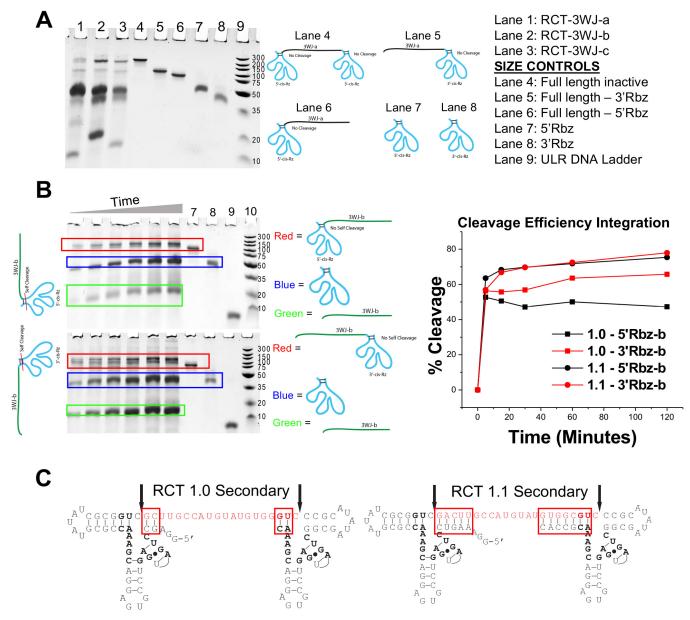
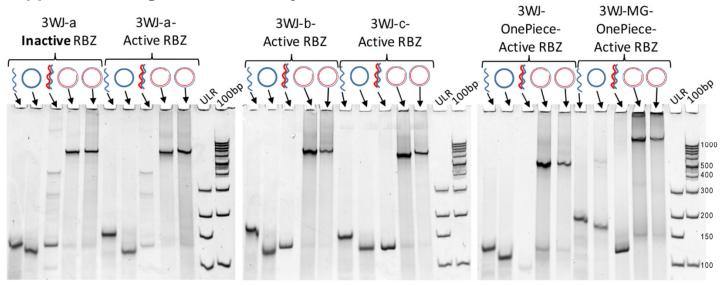
SUPPPLEMENTARY INFORMATION

One-Pot Production of RNA Nanoparticles *via* Automated Processing and Self Assembly

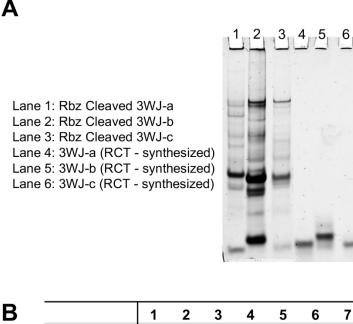

Daniel L. Jasinski^{1, †}, Daniel W. Binzel^{1, †}, and Peixuan Guo^{1*}

Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology & Cell Biology; Dorothy M. Davis Heart and Lung Research Institute; and James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA.

[†] These authors contributed equally to this work

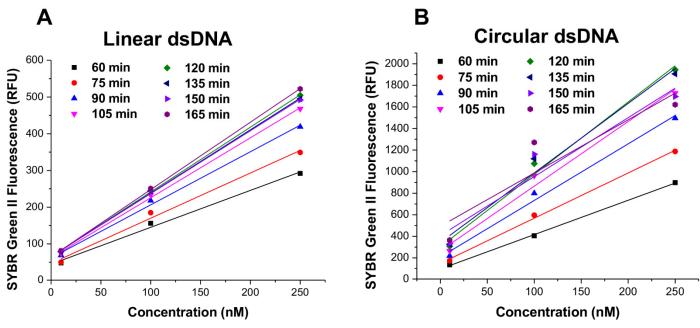

Keywords: rolling circle transcription, RNA nanoparticles, pRNA 3WJ motif, nanotechnology, nanobiotechnology

Supplemental Figure 1: Sequence Design and Ribozyme Optimization


Supp Fig 1. (A) PAGE analysis shows active RCT constructs along with size controls of inactivated ribozyme constructs. Size controls allow confirmation of ribozyme cleavage and release of target RNA oligomers. **(B)** Typical experiment ran to determine cleavage efficiency of self-cleaving ribozymes. The target sequence (green box) intensity was added with the cleaved ribozyme (blue box) intensity and then divided by the total band intensity (red + blue + green box) per well. A plot on the right shows the ribozyme cleavage efficiency over time, comparing first generation design (RCT-1.0) to the second generation design (RCT-1.1). The construct containing 3WJ-b sequence is shown here. While a better curve was desired for ribozyme cleavage kinetics, ribozymes self-cleavage as they are being transcribed, making it difficult to obtain time points of low percentage cleavage. **(C)** An increase in ribozyme efficiency is attributed to increasing the length of the duplex in the "closing" region of the ribozyme sequence, shown in red boxes.

Supplemental Figure 2. Assembly of Circ dsDNA Constructs

Supp Fig 2. PAGE analyzing the assembly of circular dsDNA constructs containing the T7 promoter used for transcription reactions.


Supplemental Figure 3. Active Ribozyme Constructs, Assembly of Pure Fragments

_		1	2	3	4	5	6	7
	RCT-3WJ-a	+			+		+	+
	RCT-3WJ-b		+		+	+		+
	RCT-3WJ-c			+		+	+	+
				4	4			
					· · ·		/	
			•		• .			
	-							-
				-	-	-	-	-
		·				-		
			•	- 0		2		
			2.1	+				

Supp Fig 3. (A) Ribozyme cleaved 3WJ ssRNA oligomers were compared to chemically synthesized sequences identical to those of the target sequence. Evidenced by identical migration rate, we can conclude that the cleaved RNA oligomers are the same size as chemically synthesized controls. **(B)** RCT cleaved 3WJ ssRNA oligomers were purified by PAGE band isolation. After elution from gel pieces assembly was tested on native PAGE. A stepwise assembly from monomer to dimer and finally trimer complex demonstrate the ssRNA from RCT reactions are indeed the correct sequence.

Supplemental Figure 4. Fitting Comparison of Concentrations of Transcription Monitoring Experiment

-
-

	Linear dsDNA				Circular					
	Slope	Standard Error	Intercept	Standard Error	R-Squared	Slope	Standard Error	Intercept	Standard Error	R-Squared
60 min	1.01	0.08	44.68	12.10	0.99	3.19	0.08	97.30	12.28	1.00
75 min	1.23	0.11	47.03	16.77	0.98	4.20	0.20	148.49	31.34	1.00
90 min	1.45	0.08	61.78	13.01	0.99	5.25	0.48	207.95	74.42	0.98
105 min	1.63	0.05	62.25	8.25	1.00	5.99	0.70	265.61	108.79	0.97
120 min	1.77	0.03	64.63	4.12	1.00	6.71	0.72	303.90	111.35	0.98
135 min	1.73	0.04	65.40	6.60	1.00	6.45	0.94	343.37	147.00	0.96
150 min	1.71	0.04	65.95	5.50	1.00	5.47	1.50	406.92	232.78	0.86
165 min	1.83	0.02	64.54	3.39	1.00	4.94	2.05	493.18	318.93	0.71

Supp Fig 4. (A/B) Plots and linear fitting of DNA template concentration, x-axis, *versus* RNA output, as monitored by SYBR GreenII fluorescence. **(C)** Values of slope and intercept, along with their standard errors and R-Squared values of the fits.

	RCT	1.0	RCT 1.1		
	3W	J-a	3WJ-a		
Time (minutes)	5' Rbz	3' Rbz	5'Rbz	3'Rbz	
0	0.00%	0.00%	0.00%	0.00%	
5	56.7%	25.6%	55.48%	43.54%	
15	60.0%	35.5%	61.97%	50.35%	
30	61.4%	37.6%	64.04%	50.93%	
60	62.9%	49.7%	64.22%	57.94%	
120	65.7%	53.3%	68.12%	71.86%	
	3W	J-b	3W	J-b	
Time (minutes)	5'Rbz	3'Rbz	5'Rbz	3'Rbz	
0	0.00%	0.00%	0.00%	0.00%	
5	52.69%	56.35%	63.53%	56.91%	
15	50.55%	55.70%	68.33%	66.85%	
30	47.18%	56.83%	69.77%	69.66%	
60	50.08%	63.56%	71.88%	72.48%	
120	47.25%	65.77%	75.37%	77.99%	
	3W	J-c	3WJ-C		
Time (minutes)	5'Rbz	3'Rbz	5'Rbz	3'Rbz	
0	0.00%	0.00%	0.00%	0.00%	
5	16.18%	15.80%	47.43%	45.38%	
15	20.89%	16.15%	55.98%	52.39%	
30	22.21%	24.59%	56.82%	56.94%	
60	25.80%	30.05%	58.45%	59.93%	
120	30.20%	36.72%	65.35%	64.66%	
Full Length Cleavage					
	Cleava	age %			
RC	CT-1.1-3WJ-a	87.12%			
RC	CT-1.1-3WJ-b	85.76%			
RC	CT-1.1-3WJ-c		80.8	33%	

Supplemental Table 1. Table of Ribozyme Cleavage Efficiency

Supp Table 1. Table summarizing the cleavage efficiencies of the ribozyme in each of the sequences, broken, down for 5' and 3' ribozyme of each sequence, as well as total cleavage efficiency of the full length constructs (those containing both 5' and 3' ribozymes).

Supplemental Table 2. Summary of DeltaG of our Circular Constructs and from Other Published Papers

Parameters:	Sequence set to circular, 25 mM NaCl, 6 mM Mg, 37C	mFold Calculation
Publication	Sequence	Delta G (kcal/mol
Diegelman, NAR, 1998	ACAACGTGTGTTTCTCTGGTTGACTTCTCTGCTTGCAGGACTGTCAGGAGGTACCAGGTAATA	2.63
Diegelman, NAR, 1998	TTGAAACAGGACTGTCAGGAGGTACCAGGTAATATACCACAACGTGTGTTTCTCTGGTTGACT TCTCTGTTTC	-0.59
Diegelman, NAR, 1998	TGGAACCAGAAACAGGACTGTCATCGAGTACCAGGTAATATACCAAACGTGTGTTTCTCTGGT TGACTTCTCTGTTTC	-3.4
Diegelman, NAR, 1998	CGAAAACTGGACTACAGGGAGGTACCAGGTAATGTACCACAACGTGTGTTTCTCTGGTCTGC TTCTCAGGAAT	4.71
Lindstrom, Biochemistry, 2002	CACTCCACTCACAACATCCACACCACCACCACCACCACCA	NO FOLDING POSSIBLE
Lindstrom, Biochemistry, 2002	CCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAA	9.12
Lindstrom, Biochemistry, 2002	CCCACACCCCACACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAA	9.12
Hartig, ChemBioChem, 2005	TAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGT	8.2
Hartig, ChemBioChem, 2005	TAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGT	8.52
Hartig, ChemBioChem, 2005	TAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAG GGTTTAGGGT	8.77
Daubendiek, JACS, 1995	CCTTCTTTCTTTCCGATCCTTTTCTTTCTTCCT	7.24
Daubendiek, JACS, 1995	CTTTTTTTTCACACTTTTTTTTTCACA	NO FOLDING POSSIBLE
*Hammond, 2012, Nat. Mat.	ATAGTGAGTCGTATTAACGTA CCAACAACTTACGCTGAGTACTTCGATTACTTGAATCGAAGTACTCAGCGTAAGTTTAGAGGC ATATCCCT	-16.73
*Jang, 2015, Nat. Comm.	ATAGTGAGTCGTATTAACGTACCAACAAGAGAGTTCAAGTCCATCTACAATCTAAAAGTGGTG GGTGTGACCCTAAAATGTAGATGGACTTGAACTCTTTAGAGGCATATCCCT	-11.27
*Jang, 2015, Nat. Comm.	ATAGTGAGTCGTATTAACGTACCAACAAGAGACTTCAAGTGCAACTTCAATCTAAAAGTGGTG GGTGTGACCCTAAAATGAAGTTGCACTTGAAGTCTTTAGAGGCATATCCCT	-12.36
*Roh, 2015, Angew. Chem Int. Ed.	ATAGTGAGTCGTATTAACGTATTAACGTATACCAACCGGCAAGCTGACCCTGAAGTTCACTTG A TGAACTTCAGGGTCAGCTTGCTAGAGGTATTAACGTACATATCCCT	-19.56
*Roh, 2015, Angew. Chem. Int. Ed.	ATAGTGAGTCGTATTAACGCCACAACGTGTACCAACAATGTAGATGGACTTGAACTCACTTGA AGAGTTCAAGTCCATCTACATAGAGGCCACAACGTGCATATCCCT	-11.56
*Furukawa, Bio. Med.Chem. Lett., 2008	GGCCACAGGATCCATTCGTTACCTGGCTCTCGCCAGTCGGGATCCACGTACC	-0.64
his manuscript Sequences	6	
· · ·	ATAGTGAGTCGTATTAGTGGCGTTTCGTCCTCACGGACTCATTAGCCGCTATATGCGGGACG	

3WJ-a	ATAGTGAGTCGTATTAGTGGCGTTTCGTCCTCACGGACTCATTAGCCGCTATATGCGGGACG CCACATACACATGGCAAGTCGACCGCGATATACGCGGTTTCGTCCTCACGGACTCATTAGGA CTTTCCT	-11.67
3WJ-a-Inactive-Rbz	ATAGTGAGTCGTATTAGTGGCGTTTCGTCCTCACGGACTCATCAGCCGCTATATGCGGGACG CCACATACACATGGCAAGTCGACCGCGATATACGCGGTTTCGTCCTCACGGACTCATCAGGA CTTTCCT	-11.58
3WJ-b	ATAGTGAGTCGTATTAGATCCGTTTCGTCCTCACGGACTCATCAGCCGCTATATGCGGGACG GATCAACAAAGTATGTGGCGTCGACCGCGATATACGCGGTTTCGTCCTCACGGACTCATCAG GACGCTCCT	-10.81
3WJ-c	ATAGTGAGTCGTATTAGGCAAGTTTCGTCCTCACGGACTCATCAGCCGCTATATGCGGGACT TGCCATGATTGATCCGTCGACCGCGATATACGCGGTTTCGTCCTCACGGACTCATCAGGACG GTCCT	-10.86
3WJ-One Piece	ATAGTGAGTCGTATTACGCGGTTTCGTCCTCACGGACTCATCAGTTGCCATGATTGAT	-17.87
3WJ-MG One Piece	ATAGTGAGTCGTATTACGCGGTTTCGTCCTCACGGACTCATCAGTTGCCATGATTGAT	-27.04

Supp Table 2. Summary of sequences used in publications with RCT reactions.^{39,62,68,70-71,84-86} The DeltaG of most templates are close to 0 or positive, indicating unstable secondary structure, which is suitable for transcription using bacterial polymerases. Besides dumbbell sequences (denotes by a "*" before the reference), which have previously been shown as suitable substrates for transcription. Templates from this manuscript display a large negative DeltaG value, demonstrating the need for a fully double stranded circular DNA template.

Supplemental Table 3. Table of DNA Sequences Used

Sequences for	
Linear dsDNA	Promoter, 5'Ribozyme, 3WJ Target RNA, 3'Ribozyme
	TAATACGACTCACTATAGGAGCCTGATGAGTCCGTGAGGACGAAACCGCGTATATCGCGGTCGCTTGCCATGTG
RCT-1.0-3WJ-a	TATGTGGGGTCGCGCGTATATCGCGCCTGATGAGTCCGTGAGGACGAAAC
	TAATACGACTCACTATAGGAGCCTGATGAGTCCGTGAGGACGAAACCGCGTATATCGCGGTCGCCCCACATACT
RCT-1.0-3WJ-b	TTGTTGATCCGTCGCGCGTATATCGCGCCTGATGAGTCCGTGAGGACGAAAC
	TAATACGACTCACTATAGGAGCCTGATGAGTCCGTGAGGACGAAACCGCGTATATCGCGGTCGCGGATCAATCA
RCT-1.0-3WJ-c	TGGCAAGTCGCGCGTATATCGCGCCTGATGAGTCCGTGAGGACGAAAC
RCT-1.0-3WJ-a-	TAATACGACTCACTATAGGAGCCTAATGAGTCCGTGAGGACGAAACCGCGTATATCGCGGTCGCTTGCCATGTG
InactiveRbz	TATGTGGGGTCGCGCGTATATCGCGCCTAATGAGTCCGTGAGGACGAAAC
	TAATACGACTCACTATAGGAAAGTCCTGATGAGTCCGTGAGGACGAAACCGCGTATATCGCGGTCGACTTGCCA
RCT-1.1-3WJ-a	TGTGTATGTGGCGTCCCGCATATAGCGGCTGATGAGTCCGTGAGGACGAAACGCCAC
	TAATACGACTCACTATAGGAGCGTCCTGATGAGTCCGTGAGGACGAAACCGCGTATATCGCGGTCGACGCCACA
RCT-1.1-3WJ-b	TACTITGTTGATCCGTCCCGCATATAGCGGCTGATGAGTCCGTGAGGACGAAACGGATC
	TAATACGACTCACTATAGGACCGTCCTGATGAGTCCGTGAGGACGAAACCGCGTATATCGCGGTCGACGGATCA
RCT-1.1-3WJ-c	ATCATGGCAAGTCCCGCATATAGCGGCTGATGAGTCCGTGAGGACGAAACTTGCC
RCT-1.1-3WJ-a-	TAATACGACTCACTATAGGAAAGTCCTAATGAGTCCGTGAGGACGAAACCGCGTATATCGCGGTCGACTTGCCAT
InactiveRbz	GTGTATGTGGCGTCCCGCATATAGCGGCTAATGAGTCCGTGAGGACGAAACGCCAC
RCT-Mut-2'F-Activity-	TAATACGACTCACTATAGGAGCGTCCTGATGAGTCCGTGAGGACGAAACCGCGTATATCGCGGTAGACGCCACA
Test	TACTTTGTTGATCCGTACCGCATATAGCGGCTGATGAGTCCGTGAGGACGAAACGGATC
Sequences for	
Circular dsDNA	Promoter, 5'Ribozyme, 3WJ Target RNA, 3'Ribozyme
RCT_1.1 3WJ-	Phos-ATAGTGAGTCGTATTAGTGGCGTTTCGTCCTCACGGACTCATTAGCCGCTATATGCGGGA
a_IN_Circ_AntiSense	CGCCACATACACATGGCAAGTCGACCGCGATATACGCGGTTTCGTCCTCACGGACTCATTAGGACTTTCCT
RCT_1.1 3WJ-	Phos-AGGAAAGTCCTAATGAGTCCGTGAGGACGAAACCGCGTATATCGCGGTCGACTTGCCATGT
a_IN_Circ_Sense	GTATGTGGCGTCCCGCATATAGCGGCTAATGAGTCCGTGAGGACGAAACGCCACTAATACGACTCACTAT
RCT_1.1_3WJ-	Phos-ATAGTGAGTCGTATTAGTGGCGTTTCGTCCTCACGGACTCATCAGCCGCTATATGCGGGA
a_Circ_AntiSsnse	CGCCACATACACATGGCAAGTCGACCGCGATATACGCGGTTTCGTCCTCACGGACTCATCAGGACTTTCCT
RCT_1.1_3WJ-	Phos-AGGAAAGTCCTGATGAGTCCGTGAGGACGAAACCGCGTATATCGCGGTCGACTTGCCATGT
a_Circ_Sense	GTATGTGGCGTCCCGCATATAGCGGCTGATGAGTCCGTGAGGACGAAACGCCACTAATACGACTCACTAT
RCT_1.1_3WJ-	Phos-ATAGTGAGTCGTATTAGATCCGTTTCGTCCTCACGGACTCATCAGCCGCTATATGCGGGACGG
b_Circ_AntiSense	ATCAACAAAGTATGTGGCGTCGACCGCGATATACGCGGTTTCGTCCTCACGGACTCATCAGGACGCTCCT
RCT_1.1_3WJ-	Phos-AGGAGCGTCCTGATGAGTCCGTGAGGACGAAACCGCGTATATCGCGGTCGACGCCACATACTT
b_Circ_Sense	TGTTGATCCGTCCCGCATATAGCGGCTGATGAGTCCGTGAGGACGAAACGGATCTAATACGACTCACTAT
RCT_1.1_3WJ-	Phos-ATAGTGAGTCGTATTAGGCAAGTTTCGTCCTCACGGACTCATCAGCCGCTATATGCGGGA
c_Circ_AntiSense	CTTGCCATGATTGATCCGTCGACCGCGATATACGCGGTTTCGTCCTCACGGACTCATCAGGACGGTCCT
RCT_1.1_3WJ-	Phos-AGGACCGTCCTGATGAGTCCGTGAGGACGAAACCGCGTATATCGCGGTCGACGGATCAAT
c_Circ_Sense	CATGGCAAGTCCCGCATATAGCGGCTGATGAGTCCGTGAGGACGAAACTTGCCTAATACGACTCACTAT
	Phos-ATAGTGAGTCGTATTACGCGGTTTCGTCCTCACGGACTCATCAGTTGCCAT
ntiSense	GATTGATCCTCTCGGATCAACAAAGTATGTGGCTCTCGCCACATACACATGGCAAGACCGCGTCCCT
3WJ_OnePiece_Circ_S	Phos-AGGGACGCGGTCTTGCCATGTGTATGTGGCGAGAGCCACATACTTTGTTGATCCG
ense	AGAGGATCAATCATGGCAACTGATGAGTCCGTGAGGACGAAACCGCGTAATACGACTCACTAT
MG-	Phos-ATAGTGAGTCGTATTACGCGGTTTCGTCCTCACGGACTCATCAGTTGCCATGATTGAT
3WJ_OnePiece_AntiSe	CGGATCAACAAAGTATGTGGCGGATCCATTCGTTACCTGGCTCTCGCCAGTCGGGATCCGCCA
nse	CATACACATGGCAAGACCGCGTCCCT
MG-	Phos-AGGGACGCGGTCTTGCCATGTGTATGTGGCGGATCCCGACTGGCGAGAGCCAGGTAACG
	AATGGATCCGCCACATACTTTGTTGATCCGAGAGGATCAATCA
ense	GGACGAAACCGCGTAATACGACTCACTAT
3WJ Sequences	
3WJ-a-RCT	GACUUGCCAUGUGUAUGUGGCGUC
3WJ-b-RCT	GACGCCACAUACUUUGUUGAUCCGUC
3WJ-c-RCT	GACGGAUCAAUCAUGGCAAGUC