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Supplementary Figure and Table captions 

Figure S1. Systematic seasonal factors for HFMD notified cases at national level from June 2008 to 

June 2018 using the decomposition method. It can be seen that the reported cases HFMD series 

shows an apparent seasonality with the peak activities in April until July annually. 

Figure S2. ACF and PACF graph with the first-order non-seasonal difference(d=1) of monthly 

HFMD incidence series in mainland China from June 2008 to June 2017. This plot suggests that after 

the first-order non-seasonal difference, the time-varying trend tends to stabilize approximately and 

there is a marked seasonal pattern owing to the local maximum values at lags 12, 24 and 36 in the 

ACF plot.  

Figure S3. ACF and PACF graphs with the first-order seasonal difference(D=1) of monthly HFMD 

incidence series in mainland China from June 2008 to June 2017. Based on the plot, we can conclude 

that the differenced series has successfully been stationarity. 

Figure S4. The Q-Q plot of residuals from SARIMA(1,1,2)(1,1,0)12 model for HFMD series from 

June 2008 to June 2017. This plot suggests that the distribution of produced residuals may have a tail 

thicker than that of a normal distribution. 

Figure S5. Autocorrelation function(ACF) and partial autocorrelation function(PACF) graphs the 

first-order non-seasonal difference(d=1) of monthly HFMD incidence series in mainland China from 

June 2008 to December 2016. The plot shows that the differenced series looks much more stationary 

when compared with the original time series. Nonetheless there still is a marked seasonal pattern in 

this differenced series. 

Figure S6. Autocorrelation function(ACF) and partial autocorrelation function(PACF) graphs with 

the first-order seasonal difference(D=1) of monthly HFMD incidence series in mainland China from 



June 2008 to December 2016. Based on the plot, we may well consider the seasonal differenced 

series as a stationary series. 

Figure S7. The resultant plots of fit goodness tests from SARIMA(1,0,1)(1,1,1)12 model for HFMD 

notified cases series from June 2008 to December 2016. (a) Standardized residuals. (b) 

Autocorrelation function (ACF) graph of errors across varying lag times. None of the autocorrelation 

coefficients are out of the 95% confidence intervals in this residual series. (c) Partial autocorrelation 

function (PACF) graph of errors. (d) Q-statistic P-values. There are large P values at the significance 

level of 5%. Diagnostic checking indicates the chosen SARIMA specification can provide a 

reasonable approximation to the HFMD notified cases series from June 2008 to December 2016.  

Figure S8. The Q-Q plot of residuals from SARIMA(1,0,1)(1,1,1)12 model for HFMD series from 

June 2008 to December 2016. This plot suggests that the distribution of produced residuals has a tail 

thicker than that of a normal distribution. 

Figure S9. Autocorrelation function(ACF) and partial autocorrelation function(PACF) graphs the 

first-order non-seasonal difference(d=1) of monthly HFMD incidence series in mainland China from 

June 2008 to December 2017. The plot shows that the differenced series looks much more stationary 

when compared with the original time series. Nonetheless there still is an obvious seasonal pattern in 

this differenced series. 

Figure S10. Autocorrelation function(ACF) and partial autocorrelation function(PACF) graphs with 

the first-order seasonal difference(D=1) of monthly HFMD incidence series in mainland China from 

June 2008 to December 2017. On the basis of the plot, we can observe that this differenced series 

meets the need of modeling for SARIMA method. 



Figure S11. The resultant plots of fit goodness tests from SARIMA(1,0,1)(1,1,1)12 model for HFMD 

notified cases series from June 2008 to December 2017. (a) Standardized residuals. (b) 

Autocorrelation function (ACF) graph of errors across varying lag times. The spikes all fall within 

the 95% confidence intervals in this residual series. (c) Partial autocorrelation function (PACF) graph 

of errors. (d) P values for Ljung-Box statistic.. There are large P values at the significance level of 

5%. Diagnostic checking indicates the chosen SARIMA specification is suitable for the HFMD 

notified cases series from June 2008 to December 2017.  

Figure S12. The Q-Q plot of residuals from SARIMA(1,0,1)(1,1,1)12 model for HFMD series from 

June 2008 to December 2017. This plot suggests that residuals are departure from normality at the 

tails. 

Figure S13. The Q-Q plot of residuals from NAR model for HFMD series from June 2008 to June 

2017. The Q-Q plot of the residuals shows departure from normality at the tails. 

Figure S14. The regression plots for the NAR model outputs with respect to targets for training, 

validation, and test in the dataset from June 2008 to June 2017. 

Figure S15. The layer architecture of NAR model for the HFMD notified cases series from June 

2008 to December 2016. (A) The opened loop mode; (B) The closed loop mode. This NAR model is 

comprised of a hidden layer with 17 neurons and 5 delays and an output layer with 1 neuron. The 

model adopts tapped delay lines to store prior data of the x(t) and y(t) series as well. Among which, 

the output results of the model, y(t), is fed back to the input (through delays), since y(t) is a function 

of y(t – 1), y(t – 2), ...,y(t – d). Nevertheless, in order to train more efficiently, the training can be 

undertaken in open loop. After training, then the opened loop mode should be transformed to the 

closed loop mode for multistep-ahead forecasting. 



Figure S16. The resulting plots of fit goodness tests from the best-fitting NAR model for HFMD 

notified cases series from June 2008 to December 2016. (a) Standardized residuals. (b) 

Autocorrelation function (ACF) plot of errors across varying lag times. All of the autocorrelations 

fail to be beyond the estimated 95% uncertainty bounds around zero across varying lag times apart 

from the one from ACF plot at zero lag that should occur and also occurring at lag 11, we should not 

be surprised as this can easily happen by chance alone. Overall, the plot manifests that the network 

appears to have captured the dependence hidden behind the HFMD notified cases series. (c) 

Input-to-error correlation plot for varying lags. The input-error cross-correlation function illustrates 

how the residuals are interrelated with the series of x(t). All of the correlations fall within the 

confidence bounds around zero, which hints the developed model is a perfect specification. (d) 

Q-statistic P-values. Analyses form the plots demonstrate the constructed model is adequate in 

excavating the information of this time series. 

Figure S17. The response of output and target for HFMD time series from June 2008 to December 

2016 at various time points. This plot exhibits which time points are elected as the training, 

validation and testing subsets, along with their corresponding errors between inputs and targets. In 

view of the small errors, a further suggestion that the fitting is fairly accurate.  

Figure S18. The regression plots for the best-fitting NAR model outputs with respect to targets for 

training, validation, and test in the dataset from June 2008 to December 2016. 

Figure S19. The Q-Q plot of residuals from NAR model for HFMD series from June 2008 to 

December 2016. The Q-Q plot of the residuals shows marked departure from normality at the tails. 

Figure S20. The layer architecture of NAR model for HFMD notified cases series from June 2008 to 

December 2017. (A) The opened loop mode; (B) The closed loop mode. This NAR model is 



comprised of a hidden layer with 19 neurons and 6 delays and an output layer with 1 neuron. The 

model adopts tapped delay lines to store prior data of the x(t) and y(t) series as well. Among which, 

the output results of the model, y(t), is fed back to the input (through delays), since y(t) is a function 

of y(t – 1), y(t – 2), ...,y(t – d). Nevertheless, in order to train more efficiently, the training can be 

undertaken in open loop. After training, then the opened loop mode should be transformed to the 

closed loop mode for multistep-ahead forecasting. 

Figure 21. The resulting plots of fit goodness tests from the best-fitting NAR model for HFMD 

notified cases series from June 2008 to December 2017. (a) Standardized residuals. (b) 

Autocorrelation function (ACF) plot of errors across varying lag times. All of the autocorrelations 

fail to be beyond the estimated 95% uncertainty bounds around zero across varying lag times apart 

from the one from ACF plot at zero lag that should occur. The plot manifests that the network 

appears to have captured the dependence hidden behind the HFMD notified cases series. (c) 

Input-to-error correlation plot for varying lags. The input-error cross-correlation function illustrates 

how the residuals are interrelated with the series of x(t). All of the correlations fall within the 

confidence bounds around zero, which hints the developed model is a perfect specification. (d) 

Q-statistic P-values. Analyses form the plots demonstrate the constructed model is adequate in 

excavating the information of this time series. 

Figure S22. The response of output and target for HFMD time series from June 2008 to December 

2017 at various time points. This plot exhibits which time points are elected as the training, 

validation and testing subsets, along with their corresponding errors between inputs and targets. In 

view of the small errors nearly lying between -0.2 and 0.2, a further suggestion that the fitting is 

fairly accurate.  

Figure S23. The regression plots for the best-fitting NAR model outputs with respect to targets for 

training, validation, and test in the dataset from June 2008 to December 2017. 



Figure S24. The Q-Q plot of residuals from the best-simulating NAR model for HFMD series from 

June 2008 to December 2017. This plot suggests that the distribution of produced residuals has a tail 

thicker than that of a normal distribution. 

Figure S25. The regression plots for the LSTM model outputs with respect to targets for training and 

validation in the dataset from June 2008 to June 2017. 

Figure S26. The Q-Q plot of residuals from LSTM model for HFMD series from June 2008 to June 

2017. As exhibited in the plot of the normal Q-Q plot, the residuals approximately fall along the line. 

Thus the best-fitting LSTM model improves the normality dramatically compared with the basic 

NAR and SARIMA methods. 

Figure S27. The training and validation performances for LSTM model at 300 epochs for the HFMD 

notified cases series from June 2008 to December 2016. This plot documents that the test set error 

and the validation set error have similar characteristics and no significant overfitting has occurred by 

iteration 300. 

Figure S28. The resulting plots of fit goodness tests from the best-performing LSTM model for 

HFMD notified cases series from June 2008 to December 2016. (a) Standardized residuals. (b) 

Autocorrelation function (ACF) plot of errors across varying lag times. The ACF plot of forecasted 

errors reveals no individually evident autocorrelation at varying lags except for the one from ACF 

plot at zero lag that should occur. (c) Partial autocorrelation function (PACF) plot of residuals. (d) 

Q-statistic P-values. As shown, All P-values are larger than 0.05. These diagnostics manifest that the 

network is well suited to the dataset. 

Figure S29. The regression plots for the best-presenting LSTM model outputs with respect to targets 

for training and validation in the dataset from June 2008 to December 2016. 



Figure S30. The Q-Q plot of residuals from LSTM model for HFMD series from June 2008 to 

December 2016. As exhibited in the plot of the normal Q-Q plot, the points seem to follow the 

straight line fairly closely. This graph would not lead us to reject normality of the error terms in this 

model. Thus the best-fitting LSTM model improves the normality dramatically compared with the 

basic NAR and SARIMA methods. 

Figure S31. The training and validation performances for LSTM model at 300 epochs for the HFMD 

notified cases series from June 2008 to December 2017. This plot documents that the test set error 

and the validation set error have similar characteristics and no significant overfitting has occurred by 

iteration 300. 

Figure S32. The resulting plots of fit goodness tests from the LSTM model for HFMD notified cases 

series from June 2008 to December 2017. (a) Standardized residuals. (b) Autocorrelation function 

(ACF) plot of errors across varying lag times. The ACF plot of forecasted errors reveals no 

individually evident autocorrelation at varying lags except for the two points occurring at lags 2 and 

15. For these two lagged points out of the estimated 95% confidence limit, they are also reasonable 

as this phenomenon can easily happen by chance alone. (c) Partial autocorrelation function (PACF) 

plot of residuals. (d) Q-statistic P-values. As shown, All P-values are larger than 0.05. These 

diagnostics manifest that the network is well suited to the dataset. 

Figure S33. The regression plots for the best-presenting LSTM model outputs with respect to targets 

for training and validation in the dataset from June 2008 to December 2017. 

Figure S34. The Q-Q plot of residuals from LSTM model for HFMD series from June 2008 to 

December 2017. The Q-Q plot suggests that the distribution of errors may have a tail thicker than 

that of a normal distribution and may be somewhat skewed to the right. However, In comparison 



with the best-mimicking NAR and SARIMA approaches, the best-fitting LSTM model can improve 

the normality dramatically. 

Figure S35. The layer architecture of NAR model for the HFMD notified cases series from June 

2008 to June 2017. (A) The opened loop mode; (B) The closed loop mode. This NAR model is 

comprised of a hidden layer with 18 neurons and 5 delays and an output layer with 1 neuron. The 

model adopts tapped delay lines to store prior data of the x(t) and y(t) series as well. Among which, 

the output results of the model, y(t), is fed back to the input (through delays), since y(t) is a function 

of y(t – 1), y(t – 2), ...,y(t – d). Nevertheless, in order to train more efficiently, the training can be 

undertaken in open loop. After training, then the opened loop mode should be transformed to the 

closed loop mode for multistep-ahead forecasting.  

Figure S36. The layer architecture of LSTM model. Above-mentioned these gates represent 

nonlinear summation units that gather activations from inside and outside the block, and dominate 

the activation of the cell via multiplications (small black circles). The input and output gates multiply 

the cell’s input and output when the forget gate multiplies the earlier state of the cell. The gate 

activation function ‘f’ ordinarily refers to the logistic sigmoid, which can limit the gate activations 

into [0, 1] intervals. The cell input and output activation functions (‘g’ and ‘h’) customarily stand for 

tanh or logistic sigmoid. In this layer architecture, dashed lines are the weighted join points from the 

cell to the gates, the remainder of lines within the block denote the unweighted join points. The only 

outputs from the block to the remaining the network emanate from the output gate multiplcication. 

Table S1. The estimated parameters and performance indexes for the selected candidate models 

based on the original observations from June 2008 to June 2017.  

Table S2. Estimated parameters of the SARIMA(1,0,1)(1,1,1)12 model for the target series from June 

2008 to December 2016. 



Table S3. The goodness of fit test of the preferred SARIMA model for the target series from June 

2008 to December 2016. 

Table S4. Ljung-Box Q test of the residuals for the selected three optimal models fitted to the 

notified HFMD cases series from June 2008 to December 2016 at different lags. 

Table S5. ARCH effect of the observations and residuals of the selected three models fitted to the 

notified HFMD cases series from June 2008 to December 2016 with LM test at various lags. 

Table S6. Estimated parameters of the SARIMA(1,0,1)(1,1,1)12 model for the target series from June 

2008 to December 2017. 

Table S7. The goodness of fit test of the preferred SARIMA model for target series from June 2008 

to December 2017. 

Table S8. Ljung-Box Q test of the residuals for the selected three optimal models fitted to the 

notified HFMD cases series from June 2008 to December 2017 at different lags. 

Table S9. ARCH effect of the observations and residuals of the selected three models fitted to the 

notified HFMD cases series from June 2008 to December 2017 with LM test at various lags. 

Table S10. The preferred NAR models’ parameters of various target series. 

Table S11. The preferred LSTM models’ parameters of various target series. 

Table S12.  Future one hundred possible sample paths for the HFMD notified data in mainland 

China. This Table was provided in a Microsoft Excel.xlsx version on account of the plethora of data. 
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Figure S1. Systematic seasonal factors for HFMD notified cases at national level from June 2008 to 

June 2018 using the decomposition method. It can be seen that the reported cases HFMD series 

shows an apparent seasonality with the peak activities in April until July annually.

 



 

 

Figure S2. ACF and PACF graph with the first-order non-seasonal difference(d=1) of monthly 

HFMD incidence series in mainland China from June 2008 to June 2017. This plot suggests that after 

the first-order non-seasonal difference, the time-varying trend tends to stabilize approximately and 

there is a marked seasonal pattern owing to the local maximum values at lags 12, 24 and 36 in the 

ACF plot.  

 



 

 

Figure S3. ACF and PACF graphs with the first-order seasonal difference(D=1) of monthly HFMD 

incidence series in mainland China from June 2008 to June 2017. Based on the plot, we can conclude 

that the differenced series has successfully been stationarity.

 



 

 

Figure S4. The Q-Q plot of residuals from SARIMA(1,1,2)(1,1,0)12 model for HFMD series from 

June 2008 to June 2017. This plot suggests that the distribution of produced residuals may have a tail 

thicker than that of a normal distribution. 

  

 



 

 

Figure S5. Autocorrelation function(ACF) and partial autocorrelation function(PACF) graphs the 

first-order non-seasonal difference(d=1) of monthly HFMD incidence series in mainland China from 

June 2008 to December 2016. The plot shows that the differenced series looks much more stationary 

when compared with the original time series. Nonetheless there still is a marked seasonal pattern in 

this differenced series. 

  

 



 

 

Figure S6. Autocorrelation function(ACF) and partial autocorrelation function(PACF) graphs with 

the first-order seasonal difference(D=1) of monthly HFMD incidence series in mainland China from 

June 2008 to December 2016. Based on the plot, we may well consider the seasonal differenced 

series as a stationary series. 

  

 



 

 

Figure S7. The resultant plots of fit goodness tests from SARIMA(1,0,1)(1,1,1)12 model for HFMD 

notified cases series from June 2008 to December 2016. (a) Standardized residuals. (b) 

Autocorrelation function (ACF) graph of errors across varying lag times. None of the autocorrelation 

coefficients are out of the 95% confidence intervals in this residual series. (c) Partial autocorrelation 

function (PACF) graph of errors. (d) Q-statistic P-values. There are large P values at the significance 

level of 5%. Diagnostic checking indicates the chosen SARIMA specification can provide a 

reasonable approximation to the HFMD notified cases series from June 2008 to December 2016.  

  

 



 

 

Figure S8. The Q-Q plot of residuals from SARIMA(1,0,1)(1,1,1)12 model for HFMD series from 

June 2008 to December 2016. This plot suggests that the distribution of produced residuals has a tail 

thicker than that of a normal distribution. 

 

 



 

 

Figure S9. Autocorrelation function(ACF) and partial autocorrelation function(PACF) graphs the 

first-order non-seasonal difference(d=1) of monthly HFMD incidence series in mainland China from 

June 2008 to December 2017. The plot shows that the differenced series looks much more stationary 

when compared with the original time series. Nonetheless there still is an obvious seasonal pattern in 

this differenced series. 

 
 

 



 

 

Figure S10. Autocorrelation function(ACF) and partial autocorrelation function(PACF) graphs with 

the first-order seasonal difference(D=1) of monthly HFMD incidence series in mainland China from 

June 2008 to December 2017. On the basis of the plot, we can observe that this differenced series 

meets the need of modeling for SARIMA method. 

  

 



 

 

Figure S11. The resultant plots of fit goodness tests from SARIMA(1,0,1)(1,1,1)12 model for HFMD 

notified cases series from June 2008 to December 2017. (a) Standardized residuals. (b) 

Autocorrelation function (ACF) graph of errors across varying lag times. The spikes all fall within 

the 95% confidence intervals in this residual series. (c) Partial autocorrelation function (PACF) graph 

of errors. (d) P values for Ljung-Box statistic.. There are large P values at the significance level of 

5%. Diagnostic checking indicates the chosen SARIMA specification is suitable for the HFMD 

notified cases series from June 2008 to December 2017.  

  

 



 

 

Figure S12. The Q-Q plot of residuals from SARIMA(1,0,1)(1,1,1)12 model for HFMD series from 

June 2008 to December 2017. This plot suggests that residuals are departure from normality at the 

tails. 

 

 

 



 

 

Figure S13. The Q-Q plot of residuals from NAR model for HFMD series from June 2008 to June 

2017. The Q-Q plot of the residuals shows departure from normality at the tails. 

  

 



 

 

Figure S14. The regression plots for the NAR model outputs with respect to targets for training, 

validation, and test in the dataset from June 2008 to June 2017. 

 

  

 



 

 

Figure S15. The layer architecture of NAR model for the HFMD notified cases series from June 

2008 to December 2016. (A) The opened loop mode; (B) The closed loop mode. This NAR model is 

comprised of a hidden layer with 17 neurons and 5 delays and an output layer with 1 neuron. The 

model adopts tapped delay lines to store prior data of the x(t) and y(t) series as well. Among which, 

the output results of the model, y(t), is fed back to the input (through delays), since y(t) is a function 

of y(t – 1), y(t – 2), ...,y(t – d). Nevertheless, in order to train more efficiently, the training can be 

undertaken in open loop. After training, then the opened loop mode should be transformed to the 

closed loop mode for multistep-ahead forecasting. 

 

 



 

 
Figure S16. The resulting plots of fit goodness tests from the best-fitting NAR model for HFMD 

notified cases series from June 2008 to December 2016. (a) Standardized residuals. (b) 

Autocorrelation function (ACF) plot of errors across varying lag times. All of the autocorrelations 

fail to be beyond the estimated 95% uncertainty bounds around zero across varying lag times apart 

from the one from ACF plot at zero lag that should occur and also occurring at lag 11, we should not 

be surprised as this can easily happen by chance alone. Overall, the plot manifests that the network 

appears to have captured the dependence hidden behind the HFMD notified cases series. (c) 

Input-to-error correlation plot for varying lags. The input-error cross-correlation function illustrates 

how the residuals are interrelated with the series of x(t). All of the correlations fall within the 

confidence bounds around zero, which hints the developed model is a perfect specification. (d) 

Q-statistic P-values. Analyses form the plots demonstrate the constructed model is adequate in 

excavating the information of this time series. 

 



 

 

Figure S17. The response of output and target for HFMD time series from June 2008 to December 

2016 at various time points. This plot exhibits which time points are elected as the training, 

validation and testing subsets, along with their corresponding errors between inputs and targets. In 

view of the small errors, a further suggestion that the fitting is fairly accurate.  

  

 



 

 

Figure S18. The regression plots for the best-fitting NAR model outputs with respect to targets for 

training, validation, and test in the dataset from June 2008 to December 2016. 

  

 



 

 

Figure S19. The Q-Q plot of residuals from NAR model for HFMD series from June 2008 to 

December 2016. The Q-Q plot of the residuals shows marked departure from normality at the tails. 

  

 



 

 

Figure S20. The layer architecture of NAR model for HFMD notified cases series from June 2008 to 

December 2017. (A) The opened loop mode; (B) The closed loop mode. This NAR model is 

comprised of a hidden layer with 19 neurons and 6 delays and an output layer with 1 neuron. The 

model adopts tapped delay lines to store prior data of the x(t) and y(t) series as well. Among which, 

the output results of the model, y(t), is fed back to the input (through delays), since y(t) is a function 

of y(t – 1), y(t – 2), ...,y(t – d). Nevertheless, in order to train more efficiently, the training can be 

undertaken in open loop. After training, then the opened loop mode should be transformed to the 

closed loop mode for multistep-ahead forecasting. 

 

 

 

 



 

 

Figure 21. The resulting plots of fit goodness tests from the best-fitting NAR model for HFMD 

notified cases series from June 2008 to December 2017. (a) Standardized residuals. (b) 

Autocorrelation function (ACF) plot of errors across varying lag times. All of the autocorrelations 

fail to be beyond the estimated 95% uncertainty bounds around zero across varying lag times apart 

from the one from ACF plot at zero lag that should occur. The plot manifests that the network 

appears to have captured the dependence hidden behind the HFMD notified cases series. (c) 

Input-to-error correlation plot for varying lags. The input-error cross-correlation function illustrates 

how the residuals are interrelated with the series of x(t). All of the correlations fall within the 

confidence bounds around zero, which hints the developed model is a perfect specification. (d) 

Q-statistic P-values. Analyses form the plots demonstrate the constructed model is adequate in 

excavating the information of this time series. 

 



 

 

Figure S22. The response of output and target for HFMD time series from June 2008 to December 

2017 at various time points. This plot exhibits which time points are elected as the training, 

validation and testing subsets, along with their corresponding errors between inputs and targets. In 

view of the small errors nearly lying between -0.2 and 0.2, a further suggestion that the fitting is 

fairly accurate.  

  

 



 

 

Figure S23. The regression plots for the best-fitting NAR model outputs with respect to targets for 

training, validation, and test in the dataset from June 2008 to December 2017. 

  

 



 

 

Figure S24. The Q-Q plot of residuals from the best-simulating NAR model for HFMD series from 

June 2008 to December 2017. This plot suggests that the distribution of produced residuals has a tail 

thicker than that of a normal distribution. 

  

 



 

 

Figure S25. The regression plots for the LSTM model outputs with respect to targets for training and 

validation in the dataset from June 2008 to June 2017. 

  

 



 

 

Figure S26. The Q-Q plot of residuals from LSTM model for HFMD series from June 2008 to June 

2017. As exhibited in the plot of the normal Q-Q plot, the residuals approximately fall along the line. 

Thus the best-fitting LSTM model improves the normality dramatically compared with the basic 

NAR and SARIMA methods. 

 

 



 

 

Figure S27. The training and validation performances for LSTM model at 300 epochs for the HFMD 

notified cases series from June 2008 to December 2016. This plot documents that the test set error 

and the validation set error have similar characteristics and no significant overfitting has occurred by 

iteration 300. 

 

 



 

 

Figure S28. The resulting plots of fit goodness tests from the best-performing LSTM model for 

HFMD notified cases series from June 2008 to December 2016. (a) Standardized residuals. (b) 

Autocorrelation function (ACF) plot of errors across varying lag times. The ACF plot of forecasted 

errors reveals no individually evident autocorrelation at varying lags except for the one from ACF 

plot at zero lag that should occur. (c) Partial autocorrelation function (PACF) plot of residuals. (d) 

Q-statistic P-values. As shown, All P-values are larger than 0.05. These diagnostics manifest that the 

network is well suited to the dataset. 

  

 



 

 

Figure S29. The regression plots for the best-presenting LSTM model outputs with respect to targets 

for training and validation in the dataset from June 2008 to December 2016. 

  

 



 

 

Figure S30. The Q-Q plot of residuals from LSTM model for HFMD series from June 2008 to 

December 2016. As exhibited in the plot of the normal Q-Q plot, the points seem to follow the 

straight line fairly closely. This graph would not lead us to reject normality of the error terms in this 

model. Thus the best-fitting LSTM model improves the normality dramatically compared with the 

basic NAR and SARIMA methods. 

 

 



 

 

Figure S31. The training and validation performances for LSTM model at 300 epochs for the HFMD 

notified cases series from June 2008 to December 2017. This plot documents that the test set error 

and the validation set error have similar characteristics and no significant overfitting has occurred by 

iteration 300. 

  

 



 

 

Figure S32. The resulting plots of fit goodness tests from the LSTM model for HFMD notified cases 

series from June 2008 to December 2017. (a) Standardized residuals. (b) Autocorrelation function 

(ACF) plot of errors across varying lag times. The ACF plot of forecasted errors reveals no 

individually evident autocorrelation at varying lags except for the two points occurring at lags 2 and 

15. For these two lagged points out of the estimated 95% confidence limit, they are also reasonable 

as this phenomenon can easily happen by chance alone. (c) Partial autocorrelation function (PACF) 

plot of residuals. (d) Q-statistic P-values. As shown, All P-values are larger than 0.05. These 

diagnostics manifest that the network is well suited to the dataset. 

 



 

 

Figure S33. The regression plots for the best-presenting LSTM model outputs with respect to targets 

for training and validation in the dataset from June 2008 to December 2017. 

  

 



 

 

Figure S34. The Q-Q plot of residuals from LSTM model for HFMD series from June 2008 to 

December 2017. The Q-Q plot suggests that the distribution of errors may have a tail thicker than 

that of a normal distribution and may be somewhat skewed to the right. However, In comparison 

with the best-mimicking NAR and SARIMA approaches, the best-fitting LSTM model can improve 

the normality dramatically. 

 

 

 



 

 

Figure S35. The layer architecture of NAR model for the HFMD notified cases series from June 

2008 to June 2017. (A) The opened loop mode; (B) The closed loop mode. This NAR model is 

comprised of a hidden layer with 18 neurons and 5 delays and an output layer with 1 neuron. The 

model adopts tapped delay lines to store prior data of the x(t) and y(t) series as well. Among which, 

the output results of the model, y(t), is fed back to the input (through delays), since y(t) is a function 

of y(t – 1), y(t – 2), ...,y(t – d). Nevertheless, in order to train more efficiently, the training can be 

undertaken in open loop. After training, then the opened loop mode should be transformed to the 

closed loop mode for multistep-ahead forecasting.  

  

 



 

 

Figure S36. The layer architecture of LSTM model. Above-mentioned these gates represent 

nonlinear summation units that gather activations from inside and outside the block, and dominate 

the activation of the cell via multiplications (small black circles). The input and output gates multiply 

the cell’s input and output when the forget gate multiplies the earlier state of the cell. The gate 

activation function ‘f’ ordinarily refers to the logistic sigmoid, which can limit the gate activations 

into [0, 1] intervals. The cell input and output activation functions (‘g’ and ‘h’) customarily stand for 

tanh or logistic sigmoid. In this layer architecture, dashed lines are the weighted join points from the 

cell to the gates, the remainder of lines within the block denote the unweighted join points. The only 

outputs from the block to the remaining the network emanate from the output gate multiplcication.

 



 

Models 
Estimated parameter coefficients of candidate models Performance indexes of candidate models 

AR1 AR2 MA1 MA2 SAR1 SMA1 SMA2 AIC AICc BIC 

ARIMA(1,0,1)(0,1,1)12 0.6358 
 

0.4441 
  

-0.6747 
 

2364.50 2364.94 2374.8 

 
0.1022 

 
0.1055 

  
0.1324 

    
ARIMA(2,1,1)(0,0,2)12 1.0877 -0.5008 -0.964 

  
0.6641 0.6982 2629.47 2630.3 2645.56 

 
0.0897 0.0895 0.0275 

  
0.1246 0.1687 

   
ARIMA(2,1,1)(1,1,0)12 0.8218 -0.2785 -0.9332 

 
-0.6009 

  
2340.16 2340.83 2352.98 

 
0.1158 0.1079 0.0498 

 
0.0869 

     
ARIMA(1,1,2)(1,1,0)12 0.4344 

 
-0.5235 -0.3938 -0.6001 

  
2339.41 2340.08 2352.23 

 
0.1477 

 
0.141 0.1221 0.0874 

     

Table S1. The estimated parameters and performance indexes for the selected candidate models based on the original observations from June 

2008 to June 2017.  

 



 

Parameters Coefficient Standard error t P 

AR1 0.484 0.121 3.992 <0.001 

MA1 -0.432 0.133 -3.256 0.002 

SAR1 -0.949 0.088 -10.827 <0.001 

SMA1 -0.707 0.226 -3.131 0.002 

Table S2. Estimated parameters of the SARIMA(1,0,1)(1,1,1)12 model for the target series from June 

2008 to December 2016. 
  

 



 

Model R2 Log-Likelihood AIC BIC 
Normalized  

BIC 

Ljung-Box Q 

Statistics P 

SARIMA(1,0,1)(1,1,1)12 0.864 -1099.009 2208.018 2220.572 21.602 8.761 0.846 

Table S3. The goodness of fit test of the preferred SARIMA model for the target series from June 

2008 to December 2016. 

  

 



 

Lags 
Residuals of SARIMA model  Residuals of NAR model Residuals of LSTM model 

Box-Ljung Q P Box-Ljung Q P Box-Ljung Q P 

1  0.098  0.754  0.727  0.394  2.468  0.116  

3  0.112  0.990  1.448  0.694  3.467  0.325  

6  1.842  0.934  3.647  0.724  6.959  0.325  

9  2.761  0.973  4.769  0.854  10.473  0.314  

12  4.448  0.974  11.757  0.465  11.179  0.514  

15  7.537  0.941  13.361  0.574  16.304  0.362  

18  8.761  0.965  13.750  0.745  21.606  0.250  

21  9.719  0.982  17.062  0.707  27.494  0.155  

24  15.157  0.916  17.108  0.844  29.205  0.213  

27  20.138  0.825  17.750  0.911  29.529  0.336  

30  22.854  0.821  18.064  0.957  35.149  0.237  

33  25.308  0.829  19.470  0.970  41.780  0.141  

36  37.095  0.418  20.658  0.981  43.404  0.185  

Table S4. Ljung-Box Q test of the residuals for the selected three optimal models fitted to the 

notified HFMD cases series from June 2008 to December 2016 at different lags. 

 

  

 



 

Lags 
Observed values Residuals of SARIMA model Residuals of NAR model Residuals of LSTM model 

LM-test P LM-test P LM-test P LM-test P 

1 51.644  <0.001 0.136  0.712  0.086  0.769  0.490  0.484  

3 69.573  <0.001 1.369  0.713  1.257  0.739  2.846  0.416  

6 68.356  <0.001 3.151  0.790  2.346  0.885  8.744  0.189  

9 66.675  <0.001 9.611  0.383  8.095  0.525  8.534  0.481  

12 68.750  <0.001 23.007  0.028  9.550  0.655  9.393  0.669  

15 66.862  <0.001 22.851  0.087  20.477  0.154  10.494  0.788  

18 64.808  <0.001 22.901  0.194  20.832  0.288  17.173  0.511  

21 62.946  <0.001 23.073  0.340  21.474  0.430  22.333  0.381  

24 69.134  <0.001 16.840  0.855  23.266  0.504  23.755  0.476  

27 66.728  <0.001 18.047  0.902  25.234  0.561  27.193  0.453  

30 64.059  <0.001 20.507  0.903  30.052  0.463  29.736  0.479  

33 61.471  0.002  20.835  0.951  33.224  0.456  36.300  0.317  

36 59.046  0.010  31.915  0.663  32.765  0.623  38.356  0.363  

Table S5. ARCH effect of the observations and residuals of the selected three models fitted to the 

notified HFMD cases series from June 2008 to December 2016 with LM test at various lags. 

 

  

 



 

Parameters Coefficient Standard error t P 

AR1 0.377 0.127 2.968 0.004 

MA1 -0.504 0.124 -4.070 <0.001 

SAR1 -0.938 0.076 -12.299 <0.001 

SMA1 -0.653 0.189 -3.446 0.001 

Table S6. Estimated parameters of the SARIMA(1,0,1)(1,1,1)12 model for the target series from June 

2008 to December 2017. 

  

 



 

Model R2 Log-Likelihood AIC BIC 
Normalized  

BIC 

Ljung-Box Q 

Statistics P 

SARIMA(1,0,1)(1,1,1)12 0.850 -1246.389 2502.777 2515.951 221.621 8.005 0.889 

Table S7. The goodness of fit test of the preferred SARIMA model for target series from June 2008 

to December 2017. 

  

 



 

Lags 
Residuals of SARIMA model  Residuals of NAR model Residuals of LSTM model 

Box-Ljung Q P Box-Ljung Q P Box-Ljung Q P 

1  0.118  0.732  0.759  0.384  0.224  0.636  

3  0.324  0.955  3.863  0.277  5.272  0.153  

6  2.104  0.910  5.326  0.503  7.925  0.244  

9  2.499  0.981  7.134  0.623  9.273  0.412  

12  3.561  0.990  9.655  0.646  9.764  0.637  

15  6.688  0.966  10.026  0.818  16.989  0.320  

18  8.005  0.979  10.203  0.925  18.592  0.417  

21  8.175  0.994  13.032  0.908  19.564  0.549  

24  13.966  0.947  13.537  0.956  22.010  0.579  

27  21.492  0.763  19.289  0.859  26.655  0.483  

30  26.035  0.673  21.828  0.860  29.237  0.505  

33  29.036  0.665  22.238  0.922  29.997  0.617  

36  36.294  0.455  24.456  0.928  31.024  0.704  

Table S8. Ljung-Box Q test of the residuals for the selected three optimal models fitted to the 

notified HFMD cases series from June 2008 to December 2017 at different lags. 

 

  

 



 

Lags 
Observed values Residuals of SARIMA model Residuals of NAR model Residuals of LSTM model 

LM-test P LM-test P LM-test P LM-test P 

1 56.835  <0.001 0.149  0.700  0.007  0.935  3.915  0.048  

3 76.751  <0.001 1.915  0.590  0.076  0.995  6.659  0.084  

6 75.713  <0.001 3.286  0.772  2.735  0.841  10.869  0.093  

9 74.335  <0.001 9.033  0.434  3.608  0.935  13.567  0.139  

12 76.560  <0.001 21.081  0.049  14.431  0.274  14.193  0.289  

15 74.759  <0.001 22.480  0.096  17.071  0.315  17.653  0.281  

18 73.311  <0.001 23.535  0.171  20.457  0.308  18.243  0.440  

21 71.764  <0.001 24.852  0.254  23.826  0.302  18.519  0.616  

24 78.650  <0.001 20.394  0.674  25.552  0.376  21.187  0.628  

27 76.543  <0.001 22.363  0.719  26.888  0.470  21.474  0.764  

30 73.909  <0.001 25.407  0.705  32.506  0.344  23.564  0.791  

33 71.239  <0.001 25.942  0.804  31.970  0.518  26.177  0.795  

36 69.310  0.001  33.405  0.593  33.669  0.580  32.374  0.642  

Table S9. ARCH effect of the observations and residuals of the selected three models fitted to the 

notified HFMD cases series from June 2008 to December 2017 with LM test at various lags. 

  

 



 

Target 

series 

Hidden 

units 
Delays 

MSE* R 

Training Validation Testing Overall Training Validation Testing Overall 

TS1 17 5 0.0011 0.0088 0.0068 0.0032 0.990 0.921 0.940 0.971 

TS2 19 6 0.0022 0.0035 0.0164 0.0038 0.975 0.964 0.901 0.961 

Note: * represents the values of the mean square error(MAE), which are computed based on the 

processed data with normalized approach; TS1 stands for the reported HFMD cases series from June 

2008 to December 2016; TS2 refers to the reported HFMD cases series from June 2008 to December 

2017.  

Table S10. The preferred NAR models’ parameters of various target series. 

 

  

 



 

Target 

series 

Hidden 

neurons 
time steps 

MSE* R 

Training Validation Validation Testing Overall 

TS1 6 12 0.0022 0.0024 0.982 0.967 0.977 

TS2 5 5 0.0031 0.0058 0.974 0.961 0.969 

Note: * represents the values of the mean square error(MAE), which are computed based on the 

processed data with normalized approach; TS1 stands for the reported HFMD cases series from June 

2008 to December 2016; TS2 refers to the reported HFMD cases series from June 2008 to December 

2017;  

Table S11. The preferred LSTM models’ parameters of various target series. 

 

 

 



 

Table S12.  Future one hundred possible sample paths for the HFMD notified data in mainland 

China. This Table was provided in a Microsoft Excel.xlsx version on account of the plethora of data. 

 




