S1 Appendix

Derivation of the transfer function of the system

The full set of the Liley equations involve 14 non-linear integro-differential equations
but, with reasonable assumptions about the spatial scales of the variations of the state
of the system, can be reduced to an approximate set of 14 partial differential equations
[Liley, Cadusch, & Wright, 1999]. For the case in which the long range inputs to the
local cortical column can be treated as external given signals, typically of a stochastic
nature, these can in turn be approximated by a set of 10 ordinary differential equations
describing the local behaviour of the cortical column [Dafilis, Liley, & Cadusch, 2001].
In terms of symbols defined in Table 2 in the main article, these 10 equations are:
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To linearize these we restrict attention to fixed points that correspond to stable
point attractors. The fixed point equations can be reduced to:

(2a)

(2b)

where the overbar on a state variable denotes its fixed point value and on an input
variable (pec,pe; etc.) denotes its DC value, treated as a tonic system parameter.

The linearized equations are obtained by expanding the state variables around their
fixed point values; the non-zero terms of the corresponding Jacobian, evaluated at the
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fixed point, are of the form:
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The symbol _S(;(ﬁe) denotes the derivative of S (h.) w.r.t. h, evaluated at the fixed

point value h., and similarly for S;- (hs). Since Jy3 = Jgs and Jg7 = J10,0 and
Jy3 = — (%)2 and Jg7 = — (%)2 there are only 12 independent elements of the

Jacobian viz: the (1,1), (1,3), (1,7), (2,2), (2,5), (2,9), (4,1), (4,4), (6,1), (8,2), (8,8) and

(10,2) elements. The resulting structure of the Jacobian is:
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The system transfer function can be obtained from the Jacobian in this form, but it

is more convenient to rewrite the 10 first-order equations as a set of 2 first order
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equations and 4 second order equations. It is also convenient to rewrite them in terms
of lumped parameters. The resulting equations are:
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The uee(t) ete. are the time varying parts of the inputs to the system. In practice
we usually assume (on physiological grounds) that B;; = B;. = 0 and, since, typically,
the dominant input to a cortical column is excitatory to excitatory, we also assume that
Uei (1) = wze(t) = w;;(t) = 0. Also on physiological grounds, the output of the system

(the local EEG signal) is assumed to be proportional to h.(t).

The 10D system spectrum.

The 10D equations with the coefficient assignments above lead to a simplification of the

spectrum. Using the mixed first and second order form, the Laplace transformed

linearized equations become:

K(s)y=u

(7)

where y is the vector of the deviations of the state variables from their fixed point
values and u is the vector of time varying parts of the input signals and K is a 6 x 6

March 18, 2019



matrix:
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The spectrum of interest is proportional to the (1,3) element of the inverse of K
evaluated along the imaginary axis of s. This can be written as the quotient:
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Now, using Matlab for symbolic manipulations, we get:

det K = —k33(s)kss5(s)[{k22(s)ks5(s) — kackea }{k13ka1 — k11 (8)ka3(s) } + k1skaakar ks2]
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and

detH = —k13k33($)k55(3){k22(3)k55(5) - k26k62} (13)

In S(w), the second order zeros kss(s) and kss(s) in det H cancel the corresponding
second order poles in det K, leading to

2
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Examining the structure of equation (14) it becomes apparent that the power
spectral density depends on only 8 distinct (albeit complex) combinations of the
low-level original parameters; these are the two rate constants p; = 7. and pg = ; and
the combinations:
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Note that many of the terms here (those written with an overbar) are implicitly
functions of all the parameters via their dependence on the solutions of the fixed point
equations.

In terms of these parameters the PSD becomes:

S(w) =| p3{(iw — p2)(iw + ps)* — ps} ‘2
[{(iw — p2) (iw + ps)? — ps H{pa — (iw — p1)(iw + p7)?} + pe]

In addition it is evident that ps affects only the total power of the spectrum, and is
not directly accessible without detailed information about the source signal and volume
conduction effects; in effect it is normalised out in fitting the spectrum to measured
data. Thus there remain at most 7 distinct combinations of parameters determining the

(16)
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form of the PSD. Even in the most favourable case, in which these 7 combinations
involve only 7 distinct physiological parameters, there would be at least 15 structurally
unidentifiable parameters.

So, consistent with the numerical results, the spectrum is a rational form with 6
poles and 3 zeros rather than 10 poles and 7 zeros as might be expected from simple
power counting.

The structure of the transfer function, T'(s), is (to within an overall sign) that of a
simple feedback system involving two third order filters:
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In this case, the pole locations of H; are governed mainly by properties of excitatory
cells while those of Hy by the properties of inhibitory cells. In practice, H; appears to
be a low-pass filter and H> is resonant.
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