9] and whole organisms
[10], ’omics approaches provide novel possibilities for expo-
sure and e�ect diagnosis for ill-characterised chemicals and
environmental samples [11, 12] and may extend the prediction
of toxicity on the basis of mechanistic information [13]. In this
regard, comparison or connection of di�erent experiments be-
comes crucial for the interpretation of toxicogenomic observa-
tions [14].
When comparing gene expression pro�les, the sheer

amount of signals in an ’omics dataset poses a quest for com-
parison and extraction of relevant patterns [15]. The appli-
cation of self-organising maps (SOMs), a machine learning
method developed by Kohonen [16], has been shown to be valu-
able for the comparison of transcriptome pro�les of di�erent
tissues [15] and cancer subtypes [17]. Here, we aimed at im-
proving comparability of toxicogenomic �ngerprints with the
help of a SOM. This is not yet an established approach in toxi-
cogenomics.
Furthermore, comparability between toxicogenomic

datasets is typically limited due to substantial di�erences in
study designs, e.g. with respect to selected exposure time and
concentration [18]. In their pioneering studies investigating
toxicogenomic �ngerprints Hamadeh et al. [9] and Yang et al.
[10] showed that responses vary with exposure time and
concentration. This implies that comparative interpretations
of toxicogenomic �ngerprints undergo a risk of deriving
ambiguous conclusions, when neglecting the concentration
and time dependence of the reported responses. Additionally,
this severely limits the scope for interpretation or prediction
of e�ects for untested exposures in risk assessment or
monitoring e�orts. Therefore, comparability would require
means for extrapolation. Studies that have analysed time or
concentration-resolved toxicogenomic �ngerprints applied
correlation networks [e.g. 19], unsupervised clustering [e.g.
20], or a set of di�erent regression models [e.g. 21, 22] to
describe the responses. However, an integration of concen-
tration and time dependence in one model has not yet been
achieved for toxicogenomic responses. Therefore, in this study
we strived for establishing a regression model capturing time
and concentration dependence of toxicogenomic responses.
Taken together we aimed to integrate, aggregate and model

dynamic toxicogenomic responses in order to obtain aggre-
gated compound �ngerprints, which can be extrapolated on
the scale of exposure duration and concentration, and which
are comparable between di�erent compounds and studies.

To address the raised issues, we developed an analysis
pipeline combining the algorithm of self-organising maps
(SOMs) with a concentration and time-dependent response-
model (CTR-model). With the SOM we integrated previously
published toxicogenomic data to a reference frame which we
called toxicogenomic universe and aggregated toxicogenomic �n-
gerprints from single compounds to this reference frame to fos-
ter comparison between the �ngerprints. A regression model
was built to derive quantitative parameters for comparing re-
sponse dynamics and extending the scope for inference.
In order to demonstrate the added value of the suggested ap-

proach, we performed an experimental case study and applied
the pipeline on microarray data of the zebra�sh embryo (Danio
rerio) after exposure to three selected environmentally relevant
contaminants. The experimental design covered six di�erent
exposure durations and �ve increasing compound concentra-
tions. The three compounds were diclofenac and naproxen, two
pharmaceuticals known to inhibit the enzyme cyclooxygenase
(COX) in humans, and diuron, a herbicide known to target the
arylhydrocarbon receptor (AHR) pathway in mammalian cells
[23].
Besides gene-expression we alsomeasured the internal con-

centrations of all three compounds after the exposure. To-
gether with parameter estimates from the CTR-model this al-
lowed to separate toxicodynamic from toxicokinetic responses.
Finally, we discuss the suggested analysis pipeline for achieved
progress in inferential statements on compounds e�ects, and
outline further uses in the �eld of toxicogenomics.

Data description

In this study we integrated transcriptome data of the zebra�sh
embryo (ZFE) from public databases with transcriptome data
from our own exposure experiments to infer a universal SOM.
Based on this, we performed a case study further investigat-
ing the time and concentration-resolved toxicogenomic �n-
gerprints from our exposure experiments. In this section we
brie�y describe the dataset used for generating the SOM and
explain the experimental design and selection of model com-
pounds for the case study.

Dataset for generating the toxicogenomic universe

For the generation of a toxicogenomic universe for the ZFE
we used the toxicogenomic �ngerprints of the model sub-
stances measured in this study in combination with previ-
ously published toxicogenomic �ngerprints in the ZFE. Data
were selected, downloaded and processed from Gene Expres-
sion Omnibus (GEO) and ArrayExpress in a semi-automatic
work�ow, which can be accessed via protocols.io (doi.org/10.
17504/protocols.io.s24eggw). A summary of datasets included
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in our study is provided in Table S1. The included microarray
platforms were annotated to the most recent zebra�sh genome
(Genome Reference Consortium Zebra�sh Build 11), and En-
sembl gene annotation (Ensembl database release 93 [24]).

Case study

For our case study, investigating time and concentration-
dependent toxicogenomic responses in the ZFE, we selected
three environmentally relevant model compounds, namely di-
uron, diclofenac, and naproxen:
Diclofenac (CAS RN: 15307-79-6) is used as a pharmaceu-

tical substance, often applied as a pain killer and to reduce
in�ammation. It belongs to the group of non-steroidal anti-
in�ammatory drugs (NSAIDs) and is a known inhibitor of both
variants of the COX enyzme. COX produces prostaglandins,
which act as in�ammatory signalling molecules [reviewed in
25]. By inhibiting COX an in�ammatory response is repressed.
As environmental toxicant, diclofenac gained attention due to
its toxicity in vultures, which has led to a signi�cant decline in
the vulture population in Pakistan [26]. Furthermore, it was
identi�ed as a priority pollutant in aquatic environments [e.g.
27]. Several toxicological studies were performed using aquatic
organisms [reviewed in 28]. In �sh, adverse e�ects of di-
clofenac on gill, liver, kidney and the gastrointestinal tract, as
well as reduced egg growth and delay in hatching have been re-
ported. Diclofenac has also been associated with drug-induced
liver toxicity in response to the formation of reactive metabo-
lites, mitochondrial dysfunction and impairment of ATP syn-
thesis [29, 30].
Naproxen (CAS RN: 26159-34-2), like diclofenac, is widely

applied as a COX inhibitor of the NSAID group. It has been de-
tected in surface waters [31, 32, 27] and it was shown to lead to
histopathological liver damage and pericardial edema in ZFEs
[33].
The third compound used in this study was diuron (CAS RN:

330-54-1), a herbicide listed as a priority substance to be mon-
itored under the European Water Framework Directive [34]. In
plants, it is known to speci�cally inhibit the electron trans-
fer from photosystem II. In mammalian cells, it was found to
bind to the AHR [23]. In the ZFE, diuron has been reported to
provoke sublethal e�ects on heartbeat and spontaneous move-
ments [35]. We thus expected diuron to act di�erently com-
pared to diclofenac and naproxen.
Experimental design
Exposure settings for our transcriptome measurements were
designed to meet several requirements: We intended to follow
compound speci�c toxicodynamic processes but also account
for di�erences in toxicokinetics. Most importantly, results
were meant to be comparable among the di�erent compounds.
The exposure for a standard ZFE toxicity test starts imme-

diately after fertilisation [36]. However, as we expect many
unspeci�c e�ects when disturbing the �rst hours of develop-
ment, we opted for an exposure period between 24 and 96
hours post fertilization (hpf). Time points of RNA-extraction
during the exposure were 3, 6, 12, 24, 48, and 72 hours post
exposure (hpe). The exposure concentrations were phenotypi-
cally anchored to the lethal concentration (LC) at 96 hpf/72 hpe.
The LC25, modelled from experimental observations (see sup-
plementary methods) served as highest and the LC0.5 as lowestexposure concentration with 6 equal dilution steps in between,
with dilution steps 1, 2, 4, and 6 chosen for exposure (see Equa-
tion 1, Equation 2, Figure S1). The selected concentrations for
transcriptome experiments can be found in the supplementary

methods �le.

Dilution factor (df) = 6
√
LC25
LC0.5 (1)

Exposure concentrations = LC25dfx ; x = 0, 1, 2, 4, 6 (2)

Data and code availability

Themicroarray data of this study have been deposited in NCBI’s
Gene Expression Omnibus [37] and are accessible through
GEO Series accession number GSE109496 (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE109496). The functions
used for analyses and �gures have been compiled in the R-
package toxpro�leR, which is available via (https://git.ufz.de/
itox/toxprofileR/).

Data analyses and Results

Our analysis aimed at obtaining aggregated dynamic toxicoge-
nomic �ngerprints from themeasured transcriptome data. The
key parts of the analysis work�ow (depicted in Figure 1) are
• integration of previously published and new toxicogenomic
datasets using a self-organising map (SOM) into the Ze-
bra�sh Embryo Toxicogenomic Universe (ZTU) (Figure 2);

• aggregation of compound toxicogenomic �ngerprints by pro-
jection onto the ZTU (Figure 3);

• modelling of time and concentration-resolved responses us-
ing a regression model (Figure 4);

• exploration of the analysis results with the help of an inter-
active toxicogenomic �ngerprint browser (Figure 5).

In the following, we will describe the analysis steps and the
respective results in more detail. Subsequently, we report the
results of a case study in which we applied the work�ow.

Integration: The Zebra�sh Embryo Toxicogenomic Uni-
verse (ZTU)

A compiled dataset of published toxicogenomic data was com-
bined with data from our three single compound exposures
to infer the Zebra�sh Embryo Toxicogenomic Universe (ZTU)
based on all currently retrievable toxicogenomic zebra�sh em-
bryo (ZFE) microarray data. The dataset containing log2(fold-changes) (logFCs) from 342 di�erent treatments and for 29046
unique genes was used to infer a self-organising map (SOM)
(Figure 2). This method organises genes into groups of co-
regulated or co-expressed transcripts. Those groups are ar-
ranged on a two-dimensional grid in a way that similar be-
having (i.e., co-expressed) groups end up in the same regions.
Each coordinate on the map gets assigned a distinct group of
genes. As the ZTU is derived from toxicogenomic data we call
this coordinate toxnode with reference to the term node used
in general network terminology (equivalent to the term meta-
gene in Wirth et al. [15]). The outcome of this step is a 60×60
grid of 3600 toxnodes. Each gene present in our dataset is per-
manently assigned to one toxnode, while each node contains
genes which behave similarly across all exposure conditions.
The number of genes per toxnode ranges from one up to 54
genes with an average of 7 genes per node (Figure 2A).
To obtain an overview over the ZTU we grouped the 3600

toxnodes into 118 clusters (which we determined to be among
the optimal cluster sizes, see supplmentary methods) with the
help of k-means clustering. To enable easy description of the
clusters a random name was assigned to each cluster of nodes.
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f(x)

Figure 1. Flowchart of analysis pipeline to obtain dynamic toxicogenomic �ngerprints.

The clustering is visualized in Figure 2B, and summarized in
Table S2.
The data integration and clustering with the help of the

SOM and subsequent k-means clustering may help in biologi-
cal interpretation of toxicogenomic responses in the ZFE. We
performed an over-representation analysis for functional an-
notation terms from the databases ZFIN [38], InterPro [39],
Reactome [40], and Gene Ontology (GO) [41, 42]. Biological
annotations of at least one of the four databases are signi�-
cantly enriched for 100 of 118 clusters in the ZTU (Table S3-S5).
The clusters with the highest proportion of genes assigned to
a common function in the four databases are cluster Trae con-
taining mainly a set of di�erent crystallin genes (InterPro do-
main: Beta/gamma crystallin in 37 of 52 genes, enriched with
an adjusted p-value of 3 × 10–89; ZFIN: solid lens vesicle, 15 of
52 genes, adj. p-value 5× 10–11), the cluster Dakota containing
di�erent vitellogenin genes (GO: lipid transporter activity, 5 of
10 genes, adj. p-value: 7 × 10–11; ZFIN: unfertilized egg, 3 of 10
genes, adj. p-value: 6 × 10–6; interpro: vitellogenin, open beta-
sheet, 6 of 10 genes, adj. p-value: 9×10–19), and cluster Vincent
containing genes enriched for the upstream regulator RUNX1 as
well as for oxygen transport (Reactome: RUNX1 regulates tran-
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Figure 2. Response integration: The Zebra�sh Embryo Toxicogenomic Uni-
verse (ZTU) comprising of 3600 toxnodes. A: Number of genes per toxnode.
B: 118 clusters of toxnodes, each color represents a distinct cluster. For cluster
assignments also compare Table S2.

scription of genes involved in di�erentiation of keratinocytes, 9 of
42 genes, adj. p-value: 2× 10–21; GO: oxygen transport, 5 of 42
genes, adj. p-value: 9× 10–11).
Examples of further functional enrichments for toxnode

clusters, which are a�ected and explained in detail later on
in our case study, are cluster John, containing a set of genes
expressed in the pancreas (ZFIN: pancreas, 14 of 87 genes, adj.
p-value: 1 × 10–10) , cluster Karan, containing genes associ-
ated with cell death (GO: regulation of cell death, 10 of 56 genes,
adj. p-value: 7 × 10–5), cluster Pauline, containing genes as-
sociated with phase II biotransformation (Reactome: Danio re-
rio: phase II - conjugation of compounds, 10 of 56 genes, adj. p-
value: 3 × 10–12), and cluster Taamira, containing genes asso-
ciated with the arachidonic acid pathway (GO: arachidonic acid
metabolic process, 3 of 23 genes, adj. p-value: 2× 10–5).

Aggregation: Compound �ngerprints projected on the
ZTU

The ZTU retrieved in the previous step can be used as a univer-
sal coordinate system to project any exposure speci�c �nger-
print. In Figure 3 this is exemplary shown for the treatment
with naproxen (see Figures S2 and S3 for diuron and diclofenac
treatments, respectively). Here, the average logFCs of each
toxnode for the di�erent exposure settings are shown. This
allows us to obtain an impression of the response to exposure
against a compound for the de�ned conditions.
We observe that the �ngerprints show regulation in both

directions (up and down-regulation). It also becomes obvious
that �ngerprints di�er between exposure compound, duration,
and concentration, but also show some commonalities. Unlike
it might have been expected, diclofenac and naproxen – both
known to inhibit the same enzyme – show distinctly di�erent
patterns in their toxicogenomic �ngerprints.
These observations can already give some insight about the

toxicogenomic responses, yet they only allow for anecdotal in-
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Figure 3. Response aggregation: Toxicodynamic �ngerprint of naproxen projecting the responses of 30,000 transcripts on 3,600 nodes in the toxicogenomic
universe. Shown is a grid of the mean logFC �ngerprints for each sampled time point/exposure concentration. df: dilution factor (1.15 for naproxen) LC25:
exposure concentration at which 25% of embryos show lethal e�ects after 72 hours of exposure (309 µmol/L for naproxen)

terpretations. For a more generalisable exploration, a mod-
elling approach was deemed helpful and followed in the next
step.

Modelling: Regression models for time and concentra-
tion dependent toxicogenomic responses

The analysis up to this step allows the consideration of �ndings
speci�c for each exposure setting. In order to arrive at a more
general and transferable response characterisation, which al-
lows more than qualitative extrapolation and comparison be-
tween substances, we strived for a quantitative description of
the measured transcriptional changes. Therefore, we imple-
mented a regression model, capturing the toxicogenomic re-
sponses over concentration and time for di�erent substances.
The concentration and time-dependent response-

model (CTR-model) describes concentration dependence
in a monophasic and time dependence in a biphasic manner.
Therefore, we call it mobi-CTR-model, here. It is based on
the Hill equation, a 3-parameter non-linear model, originally
describing the binding of oxygen to haemoglobin as dependent
on oxygen saturation [43]. Due to its �exibility on the one
hand and physiological meaningfulness on the other hand, it
was later on used in many applications [reviewed in 44] and
also proposed for pharmacological dose response modeling
[45]. One representation of the Hill-equation is provided in
Equation 3. It is de�ned by the parameters logFCmax, slope,and X50. The parameter logFCmax is the maximum logarithmic
fold change observed for the respective transcript or toxnode,
the slope de�nes the steepness of the curve and X50 de�nesthe concentration, for which the response (i.e., logFC) reaches
half-maximum.
The progression of the response over time can be captured

by a time dependent description of the parameter X50 in Equa-tion 3. Empirically, we discovered that the dynamics of the re-
ciprocal of X50 is in many cases accurately captured by the loga-rithmic Gaussian function (Equation 4). We call the reciprocal
of X50 sensitivity, since a large value indicates a sensitive re-sponse. When inserting Equation 4 into Equation 3, we obtain
a complete regressionmodel describing the time and concentra-
tion dependent logFC after compound exposure (Equation 5):

logFC(c) = logFCmax
1 + e–slope∗(log(c)–log(X50)) (3)

sensitivity(t) = 1
X50(t) = Smax ∗ e

–0.5∗( log(t)–log(tmax)Sdur
)2 (4)

logFC(c, t) =
logFCmax/ [1 + exp (–slope ∗ (log(c)–
log(1/(Smax ∗ exp(–0.5 ∗ (log(t)–
log(tmax))/Sdur)2)))

)] + ε,
ε ∼ N (0, σ2),

(5)

where logFCmax corresponds to the maximum fold change of
the respective node across all conditions, Smax is the maximumsensitivity (1/EC50) of the gene, tmax is the point in time withmaximum sensitivity, and Sdur represents a measure of dura-tion of the sensitivity interval.
An exemplary model �t is shown in Figure 4 for toxnode

#1119. This node is sensitive in response to the exposure
against all three substances. The di�erent dynamics are re-
�ected in the parameter estimates. For example, tmax is sub-stantially smaller for diuron (8.8 hpe), than for diclofenac (41.3
hpe) and naproxen (50.6 hpe), re�ecting an earlier response
for the former. The smaller values of Sdur for diclofenac (0.42)and naproxen (0.35) in comparison to diuron (0.8) indicate a
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Figure 4. Response modelling: Model �t for response of toxnode #1119 - containing the gene for nfe2l2b - towards model compound exposure. The regression
model allows a three dimensional interpolation of time and concentration dependence. Shaded areas indicate a 95% con�dence interval; dashed lines indicate
2.5%/97.5% quantile of the respective controls.

shorter time frame of sensitivity for this toxnode regarding
both of the COX inhibitors. The values of Smax indicate that thetoxnode responds much more sensitive to diclofenac exposure
in comparison with the other two compounds.
Themobi-CTR-model was �tted to the measured responses

(i.e, logFCs) of each toxnode arriving at a quantitative aggre-
gation of time and concentration-dependent toxicogenomic re-
sponses. In contrast to Figures 3, S2, and S3, we can now aggre-
gate the response information to one �ngerprint, and accord-
ingly one plot, per substance, by projecting the estimates for
a parameter on the ZTU. These aggregated �ngerprints then
allow a systematic analysis as we will demonstrate in the case
study below.
Quality of data description by �ttedmodel. The model �tting algo-
rithm converged for all nodes and thus provided viable param-
eter estimates. There is no trivial measure for goodness of �t
for non-linear models (such as R2 for linear models, compare
[46]). Therefore, the quality of data description by the model
was determined using the small sample Akaike information cri-
terion (AICc)-weight compared to a null model. In the vast ma-jority of cases the regression models are preferred over the null
model (Figure S4 A-C). When comparing the regressionmodels
to the more �exible spline �t (Figure S4 D-F) which is assumed
to o�er the optimal data description here, there are (as could be
expected) many toxnodes, for which the spline provides better
data description. However, for roughly 20% of the nodes the
mobi-CTR-models are even preferred over a spline �t, thus in-
dicating a good description of the data by the model �t. In
contrast to the CTR-model the spline �t does not o�er much
scope for inference. The major advantage of the CTR-model is
that the parameters can be interpreted in a biological context.
Selection of signi�cantly a�ected toxnodes. Typically, we only ex-
pect a small fraction of the toxnodes to show a statistically sig-
ni�cant response after exposure to a speci�c compound. To

judge whether a node shows a signi�cant regulation in our ex-
posure scenario, we compared the 95% con�dence interval for
the regression model �ts with the 2.5% and 97.5% quantiles
of control measurements. We selected those nodes with a sum
of di�erences between these curves above or below zero (see
Figure S5A for visualization). This resulted in a total number
of 432 signi�cantly a�ected nodes with 60 nodes for diuron,
73 nodes for diclofenac, and 353 nodes for naproxen exposure,
meeting this criterion (Tables S7-S9). Eight nodes are regu-
lated in both diuron and diclofenac exposures (one in di�erent
directions), 22 nodes in diuron and naproxen (6 in di�erent di-
rections), and 18 nodes in diclofenac and naproxen exposures
(3 in di�erent directions), three nodes are regulated in expo-
sures of all three compounds (Figure S5B).

Exploration: Toxicogenomic �ngerprint browser

To ease the exploration of the toxicogenomic �ngerprints in the
context of the ZTU, we created an online �ngerprint browser
(https://webapp.ufz.de/itox/tfpbrowser). A screenshot of the
browser is shown in Figure 5. The browser allows visualis-
ing �ngerprints of di�erent exposure conditions and provides
details about toxnode responses and genes that are assigned
to the respective nodes. It is possible to select di�erent sub-
stances and exposure conditions (Figure 5A) or to search for
genes in the universe (Figure 5B). After treatment selection
the respective �ngerprint is shown (Figure 5C). When select-
ing a toxnode on the �ngerprint or searching for a speci�c
gene name, the CTR-model �t is shown (Figure 5D). Further-
more, the member genes and some functional annotation are
displayed (Figure 5E).
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C: fingerprintA: exposure 
conditions

B: gene
search

D: node model fit

E: node gene table

Figure 5. Response exploration: Screenshot of interactive toxicogenomic �ngerprint browser (available via https://webapp.ufz.de/itox/tfpbrowser). This online tool
allows to access visualizations of toxicogenomic �ngerprints, model �ts and detailed investigation of single toxnodes.

Case study: Investigation of toxicogenomic �nger-
prints of three model compounds

In order to demonstrate the added value of our approach, we
conducted a case study and applied the described pipeline on
toxicogenomic data of the three model compounds diuron, di-
clofenac, and naproxen. By applying a combination of �nger-
print projection on the ZTU and regression modelling, as it was
described above, we received quantitative, dynamic toxicoge-
nomic �ngerprints of the three compounds. This is exemplar-
ily shown in Figure 6 where generalized representations of the
three dynamic �ngerprints are visualised by a projection of pa-
rameter estimates for tmax on the ZTU. In the �gure each signif-icantly a�ected toxnode is coloured according to the estimated
tmax. The size of each dot indicates the extent of regulation forthe measured conditions. Furthermore, some node clusters are
highlighted which we will discuss below.
The �gure shows that naproxen exposure a�ects consider-

ably more toxnodes in the ZTU than exposures against diuron
or diclofenac. We can identify commonly and di�erentially af-
fected toxnodes and clusters on themap, e.g. cluster John, com-
prising many toxnodes a�ected late during exposures against
diuron and naproxen, cluster Trae a�ected early by diuron and
diclofenac, or cluster Roman only induced by diuron, as we will
discuss in more detail below.
Generally, there are two kinds of information we can deduce

from the dynamic toxicogenomic �ngerprints: First, the clus-
tering of genes into the same toxnode or region of the ZTU may
indicate a common upstream regulator or common cellular pro-
cess which the genes are involved in. Thus, the member genes
of toxnodes a�ected by a compound exposuremay provide qual-
itative functional information about the response. Second, the
estimated model parameters provide quantitative information

about the dynamics (i.e., tmax, Sdur) and the concentration de-pendence (i.e. Smax, slope) of the e�ects. Additionally, the ra-
tio of min(EC50)morphologicalmin(EC50)toxnode (ratiom/t) indicates the concentration
range that lies between e�ects on toxnode regulation and mor-
phological e�ects observable under the microscope.
In this regard, we inspected the toxicogenomic �ngerprints

retrieved by the pipeline (lists of signi�cantly a�ected toxn-
odes can be found in supplmentary tables S7-S9). We explored
the a�ected nodes and their model parameters in the �nger-
print of diuron and compared this to the �ngerprints of di-
clofenac and naproxen. In doing so, we speci�cally focused
on e�ects which could be linked to an exposure against COX
inhibitors.
Diuron
We found 60 toxnodes in 35 clusters to be signi�cantly a�ected
in the �ngerprint of diuron (Figure 6A, Table S7). Here we will
focus on the e�ects in cluster Roman, Nikkii, Trae, and John.
Roman. The most prominently a�ected node in the �ngerprint
of diuron is #818 in cluster Roman . It comprises of genes for
phase I biotransformation enzymes of the cytochrome P450
family CYP1 (cyp1a, cyp1c1, cyp1c2). The tmax was �tted to 18.4hpe. With a Sdur of 0.8 it belongs to the toxnodes with the mostsustained response after diuron exposure. Diuron is known to
bind to the AHR in mammalian cells [23] which is an upstream
regulator of CYP1 genes. The strong induction of these genes
in the toxicogenomic �ngerprint indicates a persistent interac-
tion of diuron with the AHR in ZFE.
Nikkii. Additionally, we observed toxnodes #2223 and #2283 to
be up-regulated in the �ngerprint. These nodes are assigned
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Figure 6. Case study: Fitted parameter values for time point of maximum sen-
sitivity (tmax) of all signi�cant toxnodes projected on toxicogenomic universe.
Selected clusters are highlighted in the plots and are discussed in the text.

to cluster Nikkii, which is enriched for genes involved in the
phototransduction pathway (Table S5). Both toxnodes were in-
duced early (tmax 3.3 and 3.8 hpe, respectively) with a highsensitivity compared to other nodes (ratiom/t > 10). Similarparameter estimates were found for the three signi�cantly in-
duced nodes of cluster Robert (#3431, #3550, #3549) and Tiana
(#3310, #3370, #3371), which are enriched for retinal photore-
ceptor layer and the neuronal system (tmax between 1.5 and 3.8hpe, ratiom/t > 10). This early induction of the phototransduc-tion pathway was not observed with the other two compounds
and may be connected to an observed increase of locomotor re-
sponse after diuron exposure [35, 47]. Some of these nodes
as well as some other nodes of the clusters Nikki and Robert
were found to be down-regulated with naproxen, though sig-
ni�cantly later and less sensitive with a tmax between 57 and75 hpe and a ratiom/t < 1.5 (see also Figure 6).
Trae. Toxnodes #3551, #3552, and #3553 belong to cluster Trae
and were down-regulated early after diuron exposure (tmax = 8hpe for all three nodes). The same was observed with di-
clofenac where six nodes of cluster Trae were down-regulated
with similar values for tmax between 6.1 and 7.3 hpe (Figure 6).This cluster did not appear to be a�ected in the naproxen �n-
gerprint. As already mentioned above, cluster Trae is highly
enriched for crystallin genes (Table S4).
John. In contrast to this early regulation, we found toxnodes
#1151, #1328, #1149, #1211, #1092, and #1387, all belonging to
cluster John, as down-regulated with diuron exposure with a
tmax between 62 and 74 hpe indicating a late response. Thiscluster is signi�cantly enriched for pancreatic enzymes (Table
S6). We also observed these, as well as six additional nodes
of the same cluster, to be down-regulated in the �ngerprint
of naproxen with similar values for tmax estimated between 53and 75 hpe (Figure 6).
Diclofenac and Naproxen
By comparing the �ngerprints of the three compounds we
found 15 toxnodes to be signi�cantly up- or down-regulated
in the same direction in response to the two known COX in-
hibitors, naproxen and diclofenac, without showing a signi�-
cant regulation in response to diuron. A selection of estimated
CTR-model parameters for these nodes are summarized in Ta-
ble 1. Similar as for diuron, the most prominently a�ected
nodes after diclofenac and naproxen exposure contain genes
for biotransformation enzymes (compare Tables S8-S9). Yet,
the speci�c enzymes were in part di�erent from the ones up-
regulated with diuron exposure and were mainly located in the
clusters Taamira and Pauline in the ZTU as opposed to cluster
Roman under diuron exposure.
Taamira. Cluster Taamira is, among others, enriched for genes
annotated with phase I functionalization and arachidonic acid
metabolism (Table S5). It contains two toxnodes, which are
speci�cally induced by the COX inhibitors: Node #1179 is most
prominently a�ected with both diclofenac and naproxen ex-
posures and contains the gene cyp2k18, coding for a phase I
metabolic enzyme of the cytochrome P450 family which was
shown to be induced by di�erent known hepatotoxicants in
Poon et al. [48]; the neighbouring node #1118 contains a gene
coding for cyp2c9 (a paralogous enzyme of cyp2k18) and the
genes abcc2 and abcb5 coding for ABC transporter proteins.
The membrane transporter Abcc2 is known to eliminate es-
pecially phase II biotransformation products including conju-
gated drugs from the cells [49]. The a�ected nodes in cluster
Taamira have a �tted tmax between 44 and 54 hpe for diclofenac,which is around 25 hours later compared to the regulation of
biotransformation induced by diuron. For naproxen the �tted

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Schüttler et al. | 9

tmax of theses nodes is falling between 69 and 75 hpe, andtherefore another 15 hours later compared to diclofenac (com-
pare Table 1). The sensitivity of the nodes is comparably high
for both compounds, but higher for naproxen with a ratiol/t of6.1 compared to 2.3 for diclofenac.
Pauline. In cluster Pauline, which is enriched, among others,
for phase II biotransformation, glutathione transferase activ-
ity, and detoxi�cation of reactive oxygen species (Table S3,
S5), toxnode #2985 is speci�cally up-regulated by diclofenac
and naproxen. It contains genes coding for metabolic en-
zymes like carbonyl reductase 1-like enzyme (cbr1l), dehy-
drogenase/reductase (SDR family member 13 like 1, dhrs13l1),
persul�de dioxygenase (ethe1), microsomal glutathione S-
transferase (mgst3b), and a sulfotransferase (sult6b1). With
a tmax of 52.6 hpe (diclofenac) and 53.7 hpe (naproxen) it be-longs to the earliest regulated toxnodes appearing in the �n-
gerprints of both diclofenac and naproxen. Other toxnodes of
this cluster, such as #3045, are as well induced with both COX
inhibitors, even though not signi�cantly with diclofenac, and
contain genes such as peroxiredoxin (prdx1) or glutathione S-
transferases (gsta2, gstp1) and reductases (gsr). Most of these
enzymes belong to the group of oxidoreductases and the results
of the over-representation analyses indicate their involvement

in response to oxidative stress.
Deisy. Two of the most prominently induced toxnodes in di-
clofenac and naproxen �ngerprints belong to cluster Deisy:
Toxnode #1062 is up-regulated with a tmax of 46 hpe withdiclofenac and 72 hpe with naproxen. It contains the genes
for the two hormones leptin alpha (lepa) and parathyroid hor-
mone 1a (pth1a); toxnode #1241 contains di�erent variants of
the heat-shock protein hsp70 and is induced with tmax valuesof 62 and 64 hpe for diclofenac and naproxen, respectively. The
induction of hsp70 by NSAIDs has been shown before [e.g. 50].
Also, a change in leptin levels after diclofenac exposure has
been reported [29]. The induction of leptin might be linked to
the arachidonic acid pathway [51], which is disturbed by the
inhibition of COX [52]. Additionally, leptin levels are related to
the state of energy metabolism [53], which indicates that the
COX inhibitors might induce a change in energy metabolism in
the ZFE. This is further corroborated by the induction of toxn-
ode #1120 in the same cluster (not signi�cant with diclofenac),
containing the genes for cocaine- and amphetamine-regulated
transcript 3 (cart3) and apoptosis facilitator Bcl-2-like protein
14 (CABZ01020840.1). Up-regulation of cart3 has been asso-
ciated with anorexigenic e�ects in response to stress in adult
zebra�sh [54], while the BCL2 family of proteins is known to

Table 1. Parameter estimates (mobi-CTR model) for toxnodes speci�cally a�ected by diclofenac and naproxen in our experiment. ratiol/t:
min(LC50)/min(X50)toxnode; ratiom/t: min(EC50)morphological/min(X50)toxnode. Positive sum(CI) indicate up-regulation, negative indicate down-regulation of respective toxnodes. logFCmax represents maximum logFC per node across all treatments in our experiments.
tn# genes cluster

lo
gF
C m
ax tmax Smax sum(CI) ratiol/t ratiom/t

DI
C

NP
X

DI
C

NP
X

DI
C

NP
X

DI
C

NP
X

DI
C

NP
X

1118 abcc2,
CYP2C9, abcb5

Taamira 2.2 44.1 75.0 0.283 0.017 2.84 7.80 2.3 6.1 2.0 3.0
1179 cyp2k18 Taamira 4.8 48.9 69.0 0.283 0.017 12.02 34.12 2.3 6.1 2.0 3.0
2985 cbr1l, dhrs13l1,

ethe1, mgst3b,
sult6b1

Pauline 2.1 52.6 53.7 0.094 0.017 0.01 2.31 0.8 6.1 0.7 3.0

1062 lepa, pth1a Deisy 3.6 46.1 72.0 0.229 0.017 5.38 8.60 1.9 6.1 1.6 3.0
1241 hsp70l,

hsp70.1,
hsp70.2

Deisy 3.3 61.6 64.0 0.149 0.017 2.35 10.39 1.2 6.1 1.1 3.0

3039 dusp1, cyr61,
gadd45ba,
sik1, nfkbiaa

Karan 1.7 55.2 72.9 0.146 0.005 0.07 0.11 1.2 1.8 1.0 0.9

3040 btg2,
zgc:162730,
tcima, ier2b,
egr2a, jdp2b

Karan 2.1 55.6 75.0 0.148 0.007 0.09 1.33 1.2 2.5 1.1 1.2

3100 socs3a, fosab Karan 3.3 53.8 73.0 0.180 0.006 2.59 2.96 1.5 2.1 1.3 1.1
3101 serpine1, atf3,

junba
Karan 3.2 54.0 75.0 0.137 0.007 0.53 7.96 1.1 2.5 1.0 1.2

1000 isg15 Farajallah 5.1 72.4 75.0 0.113 0.008 0.08 17.17 0.9 2.9 0.8 1.4
3161 socs3b,

timp2b,
CR855311.1,
clu

Farajallah 2.6 63.9 74.7 0.141 0.007 0.06 4.89 1.1 2.5 1.0 1.2

17 RF00020 Tashina 2.5 75.0 62.6 0.140 0.007 0.72 5.47 1.1 2.5 1.0 1.2
2041 si:ch211-

125e6.5,
si:ch211-
125e6.14,
zgc:172053

Vincent 1.5 75.0 74.3 0.164 0.004 0.02 0.61 1.3 1.4 1.2 0.7

3157 igfbp1b Daniel 2.7 73.6 75.0 0.136 0.009 0.08 5.83 1.1 3.2 1.0 1.6
3173 pdzd3a Talon -2.0 49.3 74.0 0.131 0.007 -0.05 -4.33 1.1 2.5 0.9 1.2
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regulate stress induced apoptosis [55].
Karan/Farajallah. Further COX inhibitor-speci�c toxnodes (Ta-
ble 1) belong, among others, to cluster Karan (#3100, #3101,
#3039, #3040) and the cluster Farajallah (#3161, #1000). Clus-
ter Karan is signi�cantly enriched for MAP-kinase phosphatase
activity (Tables S3, S4, S5; e.g. gene dusp1), transcription fac-
tors of the AP1 family and the toll-like receptor cascade (Tables
S4, S5; e.g. genes fosab, jdp2d, atf3, junab, nfkbiaa), as well as
the regulation of cell death and cell cycle (Table S3; e.g. genes
cyr61, gadd45ba, junba). Additionally, it is enriched for an in-
�ammatory response to biotic stimulus which is also true for
cluster Farajallah which is, in line with that, also enriched for
the complement cascade (Tables S3, S5). Furthermore, toxn-
odes containing genes known to be involved in immune re-
sponse are part of cluster Karan but only found to be a�ected
by naproxen. For example, this is toxnode #3041, containing
COX2b (here ptgs2b), serum/glucocorticoid regulated kinase 1
(sgk1), CCAAT enhancer binding protein beta (cebpb), which all
have shown to be involved in in�ammation [56, 57].
Regulation of Karan/Farajallah by Deisy. Several genes and path-
ways observed to be up-regulated in cluster Karan have been
reported to be regulated by leptin, which is induced compar-
atively early within the cluster Deisy (see above). For exam-
ple, leptin is known to induce mitogen-activated protein ki-
nase (MAPK) cascades as well as the JAK/STAT signaling path-
way [reviewed in 58] and stimulate the expression of socs3
as feedback regulator as well as timp1 [reviewied in 59]. The
stimulation of c-fos genes by leptin mediated via the STAT3
pathway was also reported before [60]. Furthermore, leptin
and parathyroid hormone (PTH) were shown to regulate COX-2
mRNA expression [61, 62, 63]. Therefore, we hypothesise that
leptin is one of the key regulators of the responses in cluster
Karan which are induced later than Deisy with a tmax of 54-55hpe with diclofenac and 73-75 hpe with naproxen.
The tmax values of the cluster Farajallah (64-72 hpe with di-clofenac, 75 hpe with naproxen) indicate an even more down-

stream response induced after the induction of Karan. With
a ratiol/t between 0.9 and 1.5 (diclofenac) and 1.8 and 2.9(naproxen) the sensitivity of responses in Karan and Farajallah
is lower in comparison to the nodes in Taamira or Deisy.
Common responses in all three compound �ngerprints
With our analysis pipeline we identi�ed three toxnodes as sig-
ni�cantly induced with all three compounds, namely node
#2986 (cluster Pauline), containing one gene coding for the
phase II enzyme ugt1a , its potential regulator nfe2l2b in node
#1119 (cluster Taamira), and node #998 (cluster Farajallah) con-
taining an orthologue gene for cathepsin S. The early induction
of nfe2l2b (alias nrf2b), a master regulator of oxidative stress
[64, 65], and the induction of its potential target gene ugt1a
[66], hint to the induction of the oxidative stress response cas-
cade in the ZFE. Furthermore, the dynamics of this induction
(for an example see Figure 4) is di�erent between the com-
pounds and seem to follow the chemical uptake dynamics of the
compounds which will be discussed in more detail below. Fur-
ther nodes of these three clusters were induced with all three
compounds.
Global sensitivity dynamics
We observed above, that the sensitivity dynamics of selected
toxnodes substantially di�ers between the investigated com-
pounds. We analysed, whether there are global di�erences in
sensitivity dynamics between the compounds by examining the
distributions of parameter estimates for tmax and Smax.Diuron exhibits the most distinct early regulation of the
three investigated compounds. This is also re�ected in the dis-

tribution of estimates for tmax (Figure 7A) showing two peaksat around 1.5 hpe and 75 hpe for all signi�cantly a�ected toxn-
odes. The Smax of some a�ected nodes is calculated to be up totwo orders of magnitude higher than the sensitivity for lethal-
ity (no morphological sublethal e�ects were observed for di-
uron). The median ratio between morphological and toxicoge-
nomic sensitivity of all signi�cantly a�ected toxnodes is 2.8.
The response towards diclofenac exposure shows two peaks

at 7 hpe and 50 hpe (Figure 7B), which is 4 and 47 hours later,
respectively, in comparison to the �rst peak of responses with
diuron exposure. There are only few toxnodes with a tmax laterthan 60 hpe. For diclofenac the ratio between morphological
sensitivity and toxnode Smax is not larger than 2.3 for any ofthe a�ected toxnodes. The median ratio is 1.4.
Naproxen clearly shows the latest response of the three sub-

stances, re�ected by the distribution of tmax showing a smallpeak at around 60 hpe and a high peak at the latest time point
at 75 hpe. The ratiom/t shows a maximum of 6 for some of the
toxnodes. The median ratio is 3.2.
Internal concentrations
The observed dynamics of transcriptional responses seem to
be partially linked with the temporal pattern of internal chem-
ical concentrations. Figure 7D-F depicts the increase of in-
ternal chemical concentration for the three compounds. It
demonstrates di�erent kinetics of chemical uptake in the ZFE.
Whereas the highest internal dose of diuron is reached before
20 hpe (Figure 7D), this peak is observed between 40 and 60
hpe with diclofenac (Figure 7E) and not before the last observed
time point at 72 hpe with naproxen (Figure 7F). This matches
with the observation that most a�ected toxnodes show a tmaxsmaller than 20 hpe for diuron (Figure 7A), between 40 and
60 hpe for diclofenac (Figure 7B), and not before the last time
point at 75 hpe for naproxen (Figure 7C).
By comparing the CTR-model �t depicted in Figure 4 for

the oxidative stress response marker nfe2l2b with the internal
concentrations dynamics, we see a correlation of these results
with tmax values of 8 hpe for diuron, 41 hpe for diclofenac, and51 hpe for naproxen (compare Figure 4 and Figure 7D-F).
Overall, this shows that toxicogenomic sensitivity can be

strongly in�uenced by toxicokinetic properties of the respec-
tive substances. The comparison of parameter values of the
CTR-model such as the tmax with additional information suchas the internal dose dynamics also led to the identi�cation
of stage speci�c, toxicokinetic-independent responses such as
the down-regulation of the clusters Trae and John.

Discussion

The objective of this study was to improve comparability of
toxicogenomic datasets by advancing the scope of inference
for toxicogenomic �ngerprints. Therefore, we developed and
tested an experimental and data analysis pipeline for creating
dynamic toxicogenomic �ngerprints of chemicals. Here, we
discuss the suggested approach as to the aspired comparability
and scope for inference, as well as the added value with regard
to the elucidation of molecular, cellular, or physiological e�ects
of chemicals.

Approach: Map and model toxicogenomic responses

Our pipeline tackles two major challenges with regard to toxi-
cogenomic analyses: �rst, to integrate and aggregate toxicoge-
nomic datasets; and second, to integrate time and concentra-
tion dependence.
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Figure 7. Sensitivity dynamics and toxicokinetics; A-C: Distribution of �tted parameter values among signi�cantly regulated nodes for tmax; D-F measured internal
concentration (mean ± standard error)

Integration and aggregation of toxicogenomic responses
Awealth of gene expression signatures is publicly available (e.g.
Gene Expression Omnibus containing roughly 2.7 million sam-
ples in October 2018) and e�orts are increasing for gaining new
insights by integrating large numbers of datasets. For exam-
ple, the connectivity map approach, establishing links between
similar gene expression pro�les [14] was applied by Wang et al.
[67] to explore similarities between toxicogenomic �ngerprints
in �sh. This method can serve as a relatively simple and eas-
ily scalable approach to �nd similar pro�les in a toxicogenomic
database. However, the pairwise linking is based on qualitative
lists of di�erentially expressed genes only, no explicit inclusion
of time and concentration resolution is considered, and the out-
come does not immediately aid in aggregating the responses of
a single experiment, i.e. aggregation takes place on the level
of meta-data, only.
Another approach for integrating toxicogenomic datasets is

the inference of gene networks based on correlation or mu-
tual information. These networks can be analysed for modu-
larity and interrogated for speci�c changes in nodes or edges
after chemical perturbation. This was applied by Perkins et al.
[13], for example, to reverse engineer adverse outcome path-
ways (AOPs) from mutual information networks, or by Woo
et al. [68] to identify drug targets by analysing altered net-
work interactions. However, comparability and integration of
dependent variables such as time or concentration are still lim-
ited with these approaches.
A speci�c, more rigid network form is the self-organising

map (SOM). The algorithm was developed by Kohonen [16].
It was �rst applied to gene expression data by Törönen et al.
[69] and Tamayo et al. [70] and has been further developed
and tested for aggregating tissue expression pro�les by Wirth

et al. [15, 71]. While SOMs have mainly been used to aggre-
gate information from single datasets, we applied SOMs to
integrate an extensive compilation of toxicogenomic datasets,
and use the resulting grid afterwards to aggregate the �nger-
prints of single substances. Although a SOM cannot capture
as complex interactions as the more ’�exible’ networks in the
aforementioned studies (i.e. connections between nodes are
only formed between direct neighbours on the map), it has the
advantage of enabling visualisation, interpretation, and com-
paring treatments on a whole transcriptome scale, as well as
reducing the number of analysed entities. In our approach
we could reduce the analysis space from ∼30,000 transcripts
to 3,600 toxnodes or 118 clusters. Altogether, this allowed us
to comprehensively analyse commonly and di�erentially regu-
lated toxnodes and clusters in the Zebra�sh Embryo Toxicoge-
nomic Universe (ZTU) and to derive functional hypotheses from
this (see below). A common functionality of genes within some
of the identi�ed clusters was con�rmed in our overrepresen-
tation analysis (e.g. the clustering of crystallin or pancreas
genes). Such a ’recovery of the known’ demonstrates the via-
bility of the approach [14].
Furthermore, the clustering of genes into toxnodes allows

the combination of data aggregation with modelling of time
and concentration dependence. The aggregation also improves
model quality, since data from several genes can be used for
estimating one parameter set (see below). The projection of
toxicogenomic responses on a universal map fosters compari-
son between di�erent pro�les, which can be compared visually
and quantitatively with the help of model parameters, as dis-
cussed below.
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Modelling of time and concentration dependence
A couple of studies have been published which investigated tox-
icogenomic �ngerprints at varying exposure settings. Among
those, only few studies investigated the dynamics of responses.
One example is the study by Alexeyenko et al. [19], who stud-
ied e�ect propagation at several time points after dioxin ex-
posure in ZFEs and found changes in gene-gene interactions
between di�erent points in time. The application of several
concentrations in toxicogenomic experiments is reported more
frequently, e.g. by Driessen et al. [72], Chen et al. [61], or
Sonnack et al. [73]. Yet, all of the mentioned studies anal-
ysed the di�erent exposure conditions in isolation, thus only
allowing qualitative statements about time or concentration
dependent changes. In a study by Hermsen et al. [20] genes
were clustered according to their concentration dependence
across seven di�erent concentrations. Although this approach
acknowledged concentration as a continuous variable, the de-
scription of concentration dependence remains observational
in this study, also.
This was advanced in studies by Thomas et al. [21] and

Smetanová et al. [22] which showed that concentration depen-
dence of toxicogenomic responses can be captured by using
regression modelling on signi�cant responses applying a se-
lection of di�erent models. The individual description of re-
sponses using di�erent regression models, however, limited
the comparability.
In contrast to these studies by Thomas et al. [21] and

Smetanová et al. [22], we �tted a uniform concentration and
time-dependent response-model (CTR-model) to all toxnodes
in the toxicogenomic universe in order to derive node-speci�c
parameter estimates. Subsequently, we used the con�dence
intervals of the �tted model for detection of statistical signif-
icance. This approach might have the drawback, that we can-
not capture each response as accurately as the aforementioned
studies. Yet, it implicates advancements regarding compara-
bility in several ways: First, there is a unique set of model pa-
rameters, whose estimates can be compared across di�erent
transcripts, toxnodes, or compound exposures. Second, model
parameters are �tted independently from the statistical signif-
icance of changes between treatment and control, i.e. no pre-
selection of genes is necessary. Therefore, model parameters
can be compared between signi�cantly and non-signi�cantly
regulated toxnodes. Moreover, signi�cance of regulation is
rather determined by a mechanistically motivated model (i.e.
an adaptation of the Hill-model), adding biological signi�cance
to a mere statistical treatment vs. control comparison. Addi-
tionally, the aggregation of the responses of several transcripts
into toxnodes enhanced the robustness of the model �ts and
implies that varying responses of single transcripts have a re-
duced impact on the aggregated outcome of a toxnode in the
toxicogenomic �ngerprint.
Furthermore, the time dependence of responses is not con-

sidered in previous approaches [21, 22]. The mobi-CTR-model
adapted in our study captures both concentration and time de-
pendence of the responses. In this way, the model allows infer-
ence of a three-dimensional, time and concentration-resolved
response pattern as it is shown in Figure 4.
The application of the mobi-CTR-model in the analysis of

toxicogenomic responses has implications for the experimen-
tal design. Since response information is not based on pair-
wise comparisons (treatment vs. control) but on time and
concentration-resolved response characteristics, we can use a
dense sampling design with few replicates only. This goes in
line with a study by Sefer et al. [74] which showed that in high-
throughput testing dense sampling should be preferred over
replicate sampling. Our �ndings reveal that the measurement
of only one time point or a single concentration would not have
been su�cient to identify toxnodes as being commonly regu-
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Figure 8. Predicted toxicogenomic �ngerprints for diuron at the environmen-
tally relevant concentration 0.86 µmol/L. A: 16 hpe; B: 80 hpe. Both, concen-
tration and time point are outside the measured range in our case study.

lated by all three substances as it is illustrated in Figure 4.
As it is not conceivable that concentrations, selected and

measured in experiments, will ever cover the whole range of
concentrations relevant for estimating or interpreting environ-
mental e�ects, measures for extrapolation become relevant. In
this regard, the CTR-model allows building hypotheses and
predictions about toxicogenomic e�ects at conditions not mea-
sured. In Figure 8 this is exemplarily shown for diuron. With
the help of the model we could, for example, predict the toxi-
cogenomic �ngerprint for an environmentally relevant concen-
tration of 0.86 µmol/L [compare 75] at 16 and 80 hpe, falling
outside the concentration and time range measured in our
study. Figure 8A and Figure 8B show distinctly di�erent �n-
gerprint patterns, although describing the e�ects of the same
substance. Yet, the di�erences shown can be described and ex-
plained with the help of our model. This shows the potential
of response extrapolation which could be especially relevant for
applications in risk assessment or biomonitoring.
Certainly, regression models as they are used in our study

also have clear limitations. When e.g. temporal variation in
exposure regimes become relevant for extrapolation, the devel-
opment of models explicitly integrating kinetic and dynamic
processes would be desirable [e.g. 76, 77]. Data demands re-
garding time and dose-resolved observations have restricted
their application so far. We see our approach with regard to ex-
perimental design and analytical pipeline, therefore, as a step
on the avenue to advanced dynamic modelling, which could
further progress towards mechanistic models.
Finally, the improved comparability, which was discussed

here, eases a consistent interpretation in a toxicological con-
text. As it was exemplarily demonstrated for the response of
toxnode #1119 in Figure 4, toxnode responses cannot only be
described qualitatively (’is regulated signi�cantly after expo-
sure to substance X’) but also quantitatively with the help of
estimated parameter values like Smax or tmax describing theconcentration or time related response. This allows, for the
�rst time, to link toxicogenomic processes with toxicokinetic
measurements (as it was shown in Figure 7), thus separating
toxicokinetic from toxicodynamic processes. In our case study
we found a signi�cant impact of toxicokinetic properties of
the substances on the dynamics of various toxicogenomic re-
sponses which is discussed below in more detail. It also helped
to identify those responses which seem to be independent on
toxicokinetics and rather related to the developmental stage
(e.g. regulation of clusters Trae or John).

Case study: Compound e�ects in the zebra�sh toxi-
cogenomic universe

We found that di�erent compounds with a known identical
molecular target still show individual toxicogenomic response
patterns on the ZFE transcriptome. This goes in line with ear-
lier studies investigating toxicogenomic �ngerprints e.g. in rat
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liver tissues [9] or zebra�sh embryos [10], which reported tox-
icogenomic pro�les to turn out speci�c for compound, concen-
tration and exposure duration. Advancing from the compound
and treatment-speci�c response barcodes for a few selected
transcripts [10], we obtained concentration and time-resolved,
transcriptome-wide toxicogenomic �ngerprints for each com-
pound, which can be comprehensively compared between sub-
stances.
The clustering of genes into common toxnodes and clus-

ters of the ZTU as illustrated above is indicative for jointly reg-
ulated processes, functionally related proteins, or tissue/cell
type speci�city of genes in the ZFE. Simultaneously, we ob-
tain information about the compound-speci�c characteristics
of the response from the estimated model parameters. In or-
der to illustrate the added value of the approach, we will discuss
some of the insights we gained about unspeci�c toxicogenomic
responses in the ZFE and common key responses induced by
the two COX inhibitors.
Unspeci�c key responses
By combining information on model parameter values with
functional information on nodes and clusters we can distin-
guish between speci�c and unspeci�c e�ects. For example, we
identi�ed cluster Trae and cluster John to be related to lens
and pancreas development, respectively. While Trae is regu-
lated early with diclofenac and diuron, John is regulated late
with diuron and naproxen. The tmax for the signi�cantly down-regulated nodes in these clusters were identical for the respec-
tive two compounds and independent from the di�erent chem-
ical uptake kinetics. This is in contrast to responses, for which
tmax was in line with internal substance kinetics (e.g. the in-duction of the transcription factor nfe2l2b). The tmax values ofcluster Trae were estimated at around 6-8 hpe, which equals
30-32 hpf. Cluster Trae contains more than 20 genes coding
for crystallin protein subunits which are important for lens de-
velopment in ZFE, which happens between 16 hpf and 96 hpf
[78, 79]. Those transcripts were found to be commonly down-
regulated in response to various chemical exposures in earlier
studies [80, 18], as well. Cluster John is down-regulated at
72 hpe and contains genes coding for di�erent proteolytic en-
zymes of the pancreas. Indeed, the pancreas development in
ZFE starts rather late between 36 and 72 hpf [81], and a dis-
ruption of pancreas development in ZFE by exposures against
di�erent chemicals has also been reported in several studies
before [e.g. 64, 82, 83].
By comparing our raw data of treatments and controls for

these two clusters we found that assuming a delay or inhibi-
tion of development due to the chemical treatment may ex-
plain the down-regulation of transcriptional activity (Figure
S7). The combination of comparing our model parameters be-
tween the di�erent exposures, the enrichment of genes in the
ZTU, as well as the con�rmation by available reports on down-
regulation due to chemical exposures let us conclude that these
e�ects on pancreas and lens development are potentially in-
dependent of the compound, indicating a developmental delay
due to general stress. Whether these delays manifest in ad-
verse outcome is potentially rather a matter of exposure con-
centration and time than of the speci�c mode of action of a
compound.
Key responses induced by COX inhibitors
Two of the investigated model compounds, diclofenac and
naproxen, are known to a�ect the same molecular target,
namely COX. In order to identify key responses of this com-
pound group we studied the patterns commonly evoked by
these compounds. We discuss the identi�ed key responses in
the context of known molecular e�ects of COX inhibitors. Our
�ndings and hypothesised molecular key responses are sum-
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Figure 9. Hypothesised key responses of COX inhibitors in the toxicogenomic
�ngerprint of diclofenac. Putative causal connections between responses are
indicated by dashed arrows; solid arrows indicate transformation reactions
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marised and illustrated in Figure 9.
Metabolism and biotransformation. A predominant response in
the �ngerprints of diclofenac and naproxen is the up-
regulation of metabolic enzymesmainly in cluster Taamira. For
example, we observed an early and strong induction of cyp2c9
and cyp2k18 with a tmax of 48 hpe for diclofenac and 69 hpe fornaproxen. We assume that these enzymes are involved in the
phase I biotransformation (BTF(I)) of diclofenac and naproxen.
This may lead to an increased production of reactive metabo-
lites leading to liver injury [29]. Additionally, we hypothe-
sise that an inhibition of COX, which transforms arachidonic
acid (AA) to prostaglandins [52], leads to an accumulation of AA.
This might induce COX-independent branches of the AA path-
way, e.g. the production of epoxyeicosatrienoic acids (EETs)
[84]. This reaction is known to be catalysed, among others,
by enzymes of the cyp2c family [85]. Therefore, cyp2c9 and
cyp2k18 may be involved in the biotransformation of the COX
inhibitors diclofenac and naproxen themselves, but also in the
production of EETs from AA being accumulated due to COX in-
hibition.
Besides induction of BTF(I), glucuronosyltransferases ugt1

and ugt5 were induced earlier than many other signi�cant re-
sponses in our study. These enzymes were shown to be in-
volved in the phase II biotransformation (BTF(II)) of diclofenac
in humans [86] and �sh [87]. Additionally, they can lead to
accumulation of acyl glucuronides and subsequent formation
of protein adducts [88]. Together with an increase in reactive
metabolites from BTF(I) this is discussed to be a molecular key
event in the adverse outcome pathway (AOP) of COX inhibitors,
leading to mitochondrial dysfunction, impairment of ATP syn-
thesis, apoptosis and tissue damage, and eventually causing
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liver and cardiovascular diseases [reviewed in 29]. The occur-
rence of the initial key events of biotransformation is indicated
by the a�ected genes and toxnodes in our study. The observa-
tion of biotransformation being among the �rst observed key
responses in time might indicate that later observed responses
are mediated by metabolites instead of the parent compounds
or by secondary e�ects such as an accumulation of AA.
Oxidative stress response. Next to biotransformation, glucurono-
syltransferases are also associated with an oxidative stress re-
sponse which is another key response in the �ngerprints of
the COX inhibitors in our study. Genes associated with ox-
idative stress are mainly found in cluster Pauline, and are
potentially induced by the transcription factor NRF2, whose
zebra�sh orthologue nfe2l2b is induced early within cluster
Taamira [64, 65]. AA-induced NRF2-dependent gene transcrip-
tion has been reported in brain cells [89] whereas the induction
of NRF2 has been shown to prevent toxicity of AA in human
liver cells [90]. Next to ugt1, several genes for oxidoreductases
and glutathione metabolism were speci�cally induced with the
COX inhibitors in cluster Pauline.
We con�rmed the assignment of cluster Pauline to oxidative

stress response with a dataset from the background data of the
ZTU. Paraquat, a herbicide known to induce oxidative stress
[91], was investigated using the ZFE in Driessen et al. [92]. We
plotted the transcriptome response on the ZTU (Figure S8A)
and found cluster Pauline induced as well as one node in clus-
ter Bradley. Cluster Bradley is enriched for respiratory elec-
tron transport (Table S5). The induction of these clusters with
paraquat con�rms the biological meaningfulness of the ZTU.
However, it only provides a snapshot without evidence on po-
tentially related nodes and clusters or any possibility of extrap-
olation. Nevertheless, it gives a strong indication of a key re-
sponse of oxidative stress induced by diclofenac and naproxen.
Indeed, oxidative stress has been discussed as a side e�ect of
diclofenac and other NSAIDs before [93, 94].
Induction of regulatory hormones. Another key response in the
COX inhibitor �ngerprints was the up-regulation of the regula-
tory hormones leptin alpha and PTH1a in cluster Deisy. The in-
duction of leptin together with cart3 in the same cluster might
be due to a stress related change in energy metabolism [54] or
due to AA accumulation [51]. Leptin induces a MAPK pathway
(JAK/STAT) which is an activator of NF-kB [58, 95]. Further-
more, PTH was shown to regulate the ligand of NF-kB in mam-
malian osteocytes [96, 97]. Indeed, we identi�ed the genes and
nodes of the subsequently induced clusters Karan and Farajallah
to be targets of these pathways [98] (also see results part and
Figure 9). The interaction of COX inhibitors with these path-
ways as cyclooxygenase-independent e�ects were reported by
Tegeder et al. [99]. Indeed, little is known about the molecu-
lar interactions of AA, leptin, and PTH. A role of AA in leptin
signalling and hepatic energy metabolism has been described
before [100]. Furthermore, it has been reported that leptin can
induce the secretion of parathyroid hormone [e.g. 101]. How-
ever, a strong co-expression of the two hormones as observed
in our study has not been reported before and indicates a joint
action in response to chemicals or stress in ZFE.
Interestingly, when projecting the toxicogenomic �nger-

print of BDE-47, measured by Xu et al. [102], on the ZTU, we
see a similar �ngerprint as with naproxen and diclofenac (Fig-
ure S8B). We �nd, among others, toxnode #1062 containing
lepa and pth1a, as well as some other toxnodes of the clusters
Taamira and Karan up-regulated with BDE-47. A study by
Kodavanti and Derr-Yellin [103] showed that polybrominated
diphenyl ethers as well as polychlorinated biphenyls cause
a release of arachidonic acid in rat neurons. This might
indicate that the obtained phenotypes, which were similar

with BDE-47 exposures [104] to the ones we observed with the
two COX inhibitors (Figure S2), showing tail malformations,
spinal curvature, small eyes and edema, are related or initially
caused by a disturbance of the AA metabolic pathway.
In summary, using a comparative analysis of the knowledge

gained from the ZTU combined with compound speci�c param-
eter values from the CTR-model, we could identify and charac-
terise key responses to diuron, diclofenac, and naproxen expo-
sures in the ZFE. Furthermore testable hypotheses about the
sequence of key responses and their connections to toxicoki-
netic, toxicodynamic or developmental processes were gener-
ated as it is illustrated in Figure 9.

Summary and Implications

With our experimental design and analysis pipeline we derived
dynamic toxicogenomic �ngerprints. The applied regression
model allows inference on the concentration as well as the time
scale to conditions not measured. It proves also helpful in sep-
arating toxicokinetic from toxicodynamic processes. The Ze-
bra�sh Embryo Toxicogenomic Universe (ZTU) introduced here al-
lows to aggregate toxicogenomic �ngerprints on a map. Taken
together, this novel approach facilitates comparison between
di�erent �ngerprints and di�erent studies as well as between
the responses in one �ngerprint. We see several implications
that may arise from these results:
The toxicogenomic universe as source for biological hypothesis
building and gene selection for high-throughput approaches
We demonstrate in this study that the clustering of genes in
the toxicogenomic universe can be used to derive biological
hypotheses about co-expressed genes. Furthermore, the tox-
icogenomic universe can be used to support gene selection for
reduced transcriptome approaches. There have been e�orts to
use reduced transcriptome arrays implying much lower costs,
which allows obtaining more extensive data sets. A reduced
mouse transcriptome array was recently used to measure per-
turbation pro�les of more than 20,000 substances in di�er-
ent cell lines [105] generally demonstrating the power of high-
throughput molecular approaches for large scale assessments.
Recently, also a reduced array for the zebra�sh transcriptome
was suggested [106] including selected genes to represent a
range of biological pathways. This selection, however, was not
based on zebra�sh experimental data, but focused on ortho-
logues of genes known to be important in mammalian toxi-
cology. Therefore, an alternative approach to design a reduced
zebra�sh array could comprise the selection of a representative
gene for each toxnode of the Zebra�sh Embryo Toxicogenomic
Universe (ZTU).
The CTR-model to enhance molecular databases
The scope of functional annotation databases could substan-
tially improve with the inclusion of quantitative exposure and
e�ect information, e.g. as derived from concentration response
relationships as shown in our study. We demonstrated that
it is possible to quantitatively describe a majority of toxicoge-
nomic responses with a universal regression model. This could
be used to enhance annotation databases, such as Gene Ontol-
ogy [GO, 41], Molecular Signatures Database [MSigDB, 107], or
Comparative Toxicogenomics Database [CTD, 108], which, so
far, focus on qualitative information about responses.
Dynamic toxicogenomic �ngerprints for read-across and elucida-
tion of adverse outcome pathway(s)
The dynamic toxicogenomic �ngerprints foster read-across ap-
proaches between chemicals by providing enhanced compara-
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bility. This could improve application in chemical hazard as-
sessment and e�ect-based environmental monitoring. The in-
ference and comparison of toxicogenomic universes for di�er-
ent species could furthermore aid in cross-species extrapola-
tion.
The �ngerprints can also help in elucidating key events of

an adverse outcome pathway (AOP). In this study we have
shown the identi�cation and comparative characterization of
key responses for two COX inhibitors. We see this as a helpful
starting point for informing the development of AOPs. In this
regard, our approach might also help in mechanism-based risk
assessment.
Molecular mixture toxicology
Finally, mixture assessment relevant in environmental mon-
itoring becomes possible with the help of the suggested
CTR-model. In the context of environmental monitoring of
substances, toxicogenomic �ngerprints of environmental sam-
ples should in principle be suitable to be compared with �nger-
prints of single substances. However, it remains to be clari�ed
if a) toxicogenomic �ngerprints can be recovered also in a mix-
ture context, and b) how �ngerprints of di�erent substances
combine in a qualitative and quantitative way. The dynamic
�ngerprints inferred here lend themselves for such hypothesis-
based experimentation.

Methods

We will brie�y outline the experimental procedure and anal-
ysis steps performed in our study. We additionally prepared
an extensive supplementary methods �le containing detailed
information about the experimental procedure and the data
analysis, including the R code used for generating the results
shown in this study. A brief summary is given below. The
results have (in part) been computed at a High-Performance
Computing Cluster at the Helmholtz Centre for Environmental
Research.

Exposure of zebra�sh embryos to three model com-
pounds

Zebra�sh embryos were exposed to diuron, diclofenac sodium
salt, and naproxen sodium salt in �ve di�erent concentrations
between LC0.5 and LC25 from 24 hours post fertilization (hpf).
At six time points between 3 and 72 hours post exposure (hpe)
RNA was extracted and the transcriptome was measured using
Oaklabs Zebra�sh XS Microarrays.

Import, quality control and preprocessing of data

The median �uorescence for each array spot was extracted by
the Agilent Feature Extraction Software (Version 11.5.1.1). All
further analysis was performed in R (version 3.4.3 [109]).
Quality control was performed by checking density distri-

butions and euclidean distance between samples. Similar as
recommended by Kau�mann and Huber [110] we checked four
quality metrics, which were Kolmogorov-Smirnov test statis-
tics, sum of all expression values of one array, interquartile
range (IQR), and euclidean distance. Samples with one of the
metrics outside of a range between 25% and 75% quantile
±3 ∗ IQR (1 ∗ IQR for euclidean distance) were removed from
further analysis. Processed intensity values were normalized
using the cyclic loess method.
After normalization all data was transformed by log2. Subse-quently, the median expression values of replicate probes were

calculated. If replicates of a probe were present on the array,

Table 2. Properties of SOM learning
parameter value

learning rate 0.8 – 0.005
neighborhood radius 40 – (-40)
neighborhood function gaussian
epochs 1000
distance function manhattan distance

only replicates which had not been �agged for poor quality dur-
ing the feature extraction process (due to inhomogeneous spots
or background) were considered. Laboratory batch e�ects in
the diclofenac experiment were removed using the R-package
sva [111].
Transcript abundance is changing quite drastically for many

transcripts during the course of embryo development, even
without exposure to a chemical (compare Figure S9). At this
point the e�ect of the chemical was of main interest. There-
fore, the developmental e�ect on the transcriptome was re-
moved by normalising all transcript level values against the
control of the respective time point. This resulted in log2(fold-change) (logFC) data for all experimental conditions.

Infering the toxicogenomic universe

The spline smoothed logFC data from our experiments were
combined with the logFC data from previously published
ZFE microarray data. Data from public databases was se-
lected, downloaded and processed in a semi-automatic work-
�ow, which is accessible via protocols.io (dx.doi.org/10.17504/
protocols.io.s24eggw). All included microarray platforms were
annotated to the most recent zebra�sh genome (GRCz11), and
Ensembl database version 93 [24].
The Grubb’s test ([112], implemented in R-package outliers)

was used iteratively to remove outliers from the group of data
points of each probe (points were removed until p >= 0.001).
This resulted in 0.2%-0.3% of measurements being removed
for each substance. Then, a thin plate spline was �tted to the
treatment conditions of each probe using the R-package mgcv
[113] and logFC values for each measurement condition were
extracted. The R-package kohonen [114] was used to train the
self-organising map on a 60 × 60 rectangular grid. The ini-
tial learning rate was set comparably high in order to make the
node codes quickly adjust to the assigned transcript behaviour.
The properties of the map and the learning algorithm are sum-
marized in Table 2.
The outcome of this step is one 60 × 60 grid of 3600 toxn-

odes. Each gene present in our dataset is permanently assigned
to one toxnode, while each toxnode contains genes which be-
have similarly across all exposure conditions. We used the R-
package mclust [115] to determine an optimal cluster number
for sub-grouping (see supplementary methods for more de-
tails). The package randomNames [116] was used to automat-
ically name the clusters.
For identi�cation of over-represented annotations within

the clusters, we used the package clusterPro�ler [117] together
with annotation from the databases ZFIN [38], InterPro [39],
Reactome [40], and GO [41, 42]. We applied correction for mul-
tiple testing with the Benjamini-Hochberg method and a p-
Value cut-o� of 0.05.

Parameter estimation of mobi-CTR model

Normalized logFC data (not the spline �t) were used as in-
put data for parameter estimation. Measured data from all
probes assigned to one node of the SOM were used to esti-
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mate one parameter set for each node and substance (i.e., ex-
perimental replicates and transcriptional replicates/groups of
transcripts were treated as belonging to one distribution here).
The Grubb’s test ([112], implemented in R-package outliers)
was used iteratively to remove outliers from the group of data
points (points are removed until p>=0.001) in one node. This
resulted in removal of 0.1%-0.2% of data points for each sub-
stance. The extreme values across all samples and experi-
mental conditions were determined for each node. Then, the
dataset for each node was used to estimate parameters for the
mobi-CTR using the shu�ed complex evolution (SCE) algo-
rithm assuming up-regulation. This estimation procedure was
repeated 3 times with 3 di�erent random seeds and 10 com-
plexes each. The bestmodel was afterwards selected using AICc.The same procedure was repeated assuming down-regulation.
The best up-regulation model and the best down-regulation
model were again compared using AICc and the best �t modelsubsequently used for a quantitative description of the node.
We used the R implementation of the algorithm shu�ed com-
plex evolution (SCE, described in [118]) in the package hydro-
mad [119]. For a global parameter estimation method like SCE,
parameter boundaries should be de�ned carefully. To limit the
�tted parameter values to a range that makes sense in the con-
text of the experiment, boundaries were set as described in the
supplementary methods �le.

Fingerprint browser

To ease the exploration of the toxicogenomic �ngerprints in the
context of the toxicogenomic universe, we created an online ap-
plication https://webapp.ufz.de/itox/tfpbrowser. The app was
created using R in combination with the package shiny [120].

Supplementary methods

A supplementary methods �le was compiled containing ex-
tensive documentation about experimental and data analysis
work�ow including all R code needed to reproduce the results.
The �le was created with the help of knitR [121].
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