
Supplementary Figures

Supplementary Figure 1: Graphical representation of the SIT/BSIT/ADT Aedes control
model. The life-cycle (green boxes) consists of egg (E), larvae (L), pupae (P ) and adult males (M)
and females (F ). Control elements (red boxes) include pyriproxifen-coated sterile males (S), contaminated
females (Fc) and the concentration of pyriproxifen at larval sites (C) which determines emergence inhibition
(EI). Total population size is regulated by larval carrying capacity (K). Control parameters include: sterile
male release rate (R); density of dissemination stations (A); sexual competitiveness (h); the quantity of
pyriproxifen deposited at oviposition (p); egg-viability of contaminated females (q); the rate for one dissem-
ination station to contaminate a single female (α); and the larval site decontamination rate (d). Female
decontamination is expected after κc ovipositions. Red dashed arrows indicate effects on transition rates
(black arrows). Constant female fecundity (f), gonotrophic cycle rate (g) and stage specific maturation (m)
and mortality (µ) rates are assumed (not show).
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Supplementary Figure 2: Trajectories of the SIT/BSIT model under four different parame-
terisations. For SIT, when release rate R is less than elimination threshold RSIT

Thresh (R = 1414) densities
converge to a stable equilibrium (A). With R slightly greater than RSIT

Thresh (R = 1415.7) densities become
trapped at a pseudo-equilibrium that delays elimination (B). Conversely, elimination with BSIT can be pos-
sible when R < RBSIT

Thresh (here R = 200) provided sufficient quantities of pyriproxifen (PPF) accumulate at
larval sites (C). When initial population densities are low (set here at 1% of the control-free stable equilib-
rium) trajectories of C exhibit transient oscillations and the population converges to a stable equilibrium
(D). Increasing the initial population increases the amplitude of the transient oscillations and when the
initial peak in C is sufficiently large the system destabilises and elimination becomes possible (C).
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Supplementary Figure 3: Sensitivity analysis of BSIT model. Sensitivity of hThresh (A), RThresh
(B), elimination time (C) and total release for elimination (D) to control parameters in the BSIT model. The
threshold hThresh is most sensitive to release rate R (shown relative to the carrying capacity of males M0)
and the gain from boosting hSIT

Thresh/h
BSIT
Thresh is greatest for low R (A). The threshold RThresh is most sensitive

to sterile male competitiveness (B). Elimination time responds differently depending on whether R is greater
than or less than RThresh: when R > RThresh the probability of elimination is one and the mean (solid)
and variance in elimination time become large close to RThresh (C); when R < RThresh rapid elimination is
possible given sufficient accumulation of pyriproxifen (dashed), otherwise a new stable equilibrium is obtained
and elimination time becomes infinite (not shown). The total release for elimination (RTotal) is most sensitive
to competitiveness h – as h → 0 neither SIT nor BSIT can have any effect (D). In all simulations (C and D),
the population was initialised at the control-free asymptotic equilibrium. One hundred thousand parameter
randomisations are used per row. Rows C and D use the same set of parameter randomisations.
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Supplementary Figure 4: Sensitivity analysis with fixed release rate and competitiveness.
Results from sensitivity analyses of the BSIT model with competitiveness h = 0.2 (B,C,D) and daily release
rate R = 500 (A) or R = 1500 (C,D). The expected value (red lines) of the threshold hThresh was most
sensitive to the quantity of pyriproxifen deposited by females (p) and the longevity of pyriproxifen in the
environment (1/d), whereas the variance in hThresh was most sensitive to egg viability (q) (A). Similar
patterns in the sensitivity to each parameter are observed in RThresh (B), elimination time (C), and total
release required for elimination (D). One hundred thousand parameter randomisations are used per row.
Rows C and D use the same set of parameter randomisations.
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Supplementary Figure 5: Incorporation of dengue transmission within the BSIT model. Hu-
mans are categorised susceptible (HS), exposed (HE), infectious (HI) or recovered (HR). Female mosquitoes
are characterised as susceptible (FS), exposed (FE) or infectious (FI). Suffix c indicates pyriproxifen contami-
nation. Parameters include bite rate (b), transition probabilities (βF , βH) and transmission rates (θF ,θH ,αH).
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Supplementary Tables

Parameter Definition Fixed Value Range References
N Number of larvae sites (per hectare) 200 5–200 (1–5)
K1 Carrying capacity of larvae at one larval site 25 15–60 (6–8)
V1 Volume of water larvae at one larval site (litres) 0.25 0.1–1.0 (6–8)
g−1 Expected gonotrophic cycle length 4 2.5–10 (9)
f Fecundity per gonotrophic cycle at low density 60 30–100 (9–12)
ρ Proportion of females among juveniles 0.4 0.3–0.5 (9, 13)
m−1
E Maturation time of eggs 4 2–7 (9, 14, 15)

m−1
L Maturation time of larvae (days) 8 6–12 (9, 14)

m−1
P Maturation time of pupae (days) 3 2–5 (9, 16)

µE Mortality rate of eggs 0.05 0.01–0.25 (17)
µ−1
0 Baseline life expectancy of larvae 35 25–45 (9)
µK Mortality rate of larvae at carrying capacity mEmLmP ρgf

(mE+µE)(mP+µP )µF
−mL – –

µP Mortality rate of pupae 0.06 0.01–0.17 (9, 16, 18)
µ−1
F Life expectancy of adult females 15.5 13.8–24.5 (19, 20)
µ−1
M Life expectancy of adult males 13.6 12.8–24.5 (19, 20)
µ−1
S Life expectancy of sterile males 11.6 5.5–20.9 (19, 20)
µc Mortality rate of contaminated adult females µF – (21, 22)
κ Number of ovipositions per gonotrophic cycle 2 1–12 (23–28)
κc Expected number of contaminating ovipositions 1 Unknown
γ Oviposition rate κg – –
r Coupling rate of an adult male 0.94 0.5–1.2 (29)
h Ratio of sterile male / natural male coupling rates 0.2 0–1 (30–32)
p Mass of pyriproxifen deposited at oviposition 0.008 0.002–0.04 (21, 33)
q Relative viability of eggs from contaminated females 0.51 0.4–0.6 (34)
d−1 Expected duration of contamination at larval sites 33 5–100 (35, 36)
EI50 Pyriproxifen concentration for 50% emergence inhibition 0.2 0.168–0.229 (21)
EI95 Pyriproxifen concentration for 95% emergence inhibition 0.668 0.547–0.902 (21)
σ Slope of the dose-response curve logit(0.95)−logit(0.5)

ln(EI95)−ln(EI50)
– –

A Number of auto-dissemination stations / ha – – See Sup. Table 3
α Contamination rate at one dissemination station – – See Sup. Table 3

Supplementary Table S1. Parameters of the BSIT/SIT model, including default (fixed) values,
ranges found in the literature and references of source publications.
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Parameter Symbol Value Alternative value References
Bite rate b 0.5 0.26 (37, 38)
Mosquito to human transmission prob. βH 0.75 0.31 (37, 38)
Human to mosquito transmission prob. βF 0.75 0.31 (37, 38)
Intrinsic incubation period 1/θH 5.9 - (39)
Extrinsic incubation period 1/θF 8.3 10.0 (37)
Recovery rate in humans αH 1/6 - (38)
Human death rate µH 1/(72×365.25) - (40)
Human population density H 50 - (41)

Supplementary Table S2. Parameters of the dengue transmission model. Values of four param-
eters in the “Alternative value” column are taken from (38) and provide a relatively “optimistic”
R0 compared to the more “pessimistic” values taken from (37). The human mortality rate is set
to the inverse of the 2016 global mean life expectancy. The chosen human population density
is approximately equivalent to that of Seville or Montpellier.

Paper Reference Stations Area St/ha Time EI α
Caputo (2012) (42) 10 1 ha 10 20 d 51.6% 0.0035
Abad-Franch (2015) (43) 100 7 ha 14 121 d 63.3% 0.09
Chandel (2016) (44) 32 1.6 ha 20 14 d 38.8% 0.0019
Unlu (2017) (45) 75 3.8 ha 19.8 49 d 69.4% 0.0024
Abad-Franch (2017) (46) 1000 650 ha 1.54 152 d 79.3% 2.9500

Supplementary Table S3. Data from five auto-dissemination field trials and associated esti-
mates of contamination rate at dissemination station (α). Trajectories of the ADT model were
simulated with dissemination station density (A) set to St/ha. Calibration of α involved min-
imising the absolute error between modelled and observed emergence inhibition (EI) at a given
point in time (Time). Calibration assumed EI in ovitraps equalled EI at larval sites. Aedes al-
bopictus was present in all five studies. Aedes aegypi was present only in the two Brazilian
(Abad-Franch) trials.
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