
Models of Organelle Positioning  
 

To understand the organelle positioning by opposite polarity motors which undergo tug-
of-war during cargo transport, we developed a computational model based on a bidirectional cargo 
transport model first proposed by Muller et al. (2008) [1]. Their model assumes that the presence 
of opposite polarity motors induces a load force, and that load force is shared equally among the 
bound motors belonging to the same species. 
 

In the bidirectional cargo transport model by Muller et al. [1], a cargo is transported by a 
team of N+ microtubule plus-end-directed and N- microtubule minus-directed motors which attach 
and detach from a microtubule stochastically with given on and off rates. The force-velocity 
relation for the motors was assumed to be a linear function of the applied load, and force-
dissociation rate of the motors was assumed to be an exponentially increasing function of the load. 
When bound to the microtubule, the motor walks forward with the velocity 𝑣", which decreases 
linearly with the external force and reaches zero at the stall force Fs. Under superstall external 
force (𝐹 > 𝐹&), the motor walks backward slowly with backward velocity 𝑣( 
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The rates for unbinding of one of the bound motors from microtubule and for binding of an 
additional unbound motor to microtubule are found based on the assumption that (i) the presence 
of opposing motors induces a load force, and (ii) each plus-end directed motor feels the load 𝐹2 
(and generates the force −𝐹2), and each minus-end directed motor feels the load −𝐹3 (and generates 
the force 𝐹3). 
 

Thus, the force experienced by a cargo being pulled by pulled by 𝑛2 plus-end directed 
motors and 𝑛3 minus-end motors is given by  
 
𝑛2𝐹2 = 	−𝑛3𝐹3 = 	𝐹5																																																																																																																																		(2) 
 
The sign of the force is taken as positive if a load was on the plus-end directed motors (i.e., if the 
force pointed into the minus-end direction). 
 

The net unbinding rate for the plus-end directed motor is  
 
𝑛2𝜖2 exp[𝐹5 𝑛2𝐹<2⁄ ]																																																																																																																																			(3) 
 



where e+ indicates unloaded unbinding rate of single plus-end directed motor. The net rate for the 
binding of one plus-end directed motor is 
 
(𝑁2 −	𝑛2)𝜋2																																																																																																																																																(4) 
 
where p+ is the binding rate of a single plus-end directed motor. The index “+” labels the plus-end 
directed motors properties and index “−” labels the minus-end directed motors properties. 
 
The cargo force 𝐹5 is determined by the condition that the plus-end directed motors, which 
experience the force 𝐹5 𝑛2⁄ , and the minus-end directed motors, which experience the force 
−𝐹5 𝑛3⁄ , move with the same velocity, which is the cargo velocity 𝑣5: 
 
        𝑣5(𝑛2, 𝑛3) = 	𝑣2(𝐹5 𝑛2⁄ ) = 	−𝑣3(−𝐹5 𝑛3⁄ ).																																																																															(5)  
 
Here, the sign of the velocity is taken positive in the plus-end direction and negative in the minus-
end direction. 
 

In the case of stronger plus-end directed motors, 𝑛2𝐹&2 > 	𝑛3𝐹&3, the cargo force and 
velocity are given by the expressions  
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and 
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In this case, the cargo moves to the plus-end direction with velocity 𝑣5 > 0. 
 

In the opposite case of the stronger minus-end directed motors (i.e., 𝑛2𝐹&2 <	𝑛3𝐹&3), in 
eqs. (6) and (7), the plus-end directed motor forward velocity 𝑣"2  has to be replaced by its 
backward velocity 𝑣(2, and the minus motor backward velocity 𝑣(3 has to be replaced by its 
forward velocity 𝑣"3. The cargo moves into the minus-end direction with velocity 𝑣5 < 0. 
 

In case an external force 𝐹KLM	is acting on the cargo, equation (2) can be written as  
 
𝑛2𝐹2 = 	−𝑛3𝐹3 +	𝐹KLM																																																																																																																												(8) 

 



and 𝑣5 can be written as  
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If cargo moves toward minus-end under an opposing force 𝐹KLM (which is then negative), the plus 
motor forward velocity 𝑣"2 should be replaced by its backward velocity𝑣(2, and the minus motor 
backward velocity 𝑣(3 by its forward velocity 𝑣"3 
 
Hence, in this case cargo velocity is given by  
 

𝑣5(𝑛2, 𝑛3) = 	
𝑛2𝐹&2 −	𝑛3𝐹&3 − 𝐹KLM
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In the next section, we described our model geometry and how bidirectional tug-of-war 

models was extended to understand organelle positing by a team consisting of KIF5B, KIF1Bβ 
and dynein motors in a WT HeLa cell line. 
 
Tug-of war model for lysosome transport 
 

We model the cell (HeLa) as hemisphere of radius (Rcell = 16 µm) and the nucleus was also 
considered as a hemisphere of radius (Rnucleus = 6 µm), as experiments were done with cells adhered 
to surface with average cell and nucleus diameters roughly ~ 32 µm and 12 µm, respectively (from 
microscopy images and measured using ImageJ). Microtubules were modelled as lines joining the 
nucleus to the cell periphery. We assumed that each cargo was transported along a separate 
microtubule and there was no steric hindrance among cargos while traveling on microtubules. 
Hence, assuming multiple cargos traveling on a single filament is not going to change our 
simulation results.  
 

Due to the spherical symmetry of our model, we used spherical polar coordinates (r, θ, φ) 
to define the position of each cargo. The values of 𝜃	𝜖	[0, 𝜋/2] and 𝜑	𝜖	[0,2𝜋]	for each cargo were 
chosen randomly by Marsaglia’s algorithm [2]. The initial radial position (r) of the cargo (central 
clustered, peripherally accumulated or normal steady-state distribution) was chosen according to 
the experiment to be modelled. 
 

In our model, cargoes move radially along microtubules whose runs, pauses, reversals and 
detachments were simulated using bidirectional cargo transport model by Muller et al. [1]. 
 

Our WT HeLa cell line has only three different types of motors that move lysosomes [3]: 
kinesin-1 (KIF5B), kinesin-3 (KIF1Bβ) and dynein. Then, we had to extend the model from Muller 



et. al. as follows: denoting kinesin-1 (KIF5B) with index 𝑖 = 1, dynein with index 𝑖 = 2, and 
kinesin-3 (KIF1Bβ) with index 𝑖 = 3. 
 
Hence, equation (1) is replaced by  
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where 𝑣"Y, 𝑣"Z, 𝑣"[ denote forward velocity, 𝑣(Y , 𝑣(Z, 𝑣([ denote backward velocity, 𝐹&Y, 𝐹&Z, 𝐹&[ denotes 
stall force of of kinesin-1 (KIF5B), dynein and kinesin-3 (KIF1Bβ) motors, respectively. 
 
Equation (2), which represents the force experienced by the cargo, is replaced by  
 

(𝑛Y + 𝑛[)𝐹2 = 	−	𝑛Z𝐹3 		= 	𝐹5																																																																																										(12) 
 
where 𝑛Y, 𝑛Z and 𝑛[ represent number of kinesin-1 (KIF5B), dynein and kinesin-3 (KIF1Bβ) 
motors pulling the cargo, respectively. 
 
The net unbinding rate for motors is given by 
 
𝑟]T = (𝑛T𝜖^T exp_𝐹± 𝐹<T⁄ a																																																																																																																	(13)  
 
where 𝜖^Y, 𝜖^Z and 𝜖^[ represent unbinding rates under zero load, 𝐹<Y, 𝐹<Z and 𝐹<[	 detachment forces 
for kinesin 1 (KIF5B), dynein and kinesin-3 (KIF1Bβ) motors, respectively. 
 
Rate of binding of unbound of motors is given by 
  
𝑟bT = (𝑁T − 𝑛T)𝜋^T 																																																																																																																														(14) 

 
where 𝜋^Y, 𝜋^Z and 𝜋^[ represent binding rates, and 𝑁Y, 𝑁Zand 𝑁[  represent total number of kinesin-
1 (KIF5B), dynein and kinesin-3 (KIF1Bβ) motors present bound to cargo surface, respectively. 
 
Hence, in the case of stronger plus-directed motors, 𝑛Y𝐹&Y + 𝑛[𝐹&[ > 	𝑛Z𝐹&Z, the cargo force and 
velocity are given by the expressions  
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and, force acting on the cargo is given by, 
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If the plus end motors are weaker than the minus end motors i.e. 𝑛Y𝐹&Y + 𝑛[𝐹&[ < 	𝑛Z𝐹&Z then the 
velocity of cargo is given by, 
 

𝑣5(𝑛Y, 𝑛Z, 𝑛[) = 	
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and, force acting on the cargo is given by  
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In our model, run lengths and run velocities, individual cargo trajectories were generated 

using the Gillespie algorithm as used by Muller et al. [1,4] for the motor attachment/detachment 
kinetics.  
 

Simulations were performed to generate 500 cargo trajectories each trajectory starting from 
initial radial position (r) of the cargo (central clustered/peripherally accumulated/normal steady-
state distribution) and randomly chosen angular position i.e. 𝜃	and 𝜑.	 To model cargo release from 
the cell periphery (due to dissociation of mCh-KIF5B*-strep from lysosomes after biotin addition) 
we put r = Rcell for each cargo with 𝑁Y = 1, 	𝑁Z = 2	and		𝑁[ = 8 motors. To model cargo release 
from cell center (due to dissociation of strep-KIFC1*-mCh after biotin addition) we put r = Rnucleus 
for each cargo with 𝑁Y = 1, 	𝑁Z = 2	and		𝑁[ = 8 motors. For control experiment, i.e. normal 
steady-state distribution, the radial positions of the cargoes were chosen randomly between the 
value of Rnucleus and Rcell with 𝑁Y = 1, 	𝑁Z = 2		𝑁[ = 8 motors. 
 

In our simulations, cargo was allowed to move with the velocity 𝑣5 in the intervals between 
the attachment/detachment events. Simulations were performed until all motors were detached or 
a total simulation time of 30 minutes was reached. Parameters used in simulations are given in 
Supplementary Table 1.  
 
 



Supplementary Table 1: Parameters used in simulation of model of organelle positioning 

 Kinesin-1 (KIF5B) Dynein Kinesin-3 (KIF1Bβ) 

Parameter (unit) Symbol Value  
[Source] Symbol Value 

[Source] Symbol Value 
[Source] 

Stall Force (pN) 𝐹&Y 2.5 [5] 𝐹&Z 2.5 [5] 𝐹&[ 0.15 [6] 
Detachment Force (pN) 𝐹<Y 2.0 [5] 𝐹<Z 1.74 [5] 𝐹<[ 0.5 [7] 

Binding rate (s-1) 𝜋^Y 1.0 (for r < r0)# 

0.0 (for r > r0)# 𝜋^Z 5.0 [5] 𝜋^[ 6.0 [8,9] 

Unbinding rate (s-1) 𝜖^Y 1.0 [5] 𝜖^Z 1.0 [5] 𝜖^[ 1.43 [7] 
Forward velocity (nm/s) 𝑣"Y 600 𝑣"Z 600 𝑣"[ 1350 [6] 

#Kinesin-1 motors were found to be active near the nucleus only, by Guardia et al. [10]. Hence, binding rate of kinesin-1 set to zero for r > r0. 
$Kinesin-3 motors were found active away from nucleus [10]. Soppina et al.[8] predicted that binding rate of kinesin-3 increases due to the presence 
of K loop which has not been measured experimentally. The binding rate of kinesin-3 is predicted to be between 0.1 s-1 to 10.0 s-1 by Nishinari et 
al.[9]. r0 is the radial distance which was taken randomly between 8 µm and 10 µm in each microtubule in the cell. 
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