Supplementary Information

for

Ep400 deficiency in Schwann cells causes persistent expression of early developmental regulators and peripheral neuropathy

by

Franziska Fröb et al.

SUPPLEMENTARY FIGURES

Supplementary Figure 1: Ep400 expression in Schwann cells. (a-g) Localization of Ep400 (red) in Sox10-labeled (green) Schwann cells (SCs) by immunofluorescence studies on spinal nerve (a-d) and sciatic nerve (e-g) sections at E12.5 (a), E14.5 (b), E16.5 (c), E18.5 (d), P9 (e), P21 (f) and 2 months (2mo, g) of age. Nuclei were counterstained with DAPI (blue). (h-j) Co-localization of Ep400 (red) with the stage-specific SC markers Sox2 (h), Oct6 (i) and Krox20 (j) (all in green) by immunohistochemistry on spinal nerve sections at E14.5 (h), and E18.5 (i,j). (k) Localization of Ep400 (red) in other cell types of the sciatic nerve at P9 such as Iba1-positive macrophages, CD3-positive T lymphocytes, α -Smooth muscle actin (Sma) positive perivascular smooth muscle cells, Pecam-positive endothelial cells, Desmin-positive pericytes and fibronectin (FN1) expressing fibroblasts. Cell-type specific markers and nuclear DAPI stain are in green. Scale bars: $25\mu m$ (a,j), $10\mu m$ (k).

Supplementary Figure 2: Early neural-crest specific deletion of Ep400. (a) Ep400 deletion in SC precursors along spinal nerves of *Ep400* ΔNC mice at E12.5 and E14.5 as determined by Ep400 immunohistochemistry relative to age-matched controls. SCs (SC) were identified by Sox10 staining (n = 3; mean values ± SEM). Statistical significance was determined by unpaired two-tailed Student's t-test (***, P ≤0.001). (b-e) Presence of SC precursors along spinal nerves of control and *Ep400* ΔNC mice at E12.5 as determined by immunohistochemical detection of Sox10 (green) (b,c) and Fabp7 (red) (d,e). Nuclei were counterstained with DAPI (blue). Scale bars: 25µm (c). (f) Ventral view of head from control and *Ep400* ΔNC embryos at E18.5 showing orofacial clefting in the mutant. Exact values are listed in Suppl. Table 10 and source data are provided as a Source Data file.

Supplementary Figure 3: Myelination defects in *Ep400* ΔPNS mice. (a) Ep400 deletion in sciatic nerve SCs of *Ep400* ΔPNS mice (red bars) at P0 and P21 as determined by Ep400 immunohistochemistry relative to age-matched controls (blue bars). SCs were identified by Sox10 staining (n = 3; mean values ± SEM). (b) Survival curve of control (blue line) and *Ep400* ΔPNS (red line) mice during the first 5 months of life. (c-j) Myelin structures visualized by Mbp immunohistochemistry (c,e,g,i) and PPD staining (d,f,h,j) on transverse sciatic nerve sections of control (c-f) and *Ep400* ΔPNS (g-j) mice at P21 (c,d,g,h) and 2mo (e,f,i,j). (k-n) Determination of single g ratios (scatter plots in k,m) and g ratio in relation to axon size after binning of axons according to their diameter (l,n) from ultrathin sciatic nerve sections of control (blue) and *Ep400* ΔPNS (red) mice at P21 (k,l) and 2 months (2mo) of age (m,n) using n = 100-300 axons for each age (mean g ratios ± SEM). (o-r) Appearance of node and paranode on ultrathin longitudinal sections of sciatic nerves from control (o,q) and *Ep400* ΔPNS (p,r) mice at P21 (o,p) and 2 months (q,r) of age. (s-x) Quantification of myelin

debris (s,t), myelin outfoldings (u,v) and Remak bundles (w,x) on ultrathin transverse sections of sciatic nerves from control (blue) and *Ep400*Δ*PNS* (red) mice at P21 (s,u,w) and 2 months (t,v,x). Statistical significance was determined by unpaired, two-tailed Student's t-test (*, P ≤ 0.05 ; **, P ≤ 0.01 ; ***, P ≤ 0.001). Scale bars: 25µm (c), 1µm (o). Exact values are listed in Suppl. Table 1,9,10 and source data are provided as a Source Data file.

Supplementary Figure 4: Expression of Schwann cell regulatory factors in *Ep400* Δ *PNS* mice. (a-x) Immunohistochemical stainings of sciatic nerve sections of control (a-d,i-l,q-t) and *Ep400* Δ *PNS* (e-h,m-p,u-x) mice at P0 (a,e,i,m,q,u), P9 (b,f,j,n,r,v), P21 (c,g,k,o,s,w) and 2months (2mo) (d,h,l,p,t,x) with antibodies directed against Sox10 (a-h), Oct6 (i-p) and Krox20 (q-x). Scale bars: 25µm.

Supplementary Figure 5: General and cell type-specific changes of proliferation, apoptosis and inflammation in sciatic nerves of in *Ep400*Δ*PNS* mice. (a-d) Quantification of SC proliferation at E18.5 after treating pregnant mice at E17.5 with EdU and 1 h before harvesting the embryos by caesarean section with BrdU. The fraction of SCs in cell cycle was determined as the fraction of Ki67-positive SCs (a), the actively dividing fraction as the fraction of Ki67- and BrdU-positive SCs (b), the non-dividing fraction as the percentage of Ki67-positive, but BrdU-negative SCs (c), and the fraction that had exited the cell cycle during the last 24h as the percentage of Ki67-negative SCs among the ones labelled with EdU one day prior to analysis (d) in spinal nerves of control (black bars) and *Ep400*Δ*PNS* (white bars) embryos (n = 3 each, mean values \pm SEM). (e-j) Immunohistochemical stainings with antibodies directed against Ki67 (e), cleaved Caspase 3 (g) and Iba1 (j) or TUNEL (i) of sciatic nerve sections of control and *Ep400*Δ*PNS* mice at P0, P9, P15, P21 and 2 months

(2mo) and corresponding quantifications of Ki67-positive (f) and cleaved Caspase 3-positive (h) cells (n = 3; mean values \pm SEM). Scale bars: 25µm. Statistical significance was determined by two-tailed Student's t-test (*, P ≤0.05; **, P ≤0.01; ***, P ≤0.001). Exact values are listed in Suppl. Table 5,11 and source data are provided as a Source Data file.

Supplementary Figure 6: RNA-Seq data from sciatic nerves of control and *Ep400* Δ *PNS* mice. (a) Principal component analysis blot of RNA-Seq samples from sciatic nerves of control (black squares) and *Ep400* Δ *PNS* (white circles) mice at P9. (b) MA plot depicting the overall gene expression changes (red dots) in sciatic nerves of *Ep400* Δ *PNS* mice relative to controls. (c-e) Gene set enrichment blots from GSEA analysis of RNA-Seq data with the following gene sets: immune response (c), lipid metabolic process (d) and myelination (e). Normalized enrichment score (NES), p value and false discovery rate (FDR) are listed at the bottom of each blot.

Supplementary Figure 7: ChIP data from sciatic nerves of control and Ep400 APNS mice. (a) GO analysis (DAVID) for biological processes enriched among genes that gained promoter-associated H3K27ac in Ep400APNS nerves. Processes are sorted by statistical significance. (b) Principal component analysis blot of ChIP-Seq from H2A.Z samples from sciatic nerves of control (black squares) and $Ep400\Delta PNS$ (white circles) mice at P9. (c) MA plot depicting the overall differences (red dots) in affinity to binding sites in sciatic nerves of *Ep400* Δ *PNS* mice relative to controls. (**d**-**q**) Genomic distribution of H2A.Z (d-g,k-n) and H3K27ac (d,h-j,k,o-q) in chromatin from sciatic nerves of control (red, dark green) and *Ep400APNS* (orange, light green) mice in the *Tfap2a* (d-j) and *Pax3* (k-q) genomic loci at P9 (d,e,h,k,l,o), P21 (f,i,m,p) and 2 months (g,j,n,q). Data are from ChIP-Seq (d,k) and ChIPqPCR (e-j,l-q) experiments. ChIP-Seq data are presented as tracks and are expanded relative to those shown in Fig. 4f,g. TSS-associated peaks for H2A.Z are marked by red (control) or orange (Ep400 Δ PNS) lines below the tracks, those for H3K27ac by dark (control) or light (Ep400 APNS) green lines. Other peaks are marked by lines with coloured rim. For ChIPqPCR experiments, several regions distributed throughout the Tfap2a and Pax3 loci (for position, see numbers in d,k) were analyzed by quantitative PCR for enrichment in chromatin from sciatic nerves of control (red and dark green bars) and Ep400APNS (orange and light green bars) mice after precipitation with antibodies directed against H2A.Z and H3K27ac compared to IgG control (arbitrarily set to 1, dotted line). ChIP-qPCR data are presented as mean values \pm SEM (n = 3). The relative position of TSS-associated peaks from ChIP-Seq studies to the regions analyzed in ChIP-qPCR is indicated by coloured horizontal lines at the top of each ChIP-qPCR panel. Statistical significance was determined by two-tailed Student's t-test (*, P ≤0.05; **, P ≤0.01; ***, P ≤0.001). Exact values and primer sequences for ChIPqPCR experiments are listed in Suppl. Tables 12,13 and source data are provided as a Source Data file.

Supplementary Figure 8: Characterization of chromatin at select promoters in **Ep400** APNS mice and Schwann cell phenotype in dko mice. (a-d) Tracks from H2A.Z (left) and H3K27ac (right) ChIP-Seq experiments for Krox20 (a), Oct6 (b), Mbp (c) and Mpz (d) performed on chromatin from sciatic nerves of control (red and dark green) and Ep400 APNS (orange and light green) mice at P9. Shown are H2A.Z precipitates, H3K27ac precipitates and input (blue) for both genotypes. Differential peaks were not detected and would be marked by colored lines below the corresponding tracks. (e) Comparison of the total SC number and the number of Sox2-, Oct6-, and Krox20- positive SCs in sciatic nerve sections of control (black bars) and *Tfap2a* Δ *PNS* (dark grey bars) mice at P21 (n = 3; mean values \pm SEM). (f) Survival curve of *Ep400* Δ *PNS* (red line) and dko (light grey line) mice during the first 2 months of life. (g) Quantification of Remak bundles on ultrathin transverse sections of sciatic nerves from control (blue bars), *Ep400APNS* (red bars) and dko (light grey bars) mice at P21 (n = 3; mean values \pm SEM). Values for control and *Ep400*Δ*PNS* mice are those shown in Suppl. Fig. 3w. (h) Representative electron microscopic pictures of sciatic nerve sections from dko mice at P21. For comparison with control and Ep400 APNS mice, see Fig. 1i-l. Scale bar: 2.5µm. (i) Determination of g ratio in relation to axon size after binning of axons according to their diameter from ultrathin sciatic nerve sections of control (blue bars), *Ep400* Δ *PNS* (red bars) and dko (light grey bars) mice at P21 (n = 100-200 axons). Values for control and *Ep400APNS* mice are those shown in Suppl. Fig. 31. Statistical significance was determined by two-tailed Student's t-test (e) or ANOVA (g,i) (*, P ≤0.05; **, P ≤0.01; ***, P ≤0.001). Exact values are listed in Suppl. Tables 1,5,9 and source data are provided as a Source Data file.

SUPPLEMENTARY TABLES

Supplementary Table 1: G ratio of myelin sheaths in sciatic nerves of control and mutant mice

Age	Genotype	Mean value	Figure
		\pm SEM	
P21	control	0.65 ± 0.01	Figs. 1q & 5n
	<1.5µm Ø axons	0.67 ± 0.01	Suppl. Figs. 31 & 8i
	1.5-2µm Ø axons	0.65 ± 0.01	Suppl. Figs. 31 & 8i
	2-2.5µm Ø axons	0.65 ± 0.01	Suppl. Figs. 31 & 8i
	2.5-3µm Ø axons	0.62 ± 0.01	Suppl. Figs. 31 & 8i
	>3µm Ø axons	0.64 ± 0.01	Suppl. Figs. 31
	>2.5µm Ø axons	0.63 ± 0.01	Suppl. Figs. 8i
	Ep400∆PNS	0.70 ± 0.01	Figs. 1q & 5n
	<1.5µm Ø axons	0.67 ± 0.04	Suppl. Figs. 31 & 8i
	1.5-2µm Ø axons	0.69 ± 0.01	Suppl. Figs. 31 & 8i
	2-2.5µm Ø axons	0.71 ± 0.01	Suppl. Figs. 31 & 8i
	2.5-3µm Ø axons	0.72 ± 0.01	Suppl. Figs. 31 & 8i
	>3µm Ø axons		Suppl. Figs. 31
	>2.5µm Ø axons	0.75 ± 0.01	Suppl. Figs. 8i
	dko	0.67 ± 0.01	Fig. 5n
	<1.5µm Ø axons	0.64 ± 0.03	Suppl. Fig. 8i
	1.5-2µm Ø axons	0.65 ± 0.01	Suppl. Fig. 8i
	2-2.5µm Ø axons	0.69 ± 0.01	Suppl. Fig. 8i
	>2.5µm Ø axons	0.72 ± 0.01	Suppl. Fig. 8i
2 months	control	0.66 ± 0.01	Fig. 1u
	<1.5µm Ø axons	0.63 ± 0.02	Suppl. Fig. 3n
	1.5-2µm Ø axons	0.64 ± 0.01	Suppl. Fig. 3n
	2-2.5µm Ø axons	0.66 ± 0.01	Suppl. Fig. 3n
	2.5-3µm Ø axons	0.65 ± 0.01	Suppl. Fig. 3n
	>3µm Ø axons	0.67 ± 0.01	Suppl. Fig. 3n
	Ep400∆PNS	0.67 ± 0.01	Fig. 1u
	<1.5µm Ø axons	0.58 ± 0.02	Suppl. Fig. 3n
	1.5-2µm Ø axons	0.64 ± 0.01	Suppl. Fig. 3n
	2-2.5µm Ø axons	0.65 ± 0.01	Suppl. Fig. 3n
	2.5-3µm Ø axons	0.70 ± 0.01	Suppl. Fig. 3n
	>3µm Ø axons	0.73 ± 0.01	Suppl. Fig. 3n

Age	Genotype	Mean value	Figure
		\pm SEM	
P21	control	100 ± 0.00 %	Fig. 1r
	Ep400∆PNS	$74.67 \pm 2.33\%$	Fig. 1r
2 months	control	100 ± 0.00 %	Fig. 1v
	Ep400∆PNS	$97.00 \pm 1.00\%$	Fig. 1v

Supplementary Table 2: Percentage of myelinated large caliber axons in sciatic nerves of control and mutant mice

Supplementary Table 3: Relative length distribution of internodes in sciatic nerves of control and mutant mice at P21

Genotype	Internodal length	Mean value	Figure
		\pm SEM	
control	0-50 μm	9.70 ± 4.85	Fig. 2a
	50-150 μm	58.78 ± 11.30	Fig. 2a
	150-200µm	27.82 ± 4.72	Fig. 2a
	200-250µm	3.70 ± 3.70	Fig. 2a
Ep400∆PNS	0-50 μm	54.39 ± 8.15	Fig. 2a
	50-150 μm	48.82 ± 9.20	Fig. 2a
	150-200µm	0.00 ± 0.00	Fig. 2a
	200-250µm	0.00 ± 0.00	Fig. 2a

Supplementary Table 4: Length of nodes and paranodes in sciatic nerves of control and mutant mice at P21

Structure	Genotype	Mean value	Figure
		\pm SEM	
node	control	$1.00\pm0.02\mu m$	Figs. 2c & 5q
	Ep400∆PNS	$1.34\pm0.03\mu m$	Figs. 2c & 5q
	dko	$1.32\pm0.08\mu m$	Fig. 5q
paranode	control	$4.28\pm0.16\mu m$	Figs. 2d & 5r
	Ep400∆PNS	$3.46\pm0.13\mu m$	Figs. 2d & 5r
	dko	$3.66 \pm 0.10 \mu m$	Fig. 5r

Supplementary Tal	ble 5: Num	ber of ma	arker-positive	e cells p	er defined	area in	sciatic	nerves
of control and mutar	nt mice							

Marker	Age	Genotype	Mean value	Figure
			\pm SEM	
Sox10	PO	control	8237 ± 440	Fig. 2e
		control	7800 ± 64	Fig. 5a
		Ep400∆PNS	7630 ± 658	Fig. 2e
		Ep400∆PNS	7950 ± 330	Fig. 5a
		dko	7943 ± 170	Fig. 5a
	P9	control	4340 ± 456	Fig. 2e
		control	3903 ± 47	Fig. 5a
		Ep400∆PNS	4497 ± 739	Fig. 2e
		Ep400∆PNS	4027 ± 15	Fig. 5a
		dko	4043 ± 232	Fig. 5a
	P21	control	1777 ± 100	Fig. 2e
		control	1656 ± 96	Fig. 5a, Suppl. Fig. 8e
		Ep400∆PNS	1863 ± 103	Fig. 2e
		Ep400∆PNS	1768 ± 294	Fig. 5a
		Tfap2a∆PNS	1766 ± 191	Suppl. Fig. 8e
		dko	1588 ± 120	Fig. 5a
	2 months	control	847 ± 98	Fig. 2e
		control	957 ± 19	Fig. 5a
		Ep400∆PNS	850 ± 148	Fig. 2e
		Ep400∆PNS	941 ± 16	Fig. 5a
		dko	944 ± 39	Fig. 5a
Oct6	P0	control	5677 ± 386	Fig. 2f
		control	5607 ± 124	Fig. 5c
		Ep400∆PNS	5307 ± 94	Fig. 2f
		Ep400∆PNS	5493 ± 50	Fig. 5c
		dko	5567 ± 284	Fig. 5c
	Р9	control	3317 ± 147	Fig. 2f
		control	2891 ± 150	Fig. 5c
		Ep400∆PNS	2857 ± 391	Fig. 2f
		Ep400∆PNS	2747 ± 136	Fig. 5c
		dko	2780 ± 5	Fig. 5c
	P21	control	710 ± 150	Fig. 2f
		control	428 ± 76	Fig. 5c, Suppl. Fig.8e
		Ep400ΔPNS	1423 ± 163	Fig. 2f
		Ep400ΔPNS	1208 ± 143	Fig. 5c
		Tfap2a∆PNS	577 ± 45	Suppl. Fig.8e

		dko	879 ± 152	Fig. 5c
	2 months	control	310 ± 25	Fig. 2f
		control	194 ± 6	Fig. 5c
		Ep400ΔPNS	517 ± 99	Fig. 2f
		Ep400ΔPNS	339 ± 31	Fig. 5c
		dko	233 ± 8	Fig. 5c
Krox20	P0	control	2323 ± 277	Fig. 2g
		control	2343 ± 63	Fig. 5d
		Ep400∆PNS	760 ± 284	Fig. 2g
		Ep400∆PNS	910 ± 26	Fig. 5d
		dko	1577 ± 73	Fig. 5d
	P9	control	1630 ± 213	Fig. 2g
		control	1608 ± 34	Fig. 5d
		Ep400∆PNS	480 ± 56	Fig. 2g
		Ep400∆PNS	527 ± 25	Fig. 5d
		dko	1088 ± 64	Fig. 5d
	P21	control	1893 ± 42	Fig. 2g
		control	1301 ± 107	Fig. 5d, Suppl. Fig.8e
		Ep400∆PNS	903 ± 153	Fig. 2g
		Ep400∆PNS	791 ± 16	Fig. 5d
		Tfap2a∆PNS	1310 ± 97	Suppl. Fig.8e
		dko	1142 ± 13	Fig. 5d
	2 months	control	880 ± 114	Fig. 2g
		control	841 ± 39	Fig. 5d
		Ep400∆PNS	750 ± 95	Fig. 2g
		Ep400∆PNS	744 ± 36	Fig. 5d
		dko	826 ± 9	Fig. 5d
Sox2	PO	control	2203 ± 227	Fig. 5b
		Ep400∆PNS	1577 ± 191	Fig. 5b
		dko	2080 ± 391	Fig. 5b
	P9	control	65 ± 4	Fig. 5b
		Ep400∆PNS	349 ± 11	Fig. 5b
		dko	211 ± 23	Fig. 5b
	P21	control	51 ± 8	Fig. 5b, Suppl. Fig.8e
		Ep400∆PNS	347 ± 71	Fig. 5b
		Tfap2a∆PNS	61 ± 9	Suppl. Fig. 8e
		dko	140 ± 21	Fig. 5b
	2 months	control	$54 \pm \overline{3}$	Fig. 5b
		Ep400ΔPNS	98 ± 1	Fig. 5b
		dko	$52 \pm \overline{3}$	Fig. 5b
Mbp	P21	control	57 ± 4	Fig. 5e
		Tfap2a∆PNS	53 ± 1	Fig. 5e

		Ep400∆PNS	27 ± 1	Fig. 5e
		dko	43 ± 4	Fig. 5e
Ki67 + Sox10	PO	control	1286 ± 116	Fig. 2h
		control	1278 ± 90	Fig. 5s
		Ep400ΔPNS	1317 ± 122	Fig. 2h
		Ep400ΔPNS	1254 ± 88	Fig. 5s
		dko	1292 ± 25	Fig. 5s
	P9	control	72 ± 4	Fig. 2h
		control	62 ± 2	Fig. 5s
		Ep400∆PNS	323 ± 69	Fig. 2h
		Ep400ΔPNS	335 ± 27	Fig. 5s
		dko	191 ± 19	Fig. 5s
	P15	control	13 ± 6	Fig. 2h
		Ep400ΔPNS	184 ± 5	Fig. 2h
	P21	control	0 ± 0	Fig. 2h
		control	18 ± 1	Fig. 5s
		Ep400ΔPNS	161 ± 8	Fig. 2h
		Ep400ΔPNS	341 ± 29	Fig. 5s
		dko	154 ± 22	Fig. 5s
	2 months	control	0 ± 0	Fig. 2h
		control	16 ± 5	Fig. 5s
		Ep400∆PNS	56 ± 9	Fig. 2h
		Ep400∆PNS	78 ± 1	Fig. 5s
		dko	25 ± 6	Fig. 5s
Cleaved caspase 3	PO	control	234 ± 21	Fig. 2i
+ Sox10		control	219 ± 29	Fig. 5t
		Ep400∆PNS	233 ± 31	Fig. 2i
		Ep400∆PNS	211 ± 9	Fig. 5t
		dko	219 ± 7	Fig. 5t
	P9	control	20 ± 1	Fig. 2i
		control	18 ± 2	Fig. 5t
		Ep400∆PNS	40 ± 4	Fig. 2i
		Ep400∆PNS	44 ± 2	Fig. 5t
		dko	25 ± 2	Fig. 5t
	P15	control	7 ± 1	Fig. 2i
		Ep400∆PNS	16 ± 3	Fig. 2i
	P21	control	0 ± 0	Fig. 2i
		control	0 ± 0	Fig. 5t
		Ep400∆PNS	23 ± 2	Fig. 2i
		Ep400∆PNS	16 ± 3	Fig. 5t
		dko	2 ± 2	Fig. 5t
	2 months	control	0 ± 0	Fig. 2i

		control	9 ± 1	Fig. 5t
		Ep400∆PNS	0 ± 0	Fig. 2i
		Ep400∆PNS	14 ± 2	Fig. 5t
		dko	11 ± 3	Fig. 5t
TUNEL	P0	control	136 ± 8	Fig. 2j
		Ep400∆PNS	122 ± 11	Fig. 2j
	P9	control	41 ± 1	Fig. 2j
		Ep400∆PNS	71 ± 4	Fig. 2j
	P15	control	15 ± 5	Fig. 2j
		Ep400∆PNS	66 ± 10	Fig. 2j
	P21	control	8 ± 2	Fig. 2j
		Ep400ΔPNS	65 ± 6	Fig. 2j
	2 months	control	3 ± 0	Fig. 2j
		Ep400ΔPNS	6 ± 2	Fig. 2j
Iba1	P0	control	1047 ± 58	Fig. 2k
		control	970 ± 24	Fig. 5u
		Ep400ΔPNS	927 ± 50	Fig. 2k
		Ep400ΔPNS	991 ± 36	Fig. 5u
		dko	978 ± 30	Fig. 5u
	P9	control	593 ± 49	Fig. 2k
		control	460 ± 24	Fig. 5u
		Ep400ΔPNS	1077 ± 124	Fig. 2k
		Ep400ΔPNS	1015 ± 7	Fig. 5u
		dko	770 ± 76	Fig. 5u
	P15	control	260 ± 70	Fig. 2k
		Ep400∆PNS	1220 ± 105	Fig. 2k
	P21	control	103 ± 35	Fig. 2k
		control	27 ± 6	Fig. 5u
		Ep400∆PNS	617 ± 34	Fig. 2k
		Ep400ΔPNS	337 ± 55	Fig. 5u
		dko	161 ± 20	Fig. 5u
	2 months	control	120 ± 17	Fig. 2k
		control	131 ± 4	Fig. 5u
		Ep400∆PNS	340 ± 72	Fig. 2k
		Ep400ΔPNS	340 ± 19	Fig. 5u
		dko	332 ± 10	Fig. 5u
Ki67	P0	control	2027 ± 127	Suppl. Fig. 5f
		Ep400ΔPNS	2163 ± 253	Suppl. Fig. 5f
	P9	control	357 ± 69	Suppl. Fig. 5f
		Ep400ΔPNS	963 ± 171	Suppl. Fig. 5f
	P15	control	37 ± 9	Suppl. Fig. 5f
		Ep400ΔPNS	503 ± 70	Suppl. Fig. 5f
				•

	P21	control	17±7	Suppl. Fig. 5f
		Ep400∆PNS	333 ± 62	Suppl. Fig. 5f
	2 months	control	13 ± 3	Suppl. Fig. 5f
		Ep400∆PNS	77 ± 23	Suppl. Fig. 5f
Cleaved caspase 3	PO	control	507 ± 72	Suppl. Fig. 5h
		Ep400∆PNS	537 ± 90	Suppl. Fig. 5h
	P9	control	19 ± 3	Suppl. Fig. 5h
		Ep400∆PNS	90 ± 7	Suppl. Fig. 5h
	P15	control	24 ± 2	Suppl. Fig. 5h
		Ep400∆PNS	127 ± 14	Suppl. Fig. 5h
	P21	control	18 ± 1	Suppl. Fig. 5h
		Ep400∆PNS	82 ± 3	Suppl. Fig. 5h
	2 months	control	11 ± 2	Suppl. Fig. 5h
		Ep400 Δ PNS	16 ± 2	Suppl. Fig. 5h

Gene	Primer	Age	Mean value	Figure
			\pm SEM	
Ep400	5'-GCAGATGCAGACATCTCAGC-3'	P9	0.57 ± 0.04	Fig. 21
	5'-GTTGGTAGCAGAAGAGGGTC-3'	P21	0.47 ± 0.08	Fig. 21
		2 months	0.57 ± 0.06	Fig. 21
ErbB3	5'-TGTGGACAGCAAAACCTCAG-3'	P9	1.00 ± 0.09	Fig. 21
	5'-CCATCCIGGGCIACACAG11-3'	P21	1.08 ± 0.13	Fig. 21
		2 months	1.66 ± 0.25	Fig. 21
S100b	5'- GACTCCAGCAGCAAAGGTGAC- 3'	P9	0.62 ± 0.16	Fig. 21
	5-CATCHTCGTCCAGCGTCTCCA-3	P21	0.31 ± 0.11	Fig. 21
		2 months	0.66 ± 0.15	Fig. 21
Fabp7	5'-TTTGTCTTCGGTGTGGAGGT-3'	P9	0.45 ± 0.16	Fig. 21
	5'-IGGIIIGCAIICCAAAGAAAG-3'	P21	0.67 ± 0.33	Fig. 21
		2 months	0.87 ± 0.15	Fig. 21
Cdh19	5'-GGGAGAATTTCCTCCTCTGG-3'	P9	1.24 ± 0.12	Fig. 21
	5'-CGGAAAATTTCTCAATGACCA-3'	P21	0.83 ± 0.29	Fig. 21
		2 months	1.67 ± 0.15	Fig. 21
L1Cam 5'-CTCCTCCCATTGCTATTCCA-3' 5'-AGCCAGTGCCTGTAGGAAGA-3'	5'-CTCCTCCCATTGCTATTCCA-3'	P9	0.72 ± 0.12	Fig. 21
	P21	0.89 ± 0.28	Fig. 21	
		2 months	1.39 ± 0.18	Fig. 21
Dhh	5'-CTTGGACATCACCACGTCTG-3'	P9	1.65 ± 0.27	Fig. 21
	5'-GTAGTTCCCTCAGCCCCTTC-3'	P21	2.33 ± 0.09	Fig. 21
		2 months	5.07 ± 0.48	Fig. 21
Nfasc	5'-GACAGCCTGGTGGACTATGG-3'	P9	0.15 ± 0.05	Fig. 21
	5'-TCTGCAGTTGCTTCATCTCC-3'	P21	0.19 ± 0.05	Fig. 21
		2 months	0.37 ± 0.15	Fig. 21
Ank2	5'-GCTTCAGGGGTGGTGTTCTA-3'	P9	0.62 ± 0.14	Fig. 21
	5'-IACAGIGCAGIGGCCAGAAG-3'	P21	0.50 ± 0.16	Fig. 21
		2 months	0.37 ± 0.03	Fig. 21
Sox10	5'-ACAGCAGCAGGAAGGCTTCT-3'	P9	0.86 ± 0.03	Fig. 2m
	5'-TGTCCTCAGTGCGTCCTTAG-3'	P21	0.56 ± 0.20	Fig. 2m
		2 months	1.21 ± 0.21	Fig. 2m
Oct6	5'-GTTCTCGCAGACCACCATCT-3'	P9	0.67 ± 0.11	Fig. 2m
	5'-GGCTTGGGACACTTGAGAAA-3'	P21	1.49 ± 0.32	Fig. 2m
		2 months	3.83 ± 0.36	Fig. 2m
Krox20	5'-AGGCCCCTTTGACCAGATGA-3'	P9	0.45 ± 0.05	Fig. 2m
	5'-AAGATGCCCGCACTCACAAT-3'	P21	0.23 ± 0.03	Fig. 2m
		2 months	0.41 ± 0.08	Fig. 2m
Cx32	5'-CTGCTCTACCCCGGCTATGC-3'	P9	0.19 ± 0.03	Fig. 2m

Supplementary Table 6: Determination of transcript levels in sciatic nerves of Ep400 Δ PNS mice relative to control

	5'-CAGGCTGAGCATCGGTCGCTCTT-3'	P21	0.20 ± 0.01	Fig. 2m
		2 months	0.71 ± 0.14	Fig. 2m
Mbp	5'-CACACGAGAACTACCCA- 3'	P9	0.24 ± 0.04	Fig. 2m
	5'-CCAAGTTCACCCCTACTCCA-3'	P21	0.14 ± 0.01	Fig. 2m
		2 months	0.24 ± 0.01	Fig. 2m
Mpz	5'-CTGGTCCAGTGAATGGGTCT-3'	P9	0.25 ± 0.07	Fig. 2m
	5'-CATGTGAAAGTGCCGTTGTC-3'	P21	0.10 ± 0.03	Fig. 2m
		2 months	0.36 ± 0.04	Fig. 2m
Pmp22	5'-CTCAAAGCCTTCGTCAGTCC-3'	P9	0.28 ± 0.07	Fig. 2m
	5'-TTGGTGGCCAATACAAGTCA-3'	P21	0.16 ± 0.03	Fig. 2m
		2 months	0.36 ± 0.06	Fig. 2m
Periaxin	5'-TAGTGGGTGAGGGCATCTTC-3'	P9	0.36 ± 0.11	Fig. 2m
	5'-TGGTGACGTGAGTTCCACAT-3'	P21	0.25 ± 0.10	Fig. 2m
		2 months	0.65 ± 0.14	Fig. 2m
Tfap2a	5'-GCTCCACCTCGAAGTACAAG-3'	P9	18.36 ± 2.43	Fig. 4i
	5'-CCTGCTGGCAGATTCAATCC-3'	P21	65.82 ± 13.73	Fig. 4i
		2 months	153.9 ± 11.66	Fig. 4i
Pou3f3	5'-TCCAGAACAGGCTAGGGTTG-3'	P9	57.42 ± 18.64	Fig. 4i
	5'-GGTGGGCATATTTTCACTGG-3'	P21	1.40 ± 0.09	Fig. 4i
		2 months	3.30 ± 0.54	Fig. 4i
Pax3	5'-GGGAACTGGAGGCATGTTTA-3'	P9	44.64 ± 12.09	Fig. 4i
	5'-GTTTTCCGTCCCAGCAATTA-3'	P21	4.36 ± 0.72	Fig. 4i
		2 months	6.58 ± 1.10	Fig. 4i
Sox1	5'-GAGGATGGGTTGTGCTCAGT-3'	P9	61.88 ± 8.68	Fig. 4i
	5'-TGGGATAAGACCTGGGTGAG-3'	P21	2.26 ± 0.31	Fig. 4i
		2 months	7.49 ± 1.28	Fig. 4i
Sox2	5'-CACAACTCGGAGATCAGCAA-3'	P9	1.30 ± 0.03	Fig. 4i
	5'-CTCCGGGAAGCGTGTACTTA3'	P21	1.42 ± 0.05	Fig. 4i
		2 months	2.55 ± 0.22	Fig. 4i
Sox3	5'-CGTAACTGTCGGGGGTTTTGT-3'	P9	2.33 ± 0.26	Fig. 4i
	5'-AACCTAGGAATCCGGGAAGA-3'	P21	2.67 ± 0.29	Fig. 4i
		2 months	8.88 ± 0.56	Fig. 4i

Supplementary Table 7: Percentage of Krox20-positive SCs that express Sox2

Marker	Age	Genotype	Mean value ± SEM	Figure
Sox2 + Krox20	P21	control	0.28 ± 0.28	Fig. 4h
		Ep400∆PNS	5.68 ± 0.68	Fig. 4h

Reporter	Effector	Mean value	Figure
		\pm SEM	
Krox20 MSE-luc	-	1.00 ± 0.00	Fig. 4k
	Sox10	45.17 ± 0.80	Fig. 4k
	Sox10 + Pax3	1.26 ± 0.15	Fig. 4k
	Sox10 + Sox2	11.42 ± 2.67	Fig. 4k
	Sox10 + Sox3	4.75 ± 1.21	Fig. 4k
	Sox10 + Tfap2a	9.84 ± 3.94	Fig. 4k
Pmp22-luc	-	1.00 ± 0.00	Fig. 41
	Krox20	19.67 ± 1.59	Fig. 41
	Krox20 + Pax3	3.77 ± 0.20	Fig. 41
	Krox20 + Sox2	23.67 ± 1.90	Fig. 41
	Krox20 + Sox3	4.47 ± 0.35	Fig. 41
	Krox20 + Tfap2a	26.17 ± 1.93	Fig. 41
Periaxin-luc	-	1.00 ± 0.00	Fig. 4m
	Krox20	66.17 ± 10.88	Fig. 4m
	Krox20 + Pax3	10.93 ± 2.11	Fig. 4m
Mag-luc	-	1.00 ± 0.00	Fig. 4m
	Krox20	27.20 ± 2.43	Fig. 4m
	Krox20 + Pax3	7.37 ± 1.52	Fig. 4m
Connexin32-luc	-	1.00 ± 0.00	Fig. 4m
	Krox20	8.20 ± 0.46	Fig. 4m
	Krox20 + Pax3	4.77 ± 0.35	Fig. 4m
Mpz-luc	-	1.00 ± 0.00	Fig. 4m
	Krox20	10.27 ± 1.13	Fig. 4m
	Krox20 + Pax3	2.73 ± 0.09	Fig. 4m

Supplementary Table 8: Effect of transcription factors on SC-specific regulatory regions in luciferase reporter gene assays

Supplementary Table 9: Quantification of myelin debris, myelin outfoldings and Remak bundles in sciatic nerves of control and mutant mice

Structure	Age	Genotype	Mean value	Figure
			\pm SEM	
Myelin debris	P21	control	13 ± 7	Fig.50, Suppl. Fig.3s
		Ep400∆PNS	434 ± 26	Fig.50, Suppl. Fig.3s
		dko	220 ± 31	Fig.50
	2 months	control	4 ± 4	Suppl. Fig.3t
		Ep400∆PNS	301 ± 38	Suppl. Fig.3t
Myelin outfoldings	P21	control	52 ± 43	Fig.5p, Suppl. Fig.3u
		Ep400∆PNS	656 ± 52	Fig.5p, Suppl. Fig.3u
		dko	324 ± 86	Fig.5p
	2 months	control	42 ± 15	Suppl. Fig.3v
		Ep400∆PNS	1445 ± 92	Suppl. Fig.3v
Remak bundles	P21	control	889 ± 2	Suppl. Figs.3w & 8g
		Ep400∆PNS	697 ± 9	Suppl. Figs.3w & 8g
		dko	738 ± 19	Suppl. Fig.8g
	2 months	control	828 ± 50	Suppl. Figs.3x
		Ep400∆PNS	$\overline{645 \pm 32}$	Suppl. Figs.3x

Age	Genotype	Mean value ± SEM	Figure
E12.5	control	95.1 ± 0.4	Suppl. Fig.2a
	Ep400ANC	5.7 ± 0.6	Suppl. Fig.2a
E14.5	control	93.4 ± 1.1	Suppl. Fig.2a
	Ep400ANC	5.8 ± 1.0	Suppl. Fig.2a
P0	control	99.3 ± 0.2	Suppl. Fig. 3a
	Ep400ΔPNS	1.7 ± 0.5	Suppl. Fig. 3a
P21	control	99.8 ± 0.2	Suppl. Fig. 3a
	Ep400ΔPNS	6.3 ± 1.7	Suppl. Fig. 3a

Supplementary Table 10: Number of Ep400-positive SCs in control and mutant mice

Supplementary Table 11: Relative number of cycling, proliferating and just differentiating SCs in control and mutant mice

Feature	Genotype	Mean value	Figure
		\pm SEM	
Ki67+	control	0.44 ± 0.04	Suppl. Fig.5a
	Ep400∆NC	0.40 ± 0.04	Suppl. Fig.5a
Ki67+, BrdU+	control	0.15 ± 0.02	Suppl. Fig.5b
	Ep400∆NC	0.14 ± 0.05	Suppl. Fig.5b
Ki67+, BrdU-	control	0.33 ± 0.05	Suppl. Fig.5c
	Ep400∆PNS	0.24 ± 0.01	Suppl. Fig.5c
Ki67-, EdU+	control	0.51 ± 0.03	Suppl. Fig.5d
	Ep400∆PNS	0.54 ± 0.05	Suppl. Fig.5d

Gene	Region	Position (mm10)	Primer
Tfap2a	1	chr13, 40739401 - 40739420	5'-ACGATAGTAGCGCCAGGAGA-3'
		chr13, 40739315 - 40739334	5'-AGTTGCGGCAGTCACTTTCT-3'
2		chr13, 40735201 - 40735220	5'-AGTGGGAAAACTCAGCCAGA-3'
		chr13, 40735103 - 40735122	5'-GGACCCTTCCTCCCTTACTG-3'
	3	chr13, 40732357 - 40732376	5'-GCCTTTCTCCTCTCCGTCTT-3'
		chr13, 40732231 - 40732250	5'-TCTGGTCCTACATGGGGTTC-3'
	4	chr13, 40731944 - 40731963	5'-CATGAGAGAGGGGTTGGAGA-3'
		chr13, 40731856 - 40731875	5'-GCTATCCCGCTGATACCAAA-3'
	5	chr13, 40731514 - 40731532	5'-ACCAACCGAGATCGGAGAA-3'
		chr13, 40731434 - 40731453	5'-GCTTCGCTAACCCTTGTCCT-3'
	6	chr13, 40730811 - 40730830	5'-GTCGCTCGCTTTTTGTCTCT-3'
		chr13, 40730689 - 40730708	5'-AGGGAAGAATGCCTGGAAAT-3'
	7	chr13, 40730407 - 40730426	5'-TTGTTGTTGGTGGTGTGGTT-3'
		chr13, 40730295 - 40730314	5'-CCGAACTTGTACCACCGAGT-3'
	8	chr13, 40729453 - 40729472	5'-GGTGCGGCAGAATCTTTCTA-3'
		chr13, 40729365 - 40729384	5'-CGCTTCCTCTGTTTGTAGGC-3'
	9	chr13, 40726704 - 40726723	5'-CAGGAAGCCTTGTGCTCTTC-3'
		chr13, 40726609 - 40726628	5'-CTGTGGCAGCAATGAGAAAA-3'
10	10	chr13, 40724516 - 40724535	5'-TGCATGGGTTTATCATCTGC-3'
		chr13, 40724432 - 40724451	5'-CCTGAAGTACCTGCCACCAT-3'
Pax3	1	chr1, 78200684 - 78200703	5'-AGATCCGCATCTTGCTCCTA-3'
		chr1, 78200595 - 78200614	5'-CCACACCTCCGCAGTTATTT-3'
	2	chr1, 78199415 - 78199434	5'-CTCTCAGTGCCCTCAGAACC-3'
		chr1, 78199287 - 78199306	5'-TACTCAGAGGCAGCCAGGAT-3'
	3	chr1, 78197497 - 78197516	5'-GAGGAAATAAGGGGCGGATA-3'
		chr1, 78197399 - 78197418	5'-GGTGTCCCTGTCCCTCTACA-3'
	4	chr1, 78197229 - 78197248	5'-GTAGCTTCTGTCGCCCAATC-3'
		chr1, 78197121 - 78197140	5'-ATCCGGACTAGGGAGCATTT-3'
	5	chr1, 78196977 - 78196996	5'-TCTGCTAGACTCGCACCAAA-3'
		chr1, 78196900 - 78196919	5'-GGGGCGCTAATAGATCCAAG-3'
	6	chr1, 78196541 - 78196560	5'-TCCCGTGGTACTTCTCAACC-3'
		chr1, 78196455 - 78196474	5'-GAGCTTAGCACTCCGTTTGC-3'
	7	chr1, 78196120 - 78196139	5'-TCGGTTTGCTTAAAGGTGCT-3'
		chr1, 78196038 - 78196057	5'-AACCCCAGTCTCCTGCTTTT-3'
	8	chr1, 78194974 - 78194993	5'-GATTTTAATGCCTGGGAGCA-3'
		chr1, 78194906 - 78194925	5'-CAGTGCAGTGAGTGGGAAGA-3'
-	9	chr1, 78194172 - 78194191	5'-GTTTCGTTTTTGTGCGGATT-3'
		chr1, 78194076 - 78194095	5'-GATGCTCGGGAACCAAATTA-3'

Supplementary Table 12: Primers used to amplify specific regions from the mouse *Tfap2a* and *Pax3* genomic loci

Supplementary Table 13: H2A.Z and H3K27ac occupancy at specific Tfap2a and Pax3 genomic regions in sciatic nerves of control and Ep400 Δ PNS mice

Gene &	Age	Histone	Enrichment	Enrichment in	Figure
Region			in control	Ep400∆PNS	
			$(mean \pm SEM)$	$(mean \pm SEM)$	
Tfap2a 1	P9	H2A.Z	1.06 ± 0.08	0.96 ± 0.29	Suppl. Fig. 7e
2		H2A.Z	1.00 ± 0.07	0.64 ± 0.22	Suppl. Fig. 7e
3		H2A.Z	0.86 ± 0.05	1.11 ± 0.44	Suppl. Fig. 7e
4		H2A.Z	0.90 ± 0.13	6.73 ± 0.24	Suppl. Fig. 7e
5		H2A.Z	$2,71 \pm 0.47$	18.43 ± 1.12	Suppl. Fig. 7e
6		H2A.Z	3.65 ± 0.58	4.44 ± 0.37	Suppl. Fig. 7e
7		H2A.Z	1.88 ± 0.43	5.45 ± 1.22	Suppl. Fig. 7e
8		H2A.Z	1.02 ± 0.04	3.69 ± 0.71	Suppl. Fig. 7e
9		H2A.Z	1.11 ± 0.27	1.03 ± 0.13	Suppl. Fig. 7e
10		H2A.Z	0.95 ± 0.11	1.12 ± 0.01	Suppl. Fig. 7e
Tfap2a 1		H3K27ac	0.89 ± 0.21	1.05 ± 0.14	Suppl. Fig. 7h
2		H3K27ac	1.12 ± 0.09	0.92 ± 0.09	Suppl. Fig. 7h
3		H3K27ac	0.82 ± 0.17	2.29 ± 0.44	Suppl. Fig. 7h
4		H3K27ac	1.12 ± 0.15	8.31 ± 2.51	Suppl. Fig. 7h
5		H3K27ac	0.78 ± 0.11	29.21 ± 1.91	Suppl. Fig. 7h
6		H3K27ac	0.93 ± 0.09	3.22 ± 0.57	Suppl. Fig. 7h
7		H3K27ac	0.93 ± 0.32	5.20 ± 1.47	Suppl. Fig. 7h
8		H3K27ac	0.70 ± 0.24	0.91 ± 0.19	Suppl. Fig. 7h
9		H3K27ac	0.86 ± 0.26	0.91 ± 0.28	Suppl. Fig. 7h
10		H3K27ac	0.92 ± 0.23	1.11 ± 0.16	Suppl. Fig. 7h
<i>Pax3</i> 1		H2A.Z	1.00 ± 0.27	0.92 ± 0.43	Suppl. Fig. 71
2		H2A.Z	1.05 ± 0.23	0.84 ± 0.42	Suppl. Fig. 71
3		H2A.Z	1.75 ± 0.67	6.79 ± 0.90	Suppl. Fig. 71
4		H2A.Z	3.69 ± 0.41	4.82 ± 0.55	Suppl. Fig. 71
5		H2A.Z	1.04 ± 0.23	5.95 ± 1.53	Suppl. Fig. 71
6		H2A.Z	0.75 ± 0.06	3.06 ± 0.26	Suppl. Fig. 71
7		H2A.Z	1.11 ± 0.17	1.08 ± 0.34	Suppl. Fig. 71
8		H2A.Z	1.11 ± 0.49	1.03 ± 0.12	Suppl. Fig. 71
9		H2A.Z	0.91 ± 0.14	1.32 ± 0.23	Suppl. Fig. 71
<i>Pax3</i> 1		H3K27ac	0.74 ± 0.02	0.65 ± 0.24	Suppl. Fig. 70
2		H3K27ac	0.81 ± 0.26	0.76 ± 0.22	Suppl. Fig. 70
3		H3K27ac	0.73 ± 0.19	1.57 ± 0.64	Suppl. Fig. 70
4		H3K27ac	1.06 ± 0.23	2.83 ± 0.22	Suppl. Fig. 70
5		H3K27ac	0.79 ± 0.02	3.81 ± 0.86	Suppl. Fig. 70
6		H3K27ac	0.58 ± 0.10	0.74 ± 0.27	Suppl. Fig. 70
7		H3K27ac	0.67 ± 0.07	0.84 ± 0.35	Suppl. Fig. 70

8		H3K27ac	0.73 ± 0.22	0.57 ± 0.06	Suppl. Fig. 70
9		H3K27ac	0.79 ± 0.41	1.12 ± 0.32	Suppl. Fig. 70
Tfap2a 1	P21	H2A.Z	3.38 ± 1.04	4.76 ± 1.35	Suppl. Fig. 7f
2		H2A.Z	4.70 ± 1.25	6.69 ± 1.55	Suppl. Fig. 7f
3		H2A.Z	8.50 ± 2.16	6.25 ± 2.21	Suppl. Fig. 7f
4		H2A.Z	5.78 ± 1.30	13.10 ± 0.89	Suppl. Fig. 7f
5		H2A.Z	26.79 ± 5.21	14.25 ± 1.14	Suppl. Fig. 7f
6		H2A.Z	17.03 ± 2.22	36.95 ± 7.36	Suppl. Fig. 7f
7		H2A.Z	14.11 ± 5.43	15.22 ± 4.47	Suppl. Fig. 7f
8		H2A.Z	3.98 ± 0.44	8.89 ± 2.44	Suppl. Fig. 7f
9		H2A.Z	1.56 ± 0.71	2.45 ± 0.48	Suppl. Fig. 7f
10		H2A.Z	6.31 ± 1.53	4.41 ± 1.19	Suppl. Fig. 7f
Tfap2a 1		H3K27ac	1.22 ± 0.15	1.76 ± 0.27	Suppl. Fig. 7i
2		H3K27ac	1.81 ± 0.30	2.12 ± 0.55	Suppl. Fig. 7i
3		H3K27ac	2.44 ± 0.29	6.62 ± 0.70	Suppl. Fig. 7i
4		H3K27ac	0.86 ± 0.15	11.98 ± 3.04	Suppl. Fig. 7i
5		H3K27ac	3.79 ± 1.49	12.22 ± 0.13	Suppl. Fig. 7i
6		H3K27ac	2.44 ± 0.30	14.57 ± 2.93	Suppl. Fig. 7i
7		H3K27ac	2.16 ± 0.95	15.99 ± 3.57	Suppl. Fig. 7i
8		H3K27ac	1.42 ± 0.48	5.02 ± 0.34	Suppl. Fig. 7i
9		H3K27ac	0.96 ± 0.57	3.37 ± 0.40	Suppl. Fig. 7i
10		H3K27ac	2.67 ± 0.66	5.31 ± 1.59	Suppl. Fig. 7i
<i>Pax3</i> 1		H2A.Z	1.44 ± 0.28	2.85 ± 0.36	Suppl. Fig. 7m
2		H2A.Z	1.96 ± 1.10	3.75 ± 0.89	Suppl. Fig. 7m
3		H2A.Z	11.06 ± 2.05	9.44 ± 2.63	Suppl. Fig. 7m
4		H2A.Z	11.84 ± 0.52	20.42 ± 4.74	Suppl. Fig. 7m
5		H2A.Z	4.56 ± 0.71	29.90 ± 5.09	Suppl. Fig. 7m
6		H2A.Z	6.82 ± 0.45	21.82 ± 5.75	Suppl. Fig. 7m
7		H2A.Z	3.36 ± 1.02	5.59 ± 0.05	Suppl. Fig. 7m
8		H2A.Z	1.66 ± 0.83	0.56 ± 0.00	Suppl. Fig. 7m
9		H2A.Z	3.54 ± 0.48	3.19 ± 1.36	Suppl. Fig. 7m
<i>Pax3</i> 1		H3K27ac	1.26 ± 0.47	1.07 ± 0.32	Suppl. Fig. 7p
2		H3K27ac	0.73 ± 0.16	1.69 ± 0.88	Suppl. Fig. 7p
3		H3K27ac	1.47 ± 0.09	1.63 ± 0.14	Suppl. Fig. 7p
4		H3K27ac	1.54 ± 0.20	9.64 ± 2.42	Suppl. Fig. 7p
5		H3K27ac	2.61 ± 1.62	6.60 ± 0.82	Suppl. Fig. 7p
6		H3K27ac	2.69 ± 0.84	4.66 ± 0.57	Suppl. Fig. 7p
7		H3K27ac	1.19 ± 0.04	2.72 ± 0.68	Suppl. Fig. 7p
8		H3K27ac	1.86 ± 0.62	0.28 ± 0.00	Suppl. Fig. 7p
9		H3K27ac	1.327 ± 0.33	3.34 ± 0.67	Suppl. Fig. 7p
<i>Tfap2a</i> 1	2months	H2A.Z	1.987 ± 0.34	2.94 ± 0.49	Suppl. Fig. 7g
2		H2A.Z	1.863 ± 0.45	1.31 ± 0.15	Suppl. Fig. 7g
3		H2A.Z	2.377 ± 0.24	2.12 ± 0.36	Suppl. Fig. 7g

4	H2A.Z	2.570 ± 0.70	6.74 ± 0.54	Suppl. Fig. 7g
5	H2A.Z	10.033 ± 2.76	22.18 ± 3.04	Suppl. Fig. 7g
6	H2A.Z	8.193 ± 0.76	15.23 ± 2.61	Suppl. Fig. 7g
7	H2A.Z	4.813 ± 1.15	6.56 ± 0.82	Suppl. Fig. 7g
8	H2A.Z	2.163 ± 0.24	4.14 ± 0.16	Suppl. Fig. 7g
9	H2A.Z	1.033 ± 0.36	2.31 ± 0.17	Suppl. Fig. 7g
10	H2A.Z	1.627 ± 0.26	2.12 ± 0.45	Suppl. Fig. 7g
Tfap2a 1	H3K27ac	2.653 ± 0.56	1.52 ± 0.28	Suppl. Fig. 7j
2	H3K27ac	2.453 ± 0.84	2.52 ± 0.44	Suppl. Fig. 7j
3	H3K27ac	2.003 ± 0.54	4.19 ± 0.77	Suppl. Fig. 7j
4	H3K27ac	2.223 ± 0.44	16.64 ± 0.29	Suppl. Fig. 7j
5	H3K27ac	4.747 ± 1.44	68.71 ± 4.79	Suppl. Fig. 7j
6	H3K27ac	3.630 ± 1.05	12.47 ± 1.66	Suppl. Fig. 7j
7	H3K27ac	2.420 ± 0.90	9.91 ± 1.44	Suppl. Fig. 7j
8	H3K27ac	2.757 ± 0.23	3.25 ± 0.40	Suppl. Fig. 7j
9	H3K27ac	1.333 ± 0.57	3.01 ± 0.50	Suppl. Fig. 7j
10	H3K27ac	2.133 ± 0.79	1.11 ± 0.43	Suppl. Fig. 7j
<i>Pax3</i> 1	H2A.Z	1.000 ± 0.27	2.27 ± 0.55	Suppl. Fig. 7n
2	H2A.Z	1.497 ± 0.21	3.55 ± 0.50	Suppl. Fig. 7n
3	H2A.Z	19.180 ± 1.87	10.68 ± 1.94	Suppl. Fig. 7n
4	H2A.Z	5.480 ± 1.01	8.27 ± 0.76	Suppl. Fig. 7n
5	H2A.Z	2.343 ± 0.44	22.64 ± 3.42	Suppl. Fig. 7n
6	H2A.Z	4.353 ± 0.36	10.42 ± 2.36	Suppl. Fig. 7n
7	H2A.Z	2.717 ± 0.79	3.74 ± 0.39	Suppl. Fig. 7n
8	H2A.Z	1.470 ± 0.49	3.48 ± 1.54	Suppl. Fig. 7n
9	H2A.Z	2.773 ± 1.25	1.98 ± 0.38	Suppl. Fig. 7n
<i>Pax3</i> 1	H3K27ac	1.110 ± 0.29	0.85 ± 0.17	Suppl. Fig. 7q
2	H3K27ac	2.203 ± 0.25	1.16 ± 0.01	Suppl. Fig. 7q
3	H3K27ac	2.797 ± 0.70	2.10 ± 0.12	Suppl. Fig. 7q
4	H3K27ac	1.867 ± 0.21	6.83 ± 1.47	Suppl. Fig. 7q
5	H3K27ac	0.927 ± 0.42	7.39 ± 0.72	Suppl. Fig. 7q
6	H3K27ac	1.757 ± 0.28	3.16 ± 0.35	Suppl. Fig. 7q
7	H3K27ac	1.030 ± 0.33	2.65 ± 0.41	Suppl. Fig. 7q
8	H3K27ac	1.950 ± 0.17	2.22 ± 0.26	Suppl. Fig. 7q
9	H3K27ac	1.283 ± 0.32	1.05 ± 0.19	Suppl. Fig. 7q