C–H Functionalization of Amines *via* Alkene-Derived Nucleophiles through Cooperative Action of Chiral and Achiral Lewis Acid Catalysts: Applications in Enantioselective Synthesis

Ming Shang,[‡] Jessica Z. Chan,[‡] Min Cao, Yejin Chang, Qifan Wang, Brennan Cook, Sebastian Torker, and Masayuki Wasa*

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States

1. Pr	ocedures, Materials and Instrumentation	S-3	
2. Experimental Section			
2.1	Substrate Preparation	S-5	
2.2	Optimization Studies	S-13	
2.3	General Procedures for the Stereoselective Coupling of N-Alkylamines and	S 10	
	α,β -Unsaturated Molecules	5-19	
3. Ar	alytical Data	S-20	
3.1	Characterization of Chiral Ligands	S-20	
3.2	Characterization of Mannich Products	S-23	
4. Pr	4. Procedure for Large Scale Reaction, Determination of Absolute Configuration,		
]	Derivatizations of the Mannich Products, and Control Experiments	5-107	
4.1	Procedure for the Large Scale Reaction	S-107	
4.2	Determination of the Absolute Configuration	S-109	
4.3	Derivatizations of the Enantioenriched Mannich Products	S-112	
4.4	Effect of Mg(OTf) ₂ /L4 Co-Catalyst in the Diastereoselective C-C Bond	S 122	
]	Forming Reactions	5-122	
5. Ki	netics Experiment Data for B(C ₆ F ₅) ₃ -Catalyzed C–C Bond Forming	S 124	
]	Reactions	5-124	
6. De	ensity Functional Theory (DFT) Calculations	S-128	

6.1	Challenges and Simplifications	S-128
6.2	The Stereochemical Model	S-130
6.3	Steric Influence of the para-Substituent on Diastereoselectivity	S-130
6.4	Comparison of Results with Various Density Functionals	S-131
7. References		
8. NMR Spectra for New Compounds		S-148
9. X-Ray Crystallography Data of 5d-major and 5d-minor		S-216
10. Coordinates after optimization with M06-L/DF-def2-SVP _{DCM(IEFPCM)}		

1. Procedures, Materials and Instrumentation

1.1 General Experimental Procedures

All reactions were performed in standard, oven-dried glassware fitted with rubber septa under an inert atmosphere of nitrogen unless otherwise described. Stainless steel syringes or cannulas were used to transfer air- and moisture-sensitive liquids. Reported concentrations refer to solution volumes at room temperature. Evaporation and concentration *in vacuo* were performed using house vacuum (ca. 40 mm Hg). Column chromatography was performed with SiliaFlash® 60 (40–63 micron) silica gel from Silicycle. Thin layer chromatography (TLC) was used for reaction monitoring and product detection using pre-coated glass plates covered with 0.25 mm silica gel with fluorescent indicator; visualization by UV light ($\lambda_{ex} = 254$ nm) or KMnO₄ stain.

1.2 Materials

Reagents were purchased in reagent grade from commercial suppliers and used without further purification, unless otherwise described. H₂O, in synthetic procedures, refers to distilled water. Chiral ligands were prepared accordingly to the procedures previously reported in the literature.¹

1.3 Instrumentation

Proton nuclear magnetic resonance (¹H NMR) spectra and proton-decoupled carbon nuclear magnetic resonance (¹³C {¹H} NMR) spectra were recorded at 25°C (unless stated otherwise) on Inova 600 (600 MHz) or Varian Unity/Inova 500 (500 MHz) or Oxford AS400 (400 MHz) spectrometers at the Boston College nuclear magnetic resonance facility. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent. Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the solvent. The solvent peak was referenced to 0 ppm for ¹H for tetramethylsilane and 77.0 ppm for ¹³C for CDCl₃. Data are represented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, qn = quintet, sp = septet, m = multiplet), coupling constants in Hertz (Hz).

Optical rotations were measured using a 1 mL cell with a 5 cm path length on a Rudolph Research Analytical Autopol IV Polarimeter. Infrared spectra were recorded on a Bruker FT-IR Alpha (ATR mode) spectrophotometer. Data are represented as follows: frequency of absorption (cm⁻¹). High-resolution mass spectrometry was performed on a JEOL AccuTOF-DART (positive mode) or Agilent 6220 TOF-ESI (positive mode) at the Mass Spectrometry Facility, Boston College. Chiral HPLC analyses were carried using Agilent 1200 series instruments with Daicel CHIRALPAK® columns or Daicel CHIRALCEL® columns (internal diameter 4.6 mm, column length 250 mm, particle size 5 µm).

1.4 Abbreviations Used

Bn = benzyl, Boc = *tert*-butoxycarbonyl, DART = direct analysis in real time, DCM = dichloromethane, dr = diastereomeric ratio, er = enantiomeric ratio, ESI = electrospray ionization, Et₂O = diethyl ether, Et₃N = triethylamine, EtOAc = ethyl acetate, H₂O = water, HPLC = high pressure liquid chromatography, HR = high-resolution, LC = liquid chromatography, MS = mass spectrometry, NA = not applicable, PTLC = preparative thin layer chromatography, TBS = *tert*-butyldimethylsilyl, Tf = trifluromethanesulfonate, THF = tetrahydrofuran, TOF = time-of-flight.

2. Experimental Section

2.1 Substrate Preparation

Table SI-1. List of Amine Substrates

Amines **1q** and **1r** were obtained from commercial sources. Substrates **1a**,²**11**,²**1m**,²**1n**,²**1o**,² 1p,³ 1s⁴⁻⁶ and **1t**^{7,8} were prepared accordingly to the literature procedures. The spectroscopic data for the newly synthesized molecules (**1a**, **1l**, **1m**, **1n**, **1o**, **1p**, **1s**, and **1t**) are described as the following.

Preparation of Amine Substrates^{9,10}

tert-Butyl (4-hydroxy-2,6-dimethylphenyl)carbamate (S2): *tert*-Butyl (4-hydroxy-2,6-dimethylphenyl)carbamate was prepared following a known procedure.⁹ To a solution of 4-amino-3,5-dimethylphenol (S1, 10.0 g, 72.9 mmol) in THF (200 mL), was added di-*tert*-butyl dicarbonate (16.7 mL, 72.9 mmol) in a dropwise manner. The reaction mixture was allowed to stir at 22 °C for 12 hours. Upon completion, the reaction mixture was concentrated and used without further purification. The spectroscopic data of S2 matched those reported by Nam.¹⁰

tert-Butyl (4-methoxy-2,6-dimethylphenyl)carbamate (S3): *tert*-Butyl (4-methoxy-2,6-dimethylphenyl)carbamate was prepared following a known procedure.¹¹ Carbamate S2 (8.6 g, 36.4 mmol) was dissolved in acetone (50 mL). To the solution was added potassium carbonate (6.1 g, 54.6 mmol) and iodomethane (2.3 mL, 36.4 mmol), dropwise. The reaction mixture was heated to reflux and allowed to stir for 12 hours. Upon completion (monitored by TLC), the reaction was quenched with a saturated aqueous solution of KOH (50 mL), extracted with Et₂O (3 x 50 mL), dried (MgSO₄), and concentrated *in vacuo*. The crude reaction mixture was subjected to silica gel chromatography to afford a colorless solid (5.9 g, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ 6.60 (s, 2H), 3.76 (s, 3H), 2.24 (s, 6H), 1.49 (s, 9H).

Procedure for the Removal of N-Boc Group¹²

To a solution of carbamate S3 in DCM (0.3 M), CF₃COOH (5.0 equiv.) was added dropwise at 22 °C. Upon completion of the reaction (monitored by TLC), aqueous NaHCO₃ was added

until the solution was alkaline, extracted with DCM, dried (MgSO₄), filtered, and concentrated. The crude reaction mixture was subjected to silica gel chromatography (hexanes/EtOAc = 19:1) to give the product as a yellow liquid. The spectroscopic data of **S4** matched those reported by Organ.¹³

General Procedure for Cyclic Amine Substrates

1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine (1a)

1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine was prepared following a known procedure.² A mixture of aniline **S4** (1.0 g, 6.6 mmol), K₂CO₃ (2.7 g, 19.8 mmol), and 1,4-dibromobutane (1.2 mL, 9.9 mmol) in acetonitrile (10 mL) was heated to reflux for 12 hours. Upon completion, the reaction mixture was quenched with saturated aqueous solution of NaHCO₃, extracted with EtOAc (3 x 25 mL), dried (MgSO₄), filtered, and concentrated *in vacuo*. The crude reaction mixture was subjected to silica gel chromatography (hexanes/EtOAc = 29:1) to give the product as a yellow liquid (1.1 g, 82%). ¹H NMR (500 MHz, CDCl₃) δ 6.58 (s, 2H), 3.75 (s, 3H), 3.20 – 3.08 (m, 4H), 2.23 (s, 6H), 1.99 – 1.90 (m, 4H).

1-(4-Methoxy-2,6-dimethylphenyl)-3,3-dimethylpyrrolidine (11)

1-(4-Methoxy-2,6-dimethylphenyl)-3,3-dimethylpyrrolidine was synthesized using the **General Procedure for Cyclic Amine Substrates** on a 5.9 mmol scale, using 1,4-dibromo-2,2-dimethylbutane. The product was obtained as a colorless liquid (1.2 g, 88%). ¹H NMR

(600 MHz, CDCl₃) δ 6.57 (s, 2H), 3.75 (s, 3H), 3.25 (t, *J* = 6.9 Hz, 2H), 2.90 (s, 2H), 2.24 (s, 6H), 1.73 (t, *J* = 6.9 Hz, 2H), 1.18 (s, 6H).

3-((tert-Butyldimethylsilyl)oxy)-1-(4-methoxy-2,6-dimethylphenyl)pyrrolidine (1m)

3-((*tert*-Butyldimethylsilyl)oxy)-1-(4-methoxy-2,6-dimethylphenyl)pyrrolidine was synthesized using the **General Procedure for Cyclic Amine Substrates** on a 16.5 mmol scale, using *tert*-butyl((1,4-dibromobutan-2-yl)oxy)dimethylsilane. The product was obtained as a colorless liquid (4.9 g, 89%). ¹**H NMR** (500 MHz, CDCl₃) δ 6.57 (s, 2H), 4.48 (tt, *J* = 5.2, 3.5 Hz, 1H), 3.75 (s, 3H), 3.41 – 3.35 (m, 2H), 3.08 (td, *J* = 7.8, 4.1 Hz, 1H), 3.02 (dd, *J* = 8.9, 3.1 Hz, 1H), 2.25 (s, 6H), 2.12 – 2.04 (m, 1H), 1.92 – 1.85 (m, 1H), 0.90 (s, 9H), 0.09 (s, 3H), 0.07 (s, 3H).

1-(4-Methoxy-2,6-dimethylphenyl)piperidine (1n)

1-(4-Methoxy-2,6-dimethylphenyl)piperidine was prepared using the **General Procedure for Cyclic Amine Substrates** on 1.0 mmol scale, using 1,5-dibromopentane. The product was obtained as a white solid (165 mg, 75%). ¹**H NMR** (500 MHz, CDCl₃) δ 6.52 (s, 2H), 3.74 (s, 3H), 2.98 (t, *J* = 5.1 Hz, 4H), 2.29 (s, 6H), 1.65 – 1.58 (m, 4H), 1.58 – 1.51 (m, 2H).

1-(4-Methoxy-2,6-dimethylphenyl)azepane (10)

1-(4-Methoxy-2,6-dimethylphenyl)azepane was prepared using the **General Procedure for Cyclic Amine Substrates** on 4.7 mmol scale, using 1,6-dibromohexane. The product was obtained as a colorless oil (371 mg, 34%). ¹**H NMR** (500 MHz, CDCl₃) δ 6.56 (s, 2H), 3.75 (s, 3H), 3.09 – 3.01 (m, 4H), 2.29 (s, 6H), 1.70 (s, 8H).

4-Methoxy-*N*,*N*,2,6-tetramethylaniline (1p)

4-Methoxy-*N*,*N*,2,6-tetramethylaniline was prepared following a known procedure.³ To a solution of formaldehyde (37% aq. solution, 2.95 mL, 39.7 mmol) and sulfuric acid (3 M, 15.9 mmol) was added 4-methoxy-2,6-dimethylaniline **S4** (1.0 g, 6.6 mmol) in THF (50 mL) at 0 °C. Subsequently, NaBH₄ (1.75 g, 46.3 mmol) was added in portions to the reaction mixture while cooling. Upon completion of the reaction (monitored by TLC), the crude reaction mixture was made basic with aq. NaOH (1 M). The supernatant was decanted and the residue is treated with water (10 mL) and extracted with Et₂O (3 x 20 mL). The combined organic layers were dried (MgSO₄), filtered, and concentrated *in vacuo*. The crude reaction mixture was subjected to silica gel chromatography (hexanes/EtOAc = 9:1) and amine **1p** was obtained as a colorless oil (1.1 g, 94%). **¹H NMR** (400 MHz, CDCl₃) δ 6.54 (s, 2H), 3.75 (s, 3H), 2.79 (s, 6H), 2.28 (s, 6H).

1-((*tert*-Butyldimethylsilyl)oxy)-*N*-isopropyl-2-methylpropan-2-amine was prepared following a known procedure.⁴ To a solution of 2-(isopropylamino)-2-methylpropan-1-ol⁵ (20 mmol), and triethylamine (26 mmol) in DCM (50 mL) at 0 °C was added *tert*-butyldimethylsilyl trifluoromethanesulfonate (26 mmol) dropwise. The reaction mixture was allowed to stir at room temperature for 24 hours. Upon completion, the reaction was quenched with H₂O (20 mL), the organic phase was separated and the aqueous phase was extracted with DCM (3 × 50 mL). The combined organic phases were dried (MgSO₄), filtered, and concentrated *in vacuo*. The crude reaction mixture was subjected to silica gel chromatography (hexanes/Et₃N = 20:1) to afford **S6** (4.68 g, 19.08 mmol, 95%) as a colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 3.32 (s, 2H), 2.87 (m, 1H), 1.04 (d, *J* = 6.3 Hz, 6H), 1.01 (s, 6H), 0.89 (s, 9H), 0.04 (s, 6H).

1-((*tert*-Butyldimethylsilyl)oxy)-N-isopropyl-N,2-dimethylpropan-2-amine (1s)

1-((*tert*-Butyldimethylsilyl)oxy)-*N*-isopropyl-*N*,2-dimethylpropan-2-amine was prepared following a known procedure. ⁶ A 37% aq. solution of formaldehyde (1.6 g, 22 mmol) was added to a mixture of 1-((*tert*-butyldimethylsilyl)oxy)-*N*-isopropyl-2-methylpropan-2-amine **S6** (4.43 g, 18.1 mmol) and 88% formic acid (1.8 g, 39 mmol) at 0 °C. The reaction mixture was kept at 55 °C for 2 hours. Upon completion (monitored by TLC), the reaction was quenched with 8.0 M KOH (10 mL), extracted with Et₂O (3 x 50 mL), dried (MgSO₄), and concentrated *in vacuo*. The crude reaction mixture was subjected to silica gel chromatography (hexanes/Et₃N = 50:1) to afford a colorless oil (3.2 g, 68% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.43 (s, 2H), 3.31 (hept, *J* = 6.6 Hz, 1H), 2.21 (s, 3H), 1.05 (s, 6H), 1.00 (d, *J* = 6.8 Hz, 6H), 0.89 (s, 9H), 0.03 (s, 6H).

(R)-N-Methyl-1-phenyl-N-((R)-1-phenylethyl)ethan-1-amine (1t)

(*R*)-*N*-Methyl-1-phenyl-*N*-((*R*)-1-phenylethyl)ethan-1-amine was prepared following a known procedure. ⁷ A 37% aq. solution of formaldehyde (4.4 mmol) was added to a mixture of (*R*)-bis((*R*)-1-phenylethyl)amine **S7** (0.54 g, 2.2 mmol) and 88% formic acid (8.8 mmol) at 0 °C. The reaction mixture was kept at 70 °C for 10 hours. Upon completion (monitored by TLC), the reaction was basified with 1 M NaOH, extracted with EtOAc (3 x 40 mL), dried (MgSO₄), and concentrated *in vacuo*. The crude reaction mixture was subjected to silica gel chromatography (hexanes/Et₃N = 50:1) to afford a colorless oil (440 mg, 84% yield). ¹H **NMR** (500 MHz, CDCl₃) δ 7.40 – 7.30 (m, 7H), 7.26 – 7.21 (m, 2H), 3.82 (q, *J* = 6.8 Hz, 2H), 2.00 (s, 3H), 1.33 (d, *J* = 6.8 Hz, 6H).⁸

1-(2,6-dimethylphenyl)pyrrolidine (1w)

1-(2,6-dimethylphenyl)pyrrolidine was prepared using the **General Procedure for Cyclic Amine Substrates** on 41 mmol scale. The product was obtained as a colorless oil (6.2 g, 86%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.06 – 7.00 (m, 2H), 6.97 (q, *J* = 7.9 Hz, 1H), 3.25 – 3.08 (m, 4H), 2.26 (d, *J* = 3.9 Hz, 6H), 2.05 – 1.92 (m, 4H).

1x

1-(2,6-dimethylphenyl)pyrrolidine (1x)

1-(2,6-dimethylphenyl)pyrrolidine was prepared using the **General Procedure for Cyclic Amine Substrates** on 37 mmol scale. The product was obtained as a colorless oil (6.5 g, 93%). ¹H NMR (500 MHz, CDCl₃) δ 6.86 (d, J = 1.5 Hz, 2H), 3.25 – 3.11 (m, 4H), 2.26 (d, J = 1.5 Hz, 3H), 2.23 (d, J = 1.5 Hz, 6H), 1.97 (td, J = 6.3, 5.5, 2.9 Hz, 4H).

1-(4-(*tert*-Butyl)-2,6-dimethylphenyl)pyrrolidine (1y)

1-(4-(*tert*-Butyl)-2,6-dimethylphenyl)pyrrolidinewas prepared using the **General Procedure** for Cyclic Amine Substrates on 5.6 mmol scale. The product was obtained as a colorless oil (1.2 g, 92%). ¹H NMR (500 MHz, CDCl₃) δ 7.03 (d, *J* = 0.9 Hz, 2H), 3.22 – 3.10 (m, 4H), 2.25 (d, *J* = 0.6 Hz, 6H), 2.02 – 1.90 (m, 4H), 1.29 (s, 9H).

Table SI-2. α,β -Unsaturated Substrates

 α,β -Unsaturated molecules 2a, 2c, 2f, 2g, 2h, 2i, 2j, and 2k were obtained from commercial sources. Substrates 2d,¹⁴ 2e,¹⁵ 2q,¹⁶ 2r,¹⁷ 2s,¹⁷ 2t,¹⁶ 2u-(*S*),¹⁶ and 2u-(*R*)¹⁶ were prepared accordingly to the procedures previously reported in the literatures. Substrates 2q, 2r, 2s, 2t, 2u-(*S*), and 2u-(*R*) were prepared fresh and stored in the freezer for up to 1 month.

2.2 Optimization Studies

Experimental Procedure for the Optimization of the Amine Protecting Group (Table SI-3)

An oven-dried sealed tube equipped with a magnetic stir bar was used. Amine **1** (0.20 mmol), methyl acrylate **2a** (0.24 mmol), $B(C_6F_5)_3$ (0.01 mmol), and benzene (0.2 mL) were added to the reaction vessel under nitrogen atmosphere. The reaction mixture was stirred at 22 °C for 12 h. Upon completion, the reaction mixture was concentrated *in vacuo*. The product yield was determined by the ¹H NMR analysis of the unpurified product mixture using mesitylene as the internal standard.

Table SI-3. Evaluation of Amine Protecting Group

^{*a*} Conditions: **1** (0.2 mmol), **2a** (0.24 mmol), $B(C_6F_5)_3$ (5.0 mol%), benzene (0.2 mL), under N₂, 22 °C, 12 h. ^{*b*} The yield was determined by ¹H NMR analysis of the unpurified product mixture using mesitylene as the internal standard.

Experimental Procedure for the Optimization of the 1,2,2,6,6-Pentamethylpiperidine Substrate (Table SI-4)

An oven-dried sealed tube equipped with a magnetic stir bar was used. Amine **1q** (0.20 mmol), benzyl acrylate **2c** (0.24 mmol), $B(C_6F_5)_3$, and solvent (0.4 mL) were added to the reaction vessel under nitrogen atmosphere. Then, the reaction mixture was stirred for 12 h. Upon completion, the reaction mixture was concentrated *in vacuo*. The product yield was determined by the ¹H NMR analysis of the unpurified product mixture using mesitylene as the internal standard.

Table SI-4. Evaluation of Substrate 1q

)

^{*a*} Conditions: **1q** (0.2 mmol), **2c** (0.24 mmol), $B(C_6F_5)_3$ (cat.), solvent (0.4 mL), under N₂, 12 h. ^{*b*} The yield was determined by ¹H NMR analysis of the unpurified product mixture using mesitylene as the internal standard.

Experimental Procedure for the Optimization of the Lewis Acid Co-Catalyst (Table SI-5)

An oven-dried sealed tube equipped with a magnetic stir bar was used. 1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine **1a** (0.10 mmol), 3-acryloyloxazolidin-2-one **2q** (0.12 mmol), $B(C_6F_5)_3$ (0.01 mmol), Lewis acid co-catalyst (0.01 mmol) and DCM (0.3 mL) were added to the reaction vessel under nitrogen atmosphere. The reaction mixture was stirred at 22 °C for 12 h. Upon completion, the reaction mixture was filtered through silica gel and concentrated

in vacuo. The product yield was determined by the ¹H NMR analysis of the unpurified product mixture using mesitylene as the internal standard.

Table SI-5. Evaluation of Co-Catalyst

۲ Ai	ун+ 1а	Q ↓ N ↓ O 2q	10 mol% B(C ₆ F ₅) ₃ 10 mol% co-catalys DCM, 22 °C, 12 h	t Ar Me 3q-an (rac)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	entry	CO-0	catalyst	yield (%)	anti:syn
	1	Nor	e	35	3.2:1
	2	CuC)Tf•Toluene	86	2.6:1
	3	Ni(C	DTf) ₂	31	4.2:1
	4	Mg(OTf) ₂	38	3.8:1

^a Conditions: **1a** (0.1 mmol), **2q** (0.12 mmol), $B(C_6F_5)_3$ (10 mol%), cocatalyst (10 mol%), DCM (0.3 mL), under N₂, 22 °C, 12 h. ^{*b*} The yield was determined by ¹H NMR analysis of the unpurified product mixture using mesitylene as the internal standard.

Experimental Procedure for the Optimization of the Metal with L3 (Table SI-6)

An oven-dried sealed tube equipped with a magnetic stir bar was used. To this tube were added Lewis acid co-catalyst (0.01 mmol), 2,6-bis((R)-4-phenyl-4,5-dihydrooxazol-2-yl)pyridine **L3** (0.012 mmol), and DCM (0.2 mL) under nitrogen atmosphere. The mixture was stirred for 20 min at 22 °C. Subsequently, 3-acryloyloxazolidin-2-one **2q** (0.12 mmol), 1-(4-methoxy-2,6-dimethylphenyl)pyrrolidine **1a** (0.10 mmol), B(C₆F₅)₃ (0.01 mmol) and DCM (0.1 mL) were added to the reaction vessel, and the resulting mixture was stirred at 22 °C for 12 h. Upon completion, the reaction mixture was filtered through a plug of silica gel and concentrated *in vacuo*. The product yield and *anti:syn* ratio were determined by the ¹H NMR analysis of the unpurified product mixture using mesitylene as the internal standard.

The Mannich product was purified and isolated by preparative TLC (4:1 hexanes/EtOAc). The er value of each diastereomer was determined by HPLC analysis of the isolated product.

Table SI-6. Evaluation of Metal with L3

	10 mo	I% <mark>B(C₆F₅)₃</mark>			
	10 mo	I% [M]			
Ar 1a	+ N N O O O O O O O O O O O O O O O O O	L3 2 mol% Ph 22 °C, 12 h	Ar Me 3q-ant	$i \rightarrow Ar$	Me Contractions of the syn
entry	[M]	yield (%)	anti:syn	enantiom	eric ratio
				3q- <i>anti</i>	3q-syn
1	None(without L3)	35	4.8:1	NA	NA
2	None(with L3)	<5	NA	NA	NA
3	CuOTf·Toluene	71	3.2:1	50:50	50:50
4	Zn(OTf) ₂	15	1:1	50:50	50:50
5	Mg(ClO ₄) ₂	40	3.4:1	50:50	50:50
6	Sc(OTf) ₃	<5	NA	NA	NA
7	Ni(BF ₄) ₂ •H ₂ O	<5	NA	NA	NA
8	Fe(ClO ₄) ₃ ·H ₂ O	<5	NA	NA	NA
9	Mg(OTf) ₂	66	2.3:1	72:28	75:25

^{*a*} Conditions: **1a** (0.1 mmol), **2q** (0.12 mmol), $B(C_6F_5)_3$ (10 mol%), [M] (10 mol%), **L3** (12 mol%), DCM (0.3 mL), under N₂, 22 °C, 12 h. ^{*b*} The yield and *anti:syn* ratio were determined by ¹H NMR analysis of the unpurified product mixture using mesitylene as the internal standard.

Experimental Procedure for the Optimization of PyBOX Ligand (Table SI-7)

An oven-dried sealed tube equipped with a magnetic stir bar was used. To this tube were added Mg(OTf)₂ (0.01 mmol), ligand (0.012 mmol), DCM (0.2 mL) under nitrogen atmosphere. The mixture was stirred for 20 min at 22 °C. Subsequently, 3-acryloyl-4,4-dimethyloxazolidin-2-one **2r** (0.12 mmol), 1-(4-methoxy-2,6-dimethylphenyl)pyrrolidine **1a** (0.10 mmol), B(C₆F₅)₃ (0.01 mmol), and DCM (0.1 mL) were added to the reaction vessel, and the resulting mixture was stirred at 22 °C for 12 h. Upon completion, the reaction mixture was filtered through a pad of silica gel and concentrated *in vacuo*. The product yield and *anti:syn* ratio were determined by the ¹H NMR analysis of the unpurified product mixture using mesitylene as the internal standard. The Mannich product was purified and isolated by preparative TLC (4:1 hexanes/EtOAc). The er values of each diastereomer was determined by HPLC analysis of the isolated product.

^a Conditions: **1a** (0.1 mmol), **2r** (0.12 mmol), B(C₆F₅)₃ (10 mol%), Mg(OTf)₂ (10 mol%), Ligand (12 mol%), DCM (0.3 mL), under N₂, 22 °C, 12 h. ^{*b*} The yield was determined by ¹H NMR analysis of the unpurified product mixture using mesitylene as the internal standard.

2.3 General Procedures for the Stereoselective Coupling of *N*-Alkylamines and α,β -Unsaturated Molecules

General Procedure for B(C₆F₅)₃-Catalyzed Racemic Mannich Reactions

To a 15 mL oven-dried sealed tube was added amine **1** (0.2 mmol, 1 equiv.), α,β unsaturated compound **2** (0.24 mmol, 1.2 equiv.), a catalytic amount of B(C₆F₅)₃ and solvent under nitrogen atmosphere. The reaction mixture was stirred at either 22 °C or 70 °C for 12 to 48 hours (see **SI-Section 3.2** for details). Upon completion, the reaction mixture was diluted with EtOAc, concentrated *in vacuo* and purified by silica gel column chromatography.

General Procedure for Stereoselective Mannich Reactions

An oven-dried sealed tube equipped with a magnetic stir bar was used. To this tube were added Mg(OTf)₂ (0.02 mmol), ligand **L4** (0.024 mmol), DCM (0.2 mL) under nitrogen atmosphere. The mixture was stirred for 20 min at 22 °C, then oxazolidinone substrate **2** (0.30 mmol), 1-(4-methoxy-2,6-dimethylphenyl)pyrrolidine **1a** (0.20 mmol), B(C₆F₅)₃ (0.02 mmol), and DCM (0.1 mL) were added to the vessel. The reaction mixture was stirred at 22 °C for 12 h. Upon completion, the crude mixture was filtered through a pad of silica gel and concentrated *in vacuo*. The Mannich product was purified and isolated by silica gel column chromatography. The *anti:syn* ratio was determined by ¹H NMR analysis of the crude reaction mixture. The er values of each diastereomer was determined by HPLC analysis of the isolated product.

3. Analytical Data

3.1 Characterization of Chiral Ligands

2,6-Bis((S)-4-(3-chlorophenyl)-4,5-dihydrooxazol-2-yl)pyridine (L4)

¹**H NMR** (600 MHz, CDCl₃) δ 8.34 (d, J = 7.9 Hz, 2H), 7.95 (t, J = 7.8 Hz, 1H), 7.33 (s, 2H), 7.31 – 7.26 (m, 4H), 7.20 (dt, J = 7.0, 1.8 Hz, 2H), 5.45 (dd, J = 10.3, 8.5 Hz, 2H), 4.93 (dd, J = 10.4, 8.7 Hz, 2H), 4.39 (t, J = 8.6 Hz, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 166.46, 149.22, 146.34, 140.24, 137.38, 132.75, 130.64, 129.64, 129.13, 127.62, 77.92, 72.43; **IR** (neat) 3061, 2967, 2899, 1637, 1571, 1429, 1379, 1250, 1106, 1075, 969, 784, 735, 691 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₃H₁₈N₃O₂Cl₂ (MH⁺): 438.0776; found: 438.0784.

2,6-Bis((S)-4-(3-fluorophenyl)-4,5-dihydrooxazol-2-yl)pyridine (L7)

¹**H NMR** (600 MHz, CDCl₃) δ 8.33 (d, J = 7.8 Hz, 2H), 7.93 (t, J = 7.9 Hz, 1H), 7.31 (td, J = 7.9, 5.8 Hz, 2H), 7.09 (dt, J = 7.6, 1.2 Hz, 2H), 7.03 (dt, J = 9.7, 2.1 Hz, 2H), 6.98 (td, J = 8.4, 2.4 Hz, 2H), 5.45 (dd, J = 10.3, 8.6 Hz, 2H), 4.92 (dd, J = 10.4, 8.6 Hz, 2H), 4.38 (t, J = 8.6 Hz, 2H).; ¹³**C NMR** (151 MHz, CDCl₃) δ 163.67, 162.97 (d, J = 248 Hz), 146.50, 144.15 (d, J = 6.9 Hz), 137.47, 130.27 (d, J = 8.1 Hz), 126.34, 122.29 (d, J = 2.8 Hz), 114.60 (d, J = 21.0 Hz), 113.67 (d, J = 22.0 Hz), 75.17, 69.68 (d, J = 1.8 Hz); **IR** (neat) 3066, 2969, 2901, 1637, 1588, 1448, 1379, 1246, 1140, 1106, 1075, 972, 879, 785, 742, 694 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₃H₁₈N₃O₂F₂ (MH⁺): 406.1367; found: 406.1383.

2,6-Bis((S)-4-(3-bromophenyl)-4,5-dihydrooxazol-2-yl)pyridine (L8)

¹**H NMR** (600 MHz, CDCl₃) δ 8.34 (d, J = 7.9 Hz, 2H), 7.95 (t, J = 7.9 Hz, 1H), 7.48 (s, 2H), 7.43 (dt, J = 7.3, 1.9 Hz, 2H), 7.26 – 7.21 (m, 4H), 5.44 (t, J = 10.4, 2H), 4.92 (t, J = 10.4, 2H), 4.38 (t, J = 8.6 Hz, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 163.70, 146.46, 143.85, 137.49, 130.82, 130.28, 129.79, 126.40, 125.35, 122.83, 75.16, 69.64; **IR** (neat) 3359, 2967, 2898, 1636, 1568, 1473, 1378, 1252, 1106, 1072, 968, 782, 736, 691 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₃H₁₈N₃O₂Br₂ (MH⁺): 525.9766; found: 525.9753.

2,6-Bis((S)-4-(4-chlorophenyl)-4,5-dihydrooxazol-2-yl)pyridine (L10)

¹**H NMR** (600 MHz, CDCl₃) δ 8.33 (d, J = 7.8 Hz, 2H), 7.93 (t, J = 7.8 Hz, 1H), 7.35 – 7.32 (m, 4H), 7.28 – 7.24 (m, 4H), 5.44 (dd, J = 10.3, 8.6 Hz, 2H), 4.92 (dd, J = 10.3, 8.7 Hz, 2H), 4.37 (t, J = 8.6 Hz, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 163.61, 146.58, 140.14, 137.50, 133.57, 128.91, 128.12, 126.35, 75.30, 69.63; **IR** (neat) 2985, 2963, 2928, 2897, 1636, 1488, 1377, 1256, 1104, 1071, 1014, 918, 840 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₃H₁₈N₃O₂Cl₂ (MH⁺): 438.0776; found: 438.0788.

2,6-Bis((S)-4-(3-(trifluoromethyl)phenyl)-4,5-dihydrooxazol-2-yl)pyridine (L12)

¹**H NMR** (600 MHz, CDCl₃) δ 8.36 (d, J = 7.9 Hz, 2H), 7.97 (t, J = 7.8 Hz, 1H), 7.60 (s, 2H), 7.58 (d, J = 7.6 Hz, 2H), 7.51 (dt, J = 15.2, 7.7 Hz, 4H), 5.55 (dd, J = 10.4, 8.7 Hz, 2H), 4.98 (dd, J = 10.4, 8.7 Hz, 2H), 4.41 (t, J = 8.7 Hz, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 163.89, 146.47, 142.58, 137.62, 131.11 (q, J = 32.4 Hz), 130.16, 129.29, 126.49, 124.64 (q, J = 3.7 Hz), 123.82 (q, J = 243 Hz), 123.61 (q, J = 3.9 Hz), 75.18, 69.84; **IR** (neat) 3068, 2970, 2903, 1639, 1326, 1162, 1120, 1073, 804, 702 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₅H₁₈N₃O₂F₆ (MH⁺): 506.1303; found: 506.1317.

3.2 Characterization of the Mannich Products

Methyl 2-(1-(4-methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propanoate (3a)

1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine **1a** (0.2 mmol, 1 equiv.) was reacted with methyl acrylate **2a** (0.24 mmol, 1.2 equiv.) following the **General Procedure for B**(C_6F_5)₃-**Catalyzed Racemic Mannich Reactions** using B(C_6F_5)₃ (5.0 mol%) as the Lewis acid catalyst, benzene (0.2 mL) as the solvent and was carried out for 12 h at 22 °C. ¹H NMR analysis of the crude material revealed that **3a**-*anti* and **3a**-*syn* were obtained in the ratio of 2.3:1. After purification by column chromatography (hexanes: EtOAc = 20:1), **3a** was obtained as a mixture of diastereomers (56 mg, 97%). Further purification was carried out by PTLC using hexanes: DCM = 5:1 as the eluent to separate **3a**-*anti* and **3a**-*syn*.

3a-*anti*: ¹**H NMR** (600 MHz, CDCl₃) δ 6.56 (d, J = 3.0 Hz, 1H), 6.53 (d, J = 3.0 Hz, 1H), 3.88 (q, J = 6.4 Hz, 1H), 3.74 (s, 3H), 3.31 – 3.28 (m, 4H), 2.98 (q, J = 7.7 Hz, 1H), 2.36 (p, J = 6.8 Hz, 1H), 2.27 (s, 3H), 2.24 (s, 3H), 2.07 (dq, J = 12.4, 7.5 Hz, 1H), 1.96 – 1.87 (m, 2H), 1.77 (dq, J = 12.8, 6.1 Hz, 1H), 1.11 (d, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.15, 156.58, 140.66, 138.50, 137.45, 114.41, 112.93, 62.75, 55.18, 52.70, 51.09, 45.22, 29.06, 24.99, 19.49, 19.23, 13.47; **IR** (neat) 2947, 1733, 1061, 1484, 1464, 1434, 1319, 1260, 1194, 1154, 1066 cm⁻¹; **HRMS** (DART) m/z Calcd for C₁₇H₂₆NO₃ (MH⁺): 292.1913; found: 292.1921.

3a-syn: ¹**H** NMR (600 MHz, CDCl₃) δ 6.57 (d, J = 3.1 Hz, 1H), 6.54 (d, J = 2.8 Hz, 1H), 3.88 – 3.81 (m, 1H), 3.74 (s, 3H), 3.44 (s, 3H), 3.27 (td, J = 8.1, 7.5, 2.8 Hz, 1H), 2.92 (td, J = 8.5, 6.6 Hz, 1H), 2.45 (ddd, J = 7.0, 5.6, 1.4 Hz, 1H), 2.29 (s, 3H), 2.23 (s, 3H), 2.15 – 2.08 (m, 1H), 1.97 – 1.84 (m, 3H), 1.01 (dd, J = 7.0, 1.4 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.94, 156.40, 140.30, 138.86, 137.24, 114.49, 113.03, 63.59, 55.17, 53.38, 51.08, 45.89,

29.82, 25.11, 19.43, 19.09, 13.81; **IR** (neat) 2948, 1733, 1602, 1483, 1463, 1318, 1257, 1193, 1154, 1068cm⁻¹; **HRMS** (DART) m/z Calcd for $C_{17}H_{26}NO_3$ (MH⁺): 292.1913; found: 292.1919.

Benzyl 2-(1-(4-methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propanoate (3c)

1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine **1a** (0.1 mmol, 1.0 equiv.) was reacted with benzyl acrylate **2c** (0.24 mmol, 1.2 equiv.) following the **General Procedure for B**(C_6F_5)₃-**Catalyzed Racemic Mannich Reactions** using B(C_6F_5)₃ (5.0 mol%) as the Lewis acid catalyst, benzene (0.2 mL) as the solvent and was carried out for 12 h at 22 °C. ¹H NMR analysis of the crude material revealed that **3c**-*anti* and **3c**-*syn* were obtained in the ratio of 2.5:1. After purification by column chromatography (hexanes: EtOAc = 30:1), **3c** was obtained as a mixture of diastereomers (67 mg, 91%). Further purification was carried out by PTLC using hexanes: DCM = 5:1 as the eluent to separate **3c**-*anti* and **3c**-*syn*.

3c-*anti*: ¹**H NMR** (600 MHz, CDCl₃) δ 7.34 – 7.28 (m, 3H), 7.24 – 7.19 (m, 2H), 6.54 (d, J = 3.1 Hz, 1H), 6.51 (d, J = 3.1 Hz, 1H), 4.77 – 4.62 (m, 2H), 3.95 – 3.91 (m, 1H), 3.72 (s, 3H), 3.30 (ddd, J = 8.4, 7.0, 4.8 Hz, 1H), 2.98 (dt, J = 8.4, 7.4 Hz, 1H), 2.42 (p, J = 6.8 Hz, 1H), 2.26 (s, 3H), 2.21 (s, 3H), 2.09 – 2.02 (m, 1H) 1.96 – 1.85 (m, 2H), 1.80 – 1.74 (m, 1H), 1.14 (d, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 178.15, 159.21, 143.29, 141.19, 140.08, 138.85, 130.99, 130.52, 130.49, 117.13, 115.61, 68.38, 65.35, 57.80, 55.34, 47.94, 31.64, 27.66, 22.12, 21.95, 16.08; **IR** (neat) 2944, 2878, 2837, 1731, 1602, 1483, 1464, 1318, 1263, 1192, 1154, 1068, 697 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₃H₃₀NO₃ (MH⁺): 368.2226; found: 368.2237.

3c-*syn*: ¹**H** NMR (600 MHz, CDCl₃) δ 7.37 – 7.27 (m, 5H), 6.56 (d, J = 3.1 Hz, 1H), 6.51 (d, J = 3.1 Hz, 1H), 4.95 (d, J = 12.3 Hz, 1H), 4.71 (d, J = 12.3 Hz, 1H), 3.88 (ddd, J = 8.2, 5.5, 2.8 Hz, 1H), 3.73 (s, 3H), 3.33 – 3.20 (m, 1H), 2.91 (td, J = 8.6, 6.6 Hz, 1H), 2.50 (qd, J = 7.0, 5.5 Hz, 1H), 2.27 (s, 3H), 2.20 (s, 3H), 2.16 – 2.07 (m, 1H), 1.94 – 1.84 (m, 3H), 1.04 (d, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.27, 156.40, 140.38, 138.96, 137.23,

136.12, 128.39, 128.18, 128.01, 114.53, 113.06, 65.89, 63.65, 55.15, 53.45, 46.14, 29.93, 25.18, 19.39, 19.20, 13.72; **IR** (neat) 2940, 1731, 1602, 1483, 1463, 1256, 1192, 1154, 1068, 698 cm⁻¹; **HRMS** (DART) m/z Calcd for $C_{23}H_{30}NO_3$ (MH⁺): 368.2226; found: 368.2239.

Isopropyl 2-(1-(4-methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propanoate (3d)

1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine **1a** (0.2 mmol, 1.0 equiv.) was reacted with isopropyl acrylate **2d** (0.24 mmol, 1.2 equiv.) following the **General Procedure for B**(C_6F_5)₃-**Catalyzed Racemic Mannich Reactions** using B(C_6F_5)₃ (5.0 mol%) as the Lewis acid catalyst, benzene (0.2 mL) as the solvent and was carried out for 12 h at 22 °C. ¹H NMR analysis of the crude material revealed that **3d**-*anti* and **3d**-*syn* were obtained in the ratio of 2.1:1. After purification by column chromatography (hexanes: Et₂O = 32:1), **3d** was obtained as a mixture of diastereomers (50 mg, 78%). Further purification was carried out by PTLC using hexanes: Et₂O = 9:1 as the eluent to separate **3d**-*anti* and **3d**-*syn*.

3d-*anti*: ¹**H NMR** (500 MHz, CDCl₃) δ 6.57 – 6.55 (m, 1H), 6.54 (d, J = 2.8 Hz, 1H), 4.65 (hept, J = 6.2 Hz, 1H), 3.91 (dt, J = 7.7, 5.4 Hz, 1H), 3.74 (s, 3H), 3.29 (ddd, J = 8.4, 6.8, 4.6 Hz, 1H), 2.98 (q, J = 7.6 Hz, 1H), 2.35 – 2.29 (m, 1H), 2.27 (s, 3H), 2.25 (s, 3H), 2.07 – 1.99 (m, 1H), 1.96 – 1.88 (m, 2H), 1.83 – 1.77 (m, 1H), 1.11 (dd, J = 7.1, 0.6 Hz, 3H), 1.08 (d, J = 6.3 Hz, 3H), 1.05 (d, J = 6.2 Hz, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 175.17, 156.59, 140.52, 138.46, 137.62, 114.53, 112.98, 67.07, 62.41, 55.14, 52.63, 44.84, 28.37, 25.14, 21.61, 21.53, 19.47, 19.29, 12.81; **IR** (neat) 2973, 1731, 1602, 1481, 1464, 1371, 1317, 1260, 1153, 1105, 1067, 854, 698 cm⁻¹; **HRMS** (DART) m/z Calcd for C₁₉H₃₀NO₃ (MH⁺): 320.2226; found: 320.2221.

3d-*syn*: ¹**H NMR** (600 MHz, CDCl₃) δ 6.57 (d, J = 3.0 Hz, 1H), 6.53 (d, J = 3.0 Hz, 1H), 4.82 (hept, J = 6.3 Hz, 1H), 3.78 (ddd, J = 8.6, 6.0, 2.9 Hz, 1H), 3.74 (s, 3H), 3.27 (td, J = 7.9, 2.6 Hz, 1H), 2.92 (td, J = 8.6, 6.5 Hz, 1H), 2.43 – 2.36 (m, 1H), 2.32 (s, 3H), 2.23 (s, 3H), 2.17 – 2.09 (m, 1H), 1.98 – 1.91 (m, 1H), 1.91 – 1.85 (m, 2H), 1.16 (d, J = 6.3 Hz, 3H), 1.08 (d, J = 6.3 Hz, 3H), 0.97 (d, J = 6.9 Hz, 3H); ¹³C **NMR** (151 MHz, CDCl₃) δ 175.07, 156.40,

140.34, 139.26, 137.18, 114.47, 113.03, 67.05, 63.81, 55.12, 53.47, 46.73, 30.06, 25.23, 21.75, 21.51, 19.32, 19.25, 14.19; **IR** (neat) 2974, 1723, 1603, 1464, 1317, 1255, 1153, 1107, 1068, 854 cm⁻¹; **HRMS** (DART) m/z Calcd for $C_{19}H_{30}NO_3$ (MH⁺): 320.2226; found: 320.2216.

S-Phenyl 2-(1-(4-methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propanethioate (3e)

1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine **1a** (0.2 mmol, 1.0 equiv.) was reacted with *S*-phenyl prop-2-enethioate **2e** (0.24 mmol, 1.2 equiv.) following the **General Procedure for B**(C₆F₅)₃-**Catalyzed Racemic Mannich Reactions** using B(C₆F₅)₃ (5.0 mol%) as the Lewis acid catalyst, benzene (0.2 mL) as the solvent and was carried out for 12 h at 22 °C. ¹H NMR analysis of the crude material revealed that **3e**-*anti* and **3e**-*syn* were obtained in the ratio of 1.8:1. After purification by column chromatography (hexanes: Et₂O = 30:1), **3e** was obtained as a mixture of diastereomers (39 mg, 53%). ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.29 (m, 3H), 7.16 – 7.11 (m, 2H), 6.59 (s, 1H), 6.55 (s, 1H), 4.06 (dt, *J* = 7.3, 5.7 Hz, 1H), 3.76 (s, 3H), 3.33 (ddd, *J* = 8.4, 6.9, 4.9 Hz, 1H), 3.00 (q, *J* = 7.6 Hz, 1H), 2.70 – 2.62 (m, 1H), 2.32 (s, 3H), 2.25 (s, 3H), 2.11 – 1.98 (m, 1H), 1.97 – 1.88 (m, 2H), 1.86 – 1.80 (m, 1H), 1.22 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 2200.02, 156.83, 140.56, 138.79, 137.16, 134.45, 129.05, 128.95, 128.82, 114.49, 113.19, 62.62, 55.14, 53.47, 52.52, 28.86, 25.02, 19.60, 19.46, 13.74; HRMS (DART) m/z Calcd for C₂₂H₂₇NO₂S (MH⁺): 370.1835; found: 370.1833.

2-(1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propanenitrile (3f)

1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine **1a** (0.2 mmol, 1.0 equiv.) was reacted with acrylonitrile **2f** (0.5 mmol, 2.5 equiv.) following the **General Procedure for B**(C_6F_5)₃-**Catalyzed Racemic Mannich Reactions** using B(C_6F_5)₃ (10 mol%) as the Lewis acid catalyst, benzene (0.4 mL) as the solvent and was carried out for 48 h at 70 °C. ¹H NMR analysis of the crude material revealed that **3f**-*anti* and **3f**-*syn* were obtained in the ratio of 1.3:1. After purification by column chromatography (hexanes: Et₂O = 10:1), **3f** was obtained as a mixture of diastereomers (25.9 mg, 50%). Further purification was carried out by PTLC using hexanes: Et₂O = 20:1 as the eluent to separate **3f**-*anti* and **3f**-*syn*.

3f-*anti*: ¹**H NMR** (600 MHz, CDCl₃) δ 6.60 (d, J = 3.0 Hz, 1H), 6.56 (d, J = 3.0 Hz, 1H), 3.80 – 3.72 (m, 4H), 3.36 (td, J = 8.0, 2.5 Hz, 1H), 3.02 (td, J = 8.9, 6.6 Hz, 1H), 2.53 (qd, J = 7.2, 3.5 Hz, 1H), 2.34 (s, 3H), 2.28 – 2.23 (m, 1H), 2.22 (s, 3H), 2.14 – 2.09 (m, 1H), 2.01 – 1.90 (m, 2H), 1.18 (d, J = 7.3 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 156.90, 140.27, 137.84, 137.15, 122.67, 114.79, 113.33, 63.27, 55.18, 53.61, 32.33, 29.68, 25.28, 19.35, 19.21, 13.96; **IR** (neat) 2951, 2242, 2228, 1603, 1483, 1464, 1318, 1262, 1192, 1154, 1068, 837 cm⁻¹; **HRMS** (DART) m/z Calcd for C₁₆H₂₃N₂O (MH⁺): 259.1810; found: 259.1807.

3f-*syn*: ¹**H NMR** (600 MHz, CDCl₃) δ 6.62 (d, J = 3.0 Hz, 1H), 6.56 (d, J = 3.0 Hz, 1H), 3.76 (s, 3H), 3.46 (dt, J = 8.0, 3.9 Hz, 1H), 3.35 (td, J = 7.8, 3.2 Hz, 1H), 3.10 – 3.02 (m, 1H), 2.56 (qd, J = 7.3, 3.7 Hz, 1H), 2.39 (s, 3H), 2.30 – 2.24 (m, 1H), 2.23 – 2.17 (m, 4H), 2.04 (td, J = 8.3, 3.9 Hz, 1H), 1.97 (dq, J = 11.2, 3.7 Hz, 1H), 1.15 (d, J = 7.3 Hz, 3H); ¹³C **NMR** (151 MHz, CDCl₃) δ 157.06, 141.27, 137.95, 136.32, 122.75, 114.76, 113.22, 64.69, 55.20, 52.47, 31.66, 28.33, 24.69, 19.22, 19.14, 15.56; **IR** (neat) 2951, 2837, 2239, 1602, 1544, 1483, 1464,

1318, 1267, 1192, 1155, 1067, 858 cm⁻¹; **HRMS** (DART) m/z Calcd for $C_{16}H_{23}N_2O$ (MH⁺): 259.1810; found: 259.1816.

Methyl 2-(1-(4-methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)-2-methylpropanoate (3g) 1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine 1a (0.2 mmol, 1.0 equiv.) was reacted with methyl methacrylate 2g (0.24 mmol, 1.2 equiv.) following the General Procedure for $B(C_6F_5)_3$ -Catalyzed Racemic Mannich Reactions using $B(C_6F_5)_3$ (10 mol%) as the Lewis acid catalyst, benzene (0.4 mL) as the solvent and was carried out for 24 h at 70 °C.

After purification by column chromatography (hexanes: $Et_2O = 40:1$), **3g** was obtained as a colorless oil (59.1 mg, 97%).

¹**H NMR** (600 MHz, CDCl₃) δ 6.54 (q, J = 3.1 Hz, 2H), 4.05 (dd, J = 9.4, 2.2 Hz, 1H), 3.73 (s, 3H), 3.29 (ddd, J = 9.1, 6.9, 2.5 Hz, 1H), 3.07 (s, 3H), 2.90 (td, J = 8.9, 6.8 Hz, 1H), 2.29 (s, 3H), 2.25 (s, 3H), 2.13 – 2.05 (m, 1H), 1.92 – 1.80 (m, 3H), 1.11 (s, 3H), 1.08 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 177.75, 156.09, 139.88, 139.75, 136.75, 114.62, 112.92, 66.82, 55.14, 54.48, 50.89, 47.67, 27.60, 25.61, 23.22, 19.66, 19.60, 19.38; **IR** (neat) 2947, 2836, 1731, 1602, 1466, 1315, 1253, 1191, 1128, 1069, 839 cm⁻¹; **HRMS** (DART) Calcd for C₁₈H₂₈NO₃ (MH⁺): 306.2069; found: 306.2067.

Dimethyl 2-(1-(4-methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)fumarate (3h)

1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine **1a** (0.2 mmol, 1.0 equiv.) was reacted with dimethyl but-2-ynedioate **2h** (0.24 mmol, 1.2 equiv.) following the **General Procedure for B**(C_6F_5)₃-**Catalyzed Racemic Mannich Reactions** using B(C_6F_5)₃ (10 mol%) as the Lewis acid catalyst, benzene (0.4 mL) as the solvent and was carried out for 24 h at 70 °C. ¹H NMR analysis of the crude material revealed that (*E*)-**3h** and (*Z*)-**3h** were obtained in the ratio of 1:1.6. After purification by column chromatography (hexanes: Et₂O = 5:1), (*E*)-**3h** was obtained as yellow liquid (29.8 mg, 21%) and (*Z*)-**3h** was obtained as colorless liquid (42.5 mg, 31%). The relative configuration was assigned based on NOESY experiments (see SI Section 8 for NOE spectra).

(E)-**3h:** ¹**H NMR** (600 MHz, CDCl₃) δ 6.51 (s, 2H), 6.27 (s, 1H), 5.50 (dd, J = 9.6, 4.2 Hz, 1H), 3.77 (s, 3H), 3.72 (s, 3H), 3.61 (s, 3H), 3.44 – 3.39 (m, 1H), 3.06 – 3.00 (m, 1H), 2.47 – 2.41 (m, 1H), 2.35 – 2.09 (m, 8H), 2.06 – 1.95 (m, 1H); ¹³**C NMR** (126 MHz, CDCl₃) δ 167.82, 165.81, 156.51, 152.38, 137.97, 124.82, 114.52, 113.01, 58.58, 55.10, 53.87, 51.91, 51.61, 31.95, 25.91, 19.11; **IR** (neat) 2951, 2848, 1729, 1603, 1434, 1256, 1206, 1154, 1114, 1069, 855 cm⁻¹; **HRMS** (DART) m/z Calcd for C₁₉H₂₆NO₅ (MH⁺): 348.1811; found: 348.1822.

(Z)-3h: ¹H NMR (600 MHz, CDCl₃) δ 6.55 (s, 2H), 5.99 (d, J = 1.1 Hz, 1H), 4.35 – 4.28 (m, 1H), 3.77 (d, J = 1.7 Hz, 3H), 3.74 (d, J = 1.7 Hz, 3H), 3.67 (d, J = 1.8 Hz, 3H), 3.41 – 3.37 (m, 1H), 3.01 (dt, J = 10.2, 7.8 Hz, 1H), 2.32 – 2.28 (m, 7H), 2.16 – 2.09 (m, 1H), 2.04 – 1.95 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 1168.74, 165.68, 156.67, 153.77, 137.33, 119.00, 114.06, 113.51, 64.34, 55.14, 52.96, 52.16, 51.73, 31.92, 24.69, 19.61; **IR** (neat) 2950, 2838,

1724, 1602, 1434, 1316, 1255, 1193, 1153, 1067, 854 cm⁻¹; **HRMS** (DART) m/z Calcd for C₁₉H₂₆NO₅ (MH⁺): 348.1811; found: 348.1810.

1-(4-Methoxy-2,6-dimethylphenyl)-1'-phenyl-[2,3'-bipyrrolidine]-2',5'-dione (3i)

1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine **1a** (0.2 mmol, 1.0 equiv.) was reacted with 1phenyl-1*H*-pyrrole-2,5-dione **2i** (0.24 mmol, 1.2 equiv.) following the **General Procedure for B**(C_6F_5)₃-Catalyzed Racemic Mannich Reactions using B(C_6F_5)₃ (5.0 mol%) as the Lewis acid catalyst, benzene (0.2 mL) as the solvent and was carried out for 12 h at 22 °C. ¹H NMR analysis of the crude material revealed that **3i**-*anti* and **3i**-*syn* were obtained in the ratio of 4.5:1. After purification by column chromatography (hexanes: EtOAc = 5:1), **3i** was obtained as a mixture of diastereomers (75 mg, 99%). Further purification was carried out by PTLC to separate **3i**-*anti* and **3i**-*syn*.

3i-*anti*: ¹**H NMR** (500 MHz, CDCl₃) δ 7.46 (t, J = 7.7 Hz, 2H), 7.41 – 7.35 (m, 1H), 7.27 – 7.22 (m, 2H), 6.62 – 6.56 (m, 2H), 4.31 (td, J = 6.8, 4.0 Hz, 1H), 3.76 (s, 3H), 3.38 – 3.30 (m, 1H), 3.16 – 3.07 (m, 1H), 2.98 – 2.93 (m, 1H), 2.89 (dd, J = 18.8, 4.0 Hz, 1H), 2.71 (dd, J = 18.8, 9.2 Hz, 1H), 2.32 (s, 3H), 2.26 (s, 3H), 2.14 – 1.98 (m, 3H), 1.64 (dt, J = 11.2, 6.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 177.83, 176.39, 157.02, 139.77, 138.32, 135.60, 131.86, 129.14, 128.55, 126.40, 114.92, 113.36, 60.83, 55.23, 51.83, 43.23, 30.71, 26.29, 24.59, 19.84, 18.86; **IR** (neat) 2946, 1711, 1599, 1498, 1384, 1181, 1154, 692 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₃H₂₇N₂O₃ (MH⁺): 379.2022; found: 379.2039.

3i-*syn*: ¹**H NMR** (500 MHz, CDCl₃) δ 7.34 – 7.27 (m, 3H), 6.79 – 6.74 (m, 2H), 6.55 – 6.49 (m, 2H), 4.53 (td, *J* = 7.0, 2.9 Hz, 1H), 3.72 (s, 3H), 3.44 (dt, *J* = 8.8, 6.2 Hz, 1H), 3.12 (dd, *J* = 18.1, 4.8 Hz, 1H), 3.07 – 2.96 (m, 2H), 2.78 (dd, *J* = 18.1, 9.5 Hz, 1H), 2.35 – 2.27 (m, 4H), 2.25 (s, 3H), 2.04 – 1.95 (m, 2H), 1.89 – 1.80 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ

177.40, 176.25, 156.94, 139.01, 138.23, 136.96, 131.73, 128.69, 128.19, 126.28, 115.23, 113.44, 59.44, 55.14, 54.07, 45.55, 31.70, 29.86, 24.66, 20.26, 18.77; **IR** (neat) 2951, 1709, 1600, 1499, 1382, 1180, 1068, 694 cm⁻¹; **HRMS** (DART) m/z Calcd for $C_{23}H_{27}N_2O_3$ (MH⁺): 379.2022; found: 379.2036.

2-(1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)succinonitrile (3j)

1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine **1a** (0.2 mmol, 1.0 equiv.) was reacted with fumaronitrile **2j** (0.5 mmol, 2.5 equiv.) following the **General Procedure for B**(C_6F_5)₃-**Catalyzed Racemic Mannich Reactions** using B(C_6F_5)₃ (10 mol%) as the Lewis acid catalyst, benzene (0.4 mL) as the solvent and was carried out for 48 h at 70 °C. ¹H NMR analysis of the crude material revealed that **3j**-*anti* and **3j**-*syn* were obtained in the ratio of 1.2:1. After purification by column chromatography (hexanes: EtOAc = 3:1), **3j**-*anti* was obtained as a red oil (28.3 mg, 50%) and **3j**-*syn* was obtained as a red oil (23.6 mg, 41%).

3*j-anti*: ¹**H NMR** (500 MHz, Acetone-*d*₆) δ 6.61 (s, 2H), 3.75 (s, 3H), 3.47 (tdd, *J* = 7.6, 5.6, 1.3 Hz, 1H), 3.42 – 3.38 (m, 1H), 3.34 (ddd, *J* = 8.2, 6.9, 1.3 Hz, 1H), 3.29 (tdd, *J* = 8.3, 3.1, 1.2 Hz, 1H), 3.19 – 3.13 (m, 2H), 3.11 – 3.04 (m, 1H), 2.83 – 2.77 (m, 1H), 2.41 – 2.33 (m, 1H), 2.26 (s, 6H), 2.07 – 2.01 (m, 1H); ¹³**C NMR** (126 MHz, Acetone-*d*₆) δ 157.14, 139.18, 136.83, 118.91, 116.76, 113.54, 54.47, 53.73, 49.52, 40.88, 31.89, 29.96, 19.60, 18.07; **IR** (neat) 2958, 2917, 2839, 2190, 1601, 1485, 1468, 1321, 1275, 1193, 1154, 1066, 856 cm⁻¹; **HRMS** (DART) m/z Calcd for C₁₇H₂₂N₃O (MH⁺): 284.1763; found: 284.1762.

3j-*syn*: ¹**H NMR** (400 MHz, Acetone- d_6) δ 6.57 (s, 2H), 3.70 (s, 3H), 3.49 – 3.37 (m, 2H), 3.30 (dt, J = 8.8, 7.6 Hz, 1H), 3.25 – 3.19 (m, 2H), 3.14 – 2.99 (m, 2H), 2.80 – 2.73 (m, 1H), 2.31 – 2.24 (m, 1H), 2.23 (s, 6H), 2.00 – 1.89 (m, 1H); ¹³**C NMR** (126 MHz, Acetone- d_6) δ 157.16, 139.19, 136.80, 118.87, 116.77, 113.55, 54.47, 53.48, 49.54, 40.86, 31.87, 30.15, 19.41, 18.06; **IR** (neat) 2922, 2837, 2188, 1602, 1485, 1321, 1275, 1193, 1154, 1066, 856 cm⁻¹; **HRMS** (DART) m/z Calcd for C₁₇H₂₂N₃O (MH⁺): 284.1763; found: 284.1772.

1-(4-Methoxy-2,6-dimethylphenyl)-2-(1-nitro-2-phenylethyl)pyrrolidine (3k)

1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine **1a** (0.2 mmol, 1.0 equiv.) was reacted with (*E*)-(2-nitrovinyl)benzene **2k** (0.24 mmol, 1.2 equiv.) following the **General Procedure for B**(C_6F_5)₃-**Catalyzed Racemic Mannich Reactions** using B(C_6F_5)₃ (10 mol%) as the Lewis acid catalyst, benzene (0.4 mL) as the solvent and was carried out for 24 h at 70 °C. ¹H NMR analysis of the crude material revealed that **3k**-*anti* and **3k**-*syn* were obtained in the ratio of 1.2:1. After purification by column chromatography (hexanes: Et₂O = 15:1), **3k** was obtained as a mixture of diastereomers (59.7 mg, 84%). Further purification was carried out by PTLC using hexanes: Et₂O = 4:1 as the eluent to separate **3k**-*anti* and **3k**-*syn*.

3k-*anti*: ¹**H NMR** (500 MHz, CDCl₃) δ 7.28 (t, J = 7.3 Hz, 2H), 7.24 – 7.18 (m, 3H), 6.51 (s, 2H), 4.78 (dd, J = 12.3, 5.1 Hz, 1H), 4.67 (dd, J = 12.2, 9.9 Hz, 1H), 3.71 (s, 3H), 3.44 (td, J = 10.2, 5.1 Hz, 1H), 3.36 – 3.29 (m, 1H), 3.28 – 3.23 (m, 1H), 2.83 (dd, J = 8.2, 2.6 Hz, 2H), 2.68 (p, J = 8.7 Hz, 1H), 2.24 – 2.17 (m, 7H), 1.87 (p, J = 9.3 Hz, 1H); ¹³**C NMR** (151 MHz, CDCl₃) δ 156.75, 139.42, 139.23, 137.31, 128.81, 127.71, 127.47, 113.50, 80.12, 55.42, 55.21, 50.46, 49.04, 43.13, 31.42, 18.81; **IR** (neat) 2918, 2850, 1552, 1485, 1378, 1154, 1060, 701 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₁H₂₇N₂O₃ (MH⁺): 355.2022; found: 355.2027.

3k-*syn*: ¹**H NMR** (500 MHz, CDCl₃) δ 7.35 (t, J = 7.5 Hz, 2H), 7.30 – 7.24 (m, 3H), 6.58 (s, 2H), 4.67 (t, J = 11.2 Hz, 1H), 4.58 (dd, J = 12.1, 5.0 Hz, 1H), 3.76 (s, 3H), 3.50 – 3.42 (m, 1H), 3.33 (t, J = 8.5 Hz, 1H), 3.20 – 3.09 (m, 3H), 2.68 – 2.58 (m, 1H), 2.24 (s, 6H), 1.74 (d, J = 8.1 Hz, 1H), 1.63 (t, J = 10.3 Hz, 1H); ¹³C **NMR** (151 MHz, CDCl₃) δ 156.87, 139.55, 139.23, 137.28, 128.88, 127.74 – 127.71 (m), 127.68, 113.58, 80.09, 55.24, 54.86, 49.70, 48.87, 43.16, 31.80, 18.81; **IR** (neat) 2920, 2851, 1552, 1485, 1378, 1278, 1154, 1029, 858 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₁H₂₇N₂O₃ (MH⁺): 355.2022; found: 355.2017.

Methyl 2-(1-(4-methoxy-2,6-dimethylphenyl)-4,4-dimethylpyrrolidin-2-yl)propanoate (3l)

1-(4-Methoxy-2,6-dimethylphenyl)-3,3-dimethylpyrrolidine **11** (0.2 mmol, 1.0 equiv.) was reacted with methyl acrylate **2a** (0.24 mmol, 1.2 equiv.) following the **General Procedure for B**(C_6F_5)_3-Catalyzed Racemic Mannich Reactions using B(C_6F_5)_3 (5.0 mol%) as the Lewis acid catalyst, benzene (0.2 mL) as the solvent and was carried out for 12 h at 22 °C. ¹H NMR analysis of the crude material revealed that **31**-*anti* and **31**-*syn* were obtained in the ratio of 3.0:1. After purification by column chromatography (hexanes: Et₂O = 65:1), **31**-*anti* was obtained as a white solid (44.9 mg, 70%), **31**-*syn* was obtained as a colorless oil (15.6 mg, 24%).

31-*anti*: ¹**H NMR** (600 MHz, CDCl₃) δ 6.55 (d, J = 3.0 Hz, 1H), 6.48 (d, J = 3.0 Hz, 1H), 4.05 (q, J = 7.9, 7.4 Hz, 1H), 3.73 (d, J = 1.0 Hz, 3H), 3.11 (s, 3H), 3.08 (d, J = 8.3 Hz, 1H), 2.82 (d, J = 8.3 Hz, 1H), 2.36 (p, J = 6.9 Hz, 1H), 2.29 (s, 3H), 2.29 (s, 3H), 1.81 (dd, J = 12.2, 6.8 Hz, 1H), 1.52 (dd, J = 12.2, 8.0 Hz, 1H), 1.20 (s, 3H), 1.15 (s, 3H), 1.02 (d, J = 7.0 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 176.13, 156.49, 140.51, 139.29, 135.67, 114.06, 112.99, 65.99, 61.88, 55.13, 50.99, 45.26, 44.71, 36.29, 29.42, 28.57, 19.67, 19.42, 14.69; **IR** (neat) 2950, 1734, 1602, 1482, 1465, 1269, 1193, 1154, 854 cm⁻¹; **HRMS** (DART) m/z Calcd for C₁₉H₃₀NO₃ (MH⁺): 320.2226; found: 320.2241.

31-syn: ¹**H** NMR (600 MHz, CDCl₃) δ 6.57 (d, J = 3.0 Hz, 1H), 6.50 (d, J = 3.0 Hz, 1H), 3.90 (q, J = 7.1 Hz, 1H), 3.75 (s, 3H), 3.57 (s, 3H), 3.03 (d, J = 8.4 Hz, 1H), 2.82 (d, J = 8.4 Hz, 1H), 2.54 (p, J = 7.0 Hz, 1H), 2.28 (s, 3H), 2.27 (s, 3H), 1.88 (dd, J = 12.6, 7.7 Hz, 1H), 1.67 (dd, J = 12.6, 6.3 Hz, 1H), 1.22 (s, 3H), 1.12 (s, 3H), 0.87 (dd, J = 6.9, 0.8 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.99, 156.37, 139.80, 137.76, 137.31, 114.38, 113.25, 66.51,

63.09, 55.12, 51.18, 46.03, 44.69, 36.78, 29.18, 28.44, 19.80, 19.35, 15.36; **IR** (neat) 2951, 1735, 1603, 1483, 1465, 1256, 1192, 1155, 1069, 855 cm⁻¹; **HRMS** (DART) m/z Calcd for $C_{19}H_{30}NO_3$ (MH⁺): 320.2226; found: 320.2240.

Methyl 2-(4-((*tert*-butyldimethylsilyl)oxy)-1-(4-methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propanoate (3m)

3-((*tert*-Butyldimethylsilyl)oxy)-1-(4-methoxy-2,6-dimethylphenyl)pyrrolidine **1m** (0.2 mmol, 1.0 equiv.) was reacted with methyl acrylate **2a** (0.24 mmol, 1.2 equiv.) following the **General Procedure for B**(C_6F_5)₃-Catalyzed Racemic Mannich Reactions using B(C_6F_5)₃ (5.0 mol%) as the Lewis acid catalyst, benzene (0.2 mL) as the solvent and was carried out for 12 h at 22 °C. ¹H NMR analysis of the crude material revealed that **3m**-*anti*, **3m**-*anti*' and **3m**-*syn*, **3m**-*syn*' were obtained in the ratio of 6.9:5.9:3.0:1. After purification by column chromatography (hexanes: $Et_2O = 13:1$), **3m** was obtained as a mixture of diastereomers (69 mg, 82%). Further purification was carried out by PTLC to separate **3m**-*anti* and **3m**-*syn*. The relative configuration of the pyrrolidine substituents was assigned *anti* based on NOESY experiments (See SI Section 8 for NOE spectra).

3m-*anti*: ¹**H NMR** (600 MHz, CDCl₃) δ 6.56 (d, J = 3.0 Hz, 1H), 6.53 (d, J = 3.1 Hz, 1H), 4.41 (t, J = 4.7 Hz, 1H), 4.09 – 4.04 (m, 1H), 3.74 (s, 3H), 3.55 (dd, J = 9.2, 5.2 Hz, 1H), 3.47 (s, 3H), 2.81 (dd, J = 9.2, 3.6 Hz, 1H), 2.42 (qd, J = 6.9, 5.1 Hz, 1H), 2.33 (s, 3H), 2.23 (s, 3H), 2.06 (ddd, J = 12.6, 7.0, 5.6 Hz, 1H), 1.98 (ddd, J = 12.1, 7.1, 4.3 Hz, 1H), 0.97 (d, J = 7.0 Hz, 3H), 0.89 (s, 9H), 0.08 (s, 3H), 0.04 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 175.69, 156.49, 140.12, 137.95, 137.61, 114.40, 112.91, 70.94, 61.96, 61.80, 55.14, 51.11, 44.49, 39.07, 25.84, 19.25, 19.06, 18.08, 14.14, -4.75, -4.81.; IR (neat) 2951, 2929, 2856, 1735, 1603, 1464, 1318, 1253, 1154, 1068, 1024, 832, 774 cm⁻¹; HRMS (DART) m/z Calcd for C₂₃H₄₀NO₄Si (MH⁺): 422.2727; found: 422.2724.

3m-*syn*: ¹**H NMR** (600 MHz, CDCl₃) δ 6.54 (s, 1H), 6.52 (s, 1H), 4.38 (dp, J = 5.1, 2.6 Hz, 1H), 4.14 (q, J = 7.3 Hz, 1H), 3.73 (s, 3H), 3.60 (dd, J = 9.5, 4.9 Hz, 1H), 3.18 (s, 3H), 2.83 (d, J = 9.5 Hz, 1H), 2.34 (s, 3H), 2.32 – 2.27 (m, 1H), 2.25 (s, 3H), 1.97 (ddd, J = 12.6, 6.3, 2.8 Hz, 1H), 1.78 – 1.72 (m, 1H), 1.06 (d, J = 7.0 Hz, 3H), 0.89 (s, 9H), 0.08 (s, 3H), 0.04 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.00, 156.64, 140.64, 139.64, 136.23, 114.17, 112.69, 70.84, 62.00, 60.91, 55.13, 51.04, 45.25, 39.67, 25.80, 19.23, 19.02, 18.04, 14.17, -4.77, -4.81; **IR** (neat) 2952, 2928, 2856, 1737, 1604, 1465, 1319, 1258, 1155, 1069, 1028, 853, 775 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₃H₄₀NO₄Si (MH⁺): 422.2727; found: 422.2741.

Methyl 2-(1-(4-methoxy-2,6-dimethylphenyl)piperidin-2-yl)propanoate (3n)

1-(4-Methoxy-2,6-dimethylphenyl)piperidine **1n** (0.2 mmol, 1.0 equiv.) was reacted with methyl acrylate **2a** (0.24 mmol, 1.2 equiv.) following the **General Procedure for B**(C_6F_5)₃-**Catalyzed Racemic Mannich Reactions** using B(C_6F_5)₃ (5.0 mol%) as the Lewis acid catalyst, benzene (0.2 mL) as the solvent and was carried out for 12 h at 22 °C. ¹H NMR analysis of the crude material revealed that **3n**-*anti* and **3n**-*syn* were obtained in the ratio of 10:1.0. After purification by column chromatography (hexanes: Et₂O = 19:1), **3n** was obtained as a mixture of diastereomers (39 mg, 63%). Further purification was carried out by PTLC using DCM: hexanes = 3:2 as the eluent to separate **3n**-*anti* and **3n**-*syn*.

3n-*anti*: ¹**H NMR** (600 MHz, CDCl₃) δ 6.60 (d, J = 3.0 Hz, 1H), 6.43 (d, J = 3.0 Hz, 1H), 3.73 (s, 3H), 3.67 (dt, J = 9.7, 3.3 Hz, 1H), 3.60 (s, 3H), 3.10 – 3.04 (m, 1H), 2.84 – 2.79 (m, 1H), 2.44 (qd, J = 7.0, 3.6 Hz, 1H), 2.37 (s, 3H), 2.30 (s, 3H), 1.89 – 1.83 (m, 1H), 1.62 – 1.56 (m, 2H), 1.48 – 1.34 (m, 3H), 0.86 (d, J = 7.0 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 175.75, 156.37, 139.40, 139.16, 138.38, 114.25, 113.48, 59.55, 55.01, 52.36, 51.48, 41.05, 27.32, 26.71, 24.93, 20.00, 19.10, 9.73; **IR** (neat) 2922, 2851, 1736, 1602, 1481, 1464, 1211, 1169, 1151, 1111, 1069, 855 cm⁻¹; **HRMS** (DART) m/z Calcd for C₁₈H₂₈NO₃ (MH⁺): 306.2069; found: 306.2078.

3n-*syn*: ¹**H NMR** (600 MHz, CDCl₃) δ 6.60 (d, J = 3.0 Hz, 1H), 6.44 (d, J = 3.0 Hz, 1H), 3.75 (s, 3H), 3.49 (s, 3H), 3.23 (dt, J = 10.6, 2.9 Hz, 1H), 3.00 (td, J = 11.7, 3.1 Hz, 1H), 2.84 (dd, J = 11.9, 3.8 Hz, 1H), 2.53 (qd, J = 7.3, 3.3 Hz, 1H), 2.26 (s, 3H), 2.22 (s, 3H), 1.89 (dt, J = 12.8, 4.1 Hz, 1H), 1.84 – 1.79 (m, 1H), 1.66 – 1.50 (m, 3H), 1.33 (tdt, J = 12.8, 9.0, 3.9 Hz, 1H), 1.08 (d, J = 7.2 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 175.16, 156.35, 140.27,

140.09, 137.64, 113.81, 113.39, 62.81, 55.08, 52.67, 50.96, 40.51, 27.88, 26.72, 25.21, 20.01, 19.31, 15.72; **HRMS** (DART) m/z Calcd for C₁₈H₂₈NO₃ (MH⁺): 306.2069; found: 306.207.

Methyl 2-(1-(4-methoxy-2,6-dimethylphenyl)azepan-2-yl)propanoate (30)

1-(4-Methoxy-2,6-dimethylphenyl)azepane **10** (0.2 mmol, 1.0 equiv.) was reacted with methyl acrylate **2a** (0.24 mmol, 1.2 equiv.) following the **General Procedure for B**(C_6F_5)₃-**Catalyzed Racemic Mannich Reactions** using B(C_6F_5)₃ (5.0 mol%) as the Lewis acid catalyst, benzene (0.2 mL) as the solvent and was carried out for 12 h at 22 °C. ¹H NMR analysis of the crude material revealed that **30**-*anti* and **30**-*syn* were obtained in the ratio of 2.0:1.0. After purification by column chromatography (hexanes: Et₂O = 32:1), **30** was obtained as a mixture of diastereomers (42 mg, 66%). Further purification was carried out by PTLC using DCM: hexanes = 3:2 as the eluent to separate **30**-*anti* and **30**-*syn*.

3o-*anti*: ¹**H NMR** (500 MHz, CDCl₃) δ 6.59 – 6.55 (m, 2H), 3.79 (dt, J = 10.0, 4.3 Hz, 1H), 3.74 (s, 3H), 3.46 (s, 3H), 3.31 (ddd, J = 14.8, 9.9, 1.4 Hz, 1H), 3.15 – 3.07 (m, 1H), 2.45 (qd, J = 7.0, 4.1 Hz, 1H), 2.39 (s, 3H), 2.26 (s, 3H), 1.94 – 1.86 (m, 1H), 1.84 – 1.61 (m, 5H), 1.51 (dtt, J = 13.8, 9.2, 2.1 Hz, 1H), 1.44 – 1.33 (m, 1H), 1.13 (d, J = 7.0 Hz, 3H); ¹³C **NMR** (126 MHz, CDCl₃) δ 176.17, 155.89, 141.39, 138.66, 137.90, 114.30, 113.83, 62.11, 55.16, 53.14, 51.31, 43.91, 32.32, 30.01, 29.34, 26.25, 20.43, 19.96, 12.12; **IR** (neat) 2923, 2849, 1731, 1602, 1481, 1433, 1309, 1253, 1196, 1162, 1069, 853 cm⁻¹; **HRMS** (DART) m/z Calcd for C₁₉H₃₀NO₃ (MH⁺): 320.2226; found: 320.2231.

3o-*syn*: ¹**H NMR** (600 MHz, CDCl₃) δ 6.57 (dd, J = 22.4, 3.1 Hz, 2H), 3.74 (s, 3H), 3.50 (s, 3H), 3.46 – 3.38 (m, 2H), 3.01 (dd, J = 15.1, 5.6 Hz, 1H), 2.50 (qd, J = 7.1, 3.2 Hz, 1H), 2.38 (s, 3H), 2.29 (s, 3H), 2.01 – 1.91 (m, 2H), 1.86 – 1.68 (m, 3H), 1.58 (dt, J = 13.9, 4.7 Hz, 1H), 1.48 – 1.40 (m, 1H), 1.33 (qt, J = 12.1, 3.9 Hz, 1H), 0.99 (d, J = 7.1 Hz, 3H); ¹³C **NMR** (151 MHz, CDCl₃) δ 176.02, 155.64, 141.55, 138.84, 137.01, 114.15, 113.98, 64.74, 55.13, 52.06, 50.99, 44.29, 32.46, 30.80, 30.13, 26.62, 20.59, 19.78, 14.94; **IR** (neat) 2925, 2851, 1732,

1602, 1482, 1411, 1308, 1254, 1196, 1164, 1070, 853 cm⁻¹; **HRMS** (DART) m/z Calcd for $C_{19}H_{30}NO_3$ (MH⁺): 320.2226; found: 320.2211.

3-(((4-Methoxy-2,6-dimethylphenyl)(methyl)amino)methyl)-1-phenylpyrrolidine-2,5dione (3p-*mono*)

4-Methoxy-*N*,*N*,2,6-tetramethylaniline **1p** (0.2 mmol, 1.0 equiv.) was reacted with 1-phenyl-1*H*-pyrrole-2,5-dione **2i** (0.24 mmol, 1.2 equiv.) following the **General Procedure for B**(C_6F_5)₃-**Catalyzed Racemic Mannich Reactions** using B(C_6F_5)₃ (10 mol%) as the Lewis acid catalyst, benzene (0.2 mL) as the solvent and was carried out for 24 h at 70 °C. After purification by column chromatography (hexanes: EtOAc = 4:1), **3p-mono** was obtained as a white solid (44 mg, 62%), **3p-***di* was obtained as a white solid (14 mg, 27%).

3p-*mono*: ¹**H NMR** (600 MHz, CDCl₃) δ 7.46 (t, J = 7.7 Hz, 2H), 7.40 – 7.36 (m, 1H), 7.26 – 7.23 (m, 2H), 6.56 (s, 2H), 3.75 (s, 3H), 3.69 (dd, J = 13.2, 4.1 Hz, 1H), 3.36 (dd, J = 13.2, 8.4 Hz, 1H), 3.09 (tt, J = 8.8, 4.5 Hz, 1H), 2.94 – 2.81 (m, 2H), 2.78 (s, 3H), 2.31 (s, 3H), 2.29 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 180.55, 178.67, 159.44, 144.29, 140.69, 140.49, 134.57, 131.80, 131.20, 129.04, 116.79, 116.71, 59.99, 57.88, 44.59, 43.98, 36.31, 22.11, 21.98; **IR** (neat) 2929, 2849, 1710, 1599, 1499, 1384, 1177, 1063, 756, 696 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₁H₂₅N₂O₃ (MH⁺): 353.1865; found: 353.187.

3,4-Bis(((4-methoxy-2,6-dimethylphenyl)(methyl)amino)methyl)-1-phenylpyrrolidine-

2,5-dione (3p-*di***):** ¹**H NMR** (600 MHz, CDCl₃) δ 7.48 – 7.44 (m, 2H), 7.40 – 7.36 (m, 1H), 7.22 (dt, J = 8.4, 1.2 Hz, 2H), 6.51 (d, J = 3.0 Hz, 2H), 6.48 (d, J = 3.0 Hz, 2H), 3.73 (s, 6H), 3.56 (dd, J = 13.5, 5.3 Hz, 2H), 3.40 (dd, J = 13.5, 3.5 Hz, 2H), 3.01 (t, J = 4.1 Hz, 2H), 2.64 (s, 6H), 2.24 (s, 6H), 2.21 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 180.99, 159.25, 145.08, 140.33, 139.93, 134.80, 131.75, 131.08, 128.98, 116.98, 116.52, 59.49, 57.81, 48.28, 45.00,

22.20, 21.93; **IR** (neat) 2960, 2921, 1710, 1600, 1485, 1368, 1315, 1191, 1154, 1063 cm⁻¹; **HRMS** (DART) m/z Calcd for $C_{32}H_{40}N_3O_4$ (MH⁺): 530.3019; found: 530.3021.

Benzyl 2-methyl-3-(2,2,6,6-tetramethylpiperidin-1-yl)propanoate (4a)

1,2,2,6,6-Pentamethylpiperidine **1q** (0.2 mmol, 1.0 equiv.) was reacted with benzyl acrylate **2c** (0.24 mmol, 1.2 equiv.) following the **General Procedure for B**(C_6F_5)₃-Catalyzed **Racemic Mannich Reactions** using B(C_6F_5)₃ (10 mol%) as the Lewis acid catalyst, benzene (0.4 mL) as the solvent and was carried out for 12 h at 70 °C. After purification by column chromatography (hexanes: EtOAc = 10:1), **4a** was obtained as a colorless oil (57.8 mg, 91%).

¹**H NMR** (600 MHz, CDCl₃) δ 7.40 – 7.28 (m, 5H), 5.16 – 5.04 (m, 2H), 2.89 (dd, J = 15.4, 7.5 Hz, 1H), 2.64 (td, J = 7.5, 5.8 Hz, 1H), 2.48 (dd, J = 15.4, 5.6 Hz, 1H), 1.51 (s, 2H), 1.38 (dd, J = 6.7, 4.4 Hz, 4H), 1.13 (d, J = 7.1 Hz, 3H), 1.01 (s, 6H), 0.95 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ177.08, 136.33, 128.44, 128.00, 127.95, 65.78, 54.62, 48.86, 44.16, 41.29, 17.81, 16.08; **IR** (neat) 2965, 2927, 1733, 1456, 1379, 1364, 1256, 1164, 696 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₀H₃₂NO₂ (MH⁺): 318.2433; found: 318.2443.

Benzyl 3-(*tert*-butyl(isopropyl)amino)-2-methylpropanoate (4b)

N-Isopropyl-*N*,2-dimethylpropan-2-amine **1r** was reacted with benzyl acrylate **2c** (0.24 mmol, 1.2 equiv.) following the **General Procedure for B**(C_6F_5)₃-Catalyzed Racemic Mannich **Reactions** using B(C_6F_5)₃ (10 mol%) as the Lewis acid catalyst, benzene (0.4 mL) as the solvent and was carried out for 12 h at 70 °C. After purification by column chromatography (hexanes: EtOAc = 5:1), **4b** was obtained as a colorless oil (49.4 mg, 85%).

¹**H NMR** (500 MHz, Acetone-*d*₆) δ 7.44 – 7.29 (m, 5H), 5.18 – 5.06 (m, 2H), 3.29 (hept, J = 6.8 Hz, 1H), 2.90 (dd, J = 14.3, 8.2 Hz, 1H), 2.65 (dp, J = 8.1, 6.8 Hz, 1H), 2.56 (dd, J = 14.3, 6.4 Hz, 1H), 1.09 (d, J = 6.9 Hz,3H), 1.08 (s, 9H), 1.02 (d, J = 6.7 Hz, 3H), 0.97 (d, J = 6.8 Hz, 3H); ¹³**C NMR** (126 MHz, Acetone-*d*₆) δ 175.66, 136.88, 128.31, 127.85, 127.77, 65.17, 55.37, 46.88, 46.39, 42.76, 27.98, 22.16, 14.76; **IR** (neat) 2970, 2875, 1732, 1455, 1380, 1360, 1246, 1210, 1155, 748, 734 cm⁻¹; **HRMS** (DART) m/z Calcd for C₁₈H₃₀NO₂ (MH⁺): 292.2277; found: 292.2281.

Benzyl 3-((1-((*tert*-butyldimethylsilyl)oxy)-2-methylpropan-2-yl)(isopropyl)amino)-2methylpropanoate (4c)

1-((*tert*-Butyldimethylsilyl)oxy)-*N*-isopropyl-*N*,2-dimethylpropan-2-amine **1s** (0.2 mmol, 1.0 equiv.) was reacted with benzyl acrylate **2c** (0.24 mmol, 1.2 equiv.) following the **General Procedure for B**(C_6F_5)₃-Catalyzed Racemic Mannich Reactions using B(C_6F_5)₃ (10 mol%) as the Lewis acid catalyst, benzene (0.2 mL) as the solvent and was carried out for 12 h at 22 °C.. After purification by column chromatography (hexanes: Et₃N = 49:1), **4c** was obtained as a colorless oil (76.6 mg, 91%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.37 – 7.26 (m, 5H), 5.14 – 5.05 (m, 2H), 3.39 – 3.33 (m, 2H), 3.25 (qd, J = 8.2, 7.5, 5.3 Hz, 1H), 3.04 – 2.97 (m, 1H), 2.70 – 2.59 (m, 2H), 1.09 (dt, J = 6.7, 1.6 Hz, 3H), 1.01 (d, J = 9.7 Hz, 9H), 0.95 (dt, J = 6.7, 1.5 Hz, 3H), 0.87 (t, J = 1.5 Hz, 9H); ¹³**C NMR** (126 MHz, CDCl₃) δ 176.71, 136.41, 128.41, 127.99, 127.91, 69.57, 65.71, 59.29, 47.35, 46.42, 42.93, 25.85, 24.32, 24.28, 18.17, 15.22, -5.57; **IR** (neat) 2956, 2929, 2856, 1734, 1461, 1250, 1156, 1085, 834, 773, 667 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₄H₄₄NO₃Si (MH⁺): 422.309; found: 422.3102.

Benzyl 3-(bis((*R***)-1-phenylethyl)amino)-2-methylpropanoate (4d)**

(*R*)-*N*-Methyl-1-phenyl-*N*-((*R*)-1-phenylethyl)ethan-1-amine **1t** (0.2 mmol, 1 equiv.) was reacted with benzyl acrylate **2c** (0.24 mmol, 1.2 equiv.) following the **General Procedure for B**(C_6F_5)_3-Catalyzed Racemic Mannich Reactions using B(C_6F_5)_3 (10 mol%) as the Lewis acid catalyst, DCM (0.4 mL) as the solvent and was carried out for 12 h at 70 °C. ¹H NMR analysis of the crude material revealed that **4d**-(*R*,*S*) and **4d**-(*R*,*R*) were obtained in the ratio of 1.5:1.0. After purification by column chromatography (hexanes: Et₂O = 30:1), **4d** was obtained as a colorless oil (72.5 mg, 91%). Further purification was carried out by PTLC using Et₂O: hexanes = 1:9 as the eluent to separate **4d**-(*R*,*S*) and **4d**-(*R*,*R*).

4d-(*R***,***S***):** ¹**H NMR** (500 MHz, CDCl₃) δ 7.41 – 7.31 (m, 4H), 7.28 – 7.18 (m, 6H), 5.19 – 5.07 (m, 2H), 3.84 (q, *J* = 6.9 Hz, 2H), 3.10 (dd, *J* = 14.0, 8.3 Hz, 1H), 2.52 (q, *J* = 7.1 Hz, 1H), 2.36 (dd, *J* = 14.0, 6.2 Hz, 1H), 1.33 (d, *J* = 6.9 Hz, 6H), 0.90 (d, *J* = 6.9 Hz, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 176.41, 144.40, 136.23, 128.50, 128.14, 128.06, 127.98, 127.93, 126.61, 65.98, 58.44, 50.11, 41.61, 18.90, 15.17; IR (neat) 2971, 1731, 1492, 1452, 1174, 1144, 748, 695 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₇H₃₂NO₂ (MH⁺): 402.2433; found: 402.2451.

4d-(*R*,*R*): ¹**H** NMR (500 MHz, CDCl₃) δ 7.33 (dd, *J* = 12.7, 6.9 Hz, 2H), 7.28 – 7.23 (m, 6H), 7.19 (q, *J* = 4.9, 4.5 Hz, 2H), 4.97 (d, *J* = 12.5 Hz, 1H), 4.83 (d, *J* = 12.5 Hz, 1H), 3.94 (q, *J* = 6.9 Hz, 2H), 2.80 (qd, *J* = 13.8, 7.2 Hz, 2H), 2.62 (h, *J* = 7.0 Hz, 1H), 1.37 (d, *J* = 6.8 Hz, 6H), 1.13 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 175.77, 144.39, 136.28, 128.43, 127.94, 127.92, 126.55, 65.83, 57.66, 49.72, 40.68, 18.04, 15.43; **IR** (neat) 2970, 1732, 1492,

1452, 1356, 1218, 1177, 751, 698 cm⁻¹; **HRMS** (DART) m/z Calcd for $C_{27}H_{32}NO_2$ (MH⁺): 402.2433; found: 402.2442.

The minor diastereomer was obtained from 3 reactions following the General Procedure using B(C₆F₅)₃ (10 mol%), DCM (0.6 mL) as the solvent and was carried out for 12 h at 70 °C on 0.6 mmol scale. The derivatization of the minor diastereomer was performed based on the literature previously reported.¹⁸ The minor diastereomer (190 mg, 0.47 mmol) was dissolved in a solution of 4.4% formic acid in MeOH (9.4 mL), whereupon Pd-C (10 mol%, 162 mg) was added. The reaction mixture was then heated at 40 °C for 2 h. Upon cooling, the suspension was filtered through a pad of Celite and the mixture was concentrated to remove the solvent and volatile side products to obtain the product as a colorless oil (48 mg, >95% yield). $[\alpha]^{25}{}_{D} = -4.8^{\circ}$ (c = 1.0, H₂O). Based on the observed optical rotation value, the absolute configuration of the minor diastereomer was assigned as **4d-(***R***,***R*).¹⁸

Methyl 3-(bis((R)-1-phenylethyl)amino)-2,2-dimethylpropanoate (4e)

(*R*)-*N*-Methyl-1-phenyl-*N*-((*R*)-1-phenylethyl)ethan-1-amine **1t** (0.2 mmol, 1.0 equiv.) was reacted with methyl methacrylate **2g** (0.5 mmol, 2.5 equiv.) following the **General Procedure for B**(C_6F_5)₃-Catalyzed Racemic Mannich Reactions using B(C_6F_5)₃ (10 mol%) as the Lewis acid catalyst, DCM (0.4 mL) as the solvent and was carried out for 12 h

at 70 °C. After purification by column chromatography (hexanes: $Et_2O = 50:1$), **4e** was obtained as a colorless oil (64.2 mg, 95%).

¹**H** NMR (500 MHz, CDCl₃) δ 7.28 – 7.15 (m, 10H), 3.89 (q, *J* = 6.9 Hz, 2H), 3.57 (s, 3H), 3.17 (d, *J* = 14.0 Hz, 1H), 2.47 (d, *J* = 14.0 Hz, 1H), 1.43 (d, *J* = 6.9 Hz, 6H), 1.03 (s, 3H), 0.81 (s, 3H); ¹³**C** NMR (126 MHz, CDCl₃) δ 178.87, 144.42, 128.29, 127.70, 126.46, 55.57, 54.17, 51.58, 42.75, 26.08, 22.24, 14.80; **IR** (neat) 2970, 2932, 1732, 1493, 1452, 1178, 1148, 749, 698 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₂H₃₀NO₂ (MH⁺): 340.2277; found: 340.2277.

^a Conditions: **1** (0.2 mmol), **2c** (0.24 mmol), benzene (0.4 mL), under N₂, 70 °C, 12 h. ^b The yield was determined by ¹H NMR analysis of the unpurified product mixture using mesitylene as the internal standard.

3-(2-(1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propanoyl)oxazolidin-2-one (3q) 1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine **1a** was reacted with 3-acryloyloxazolidin-2one **2q** following the **General Procedure for Stereoselective Mannich Reactions**. The ¹H NMR analysis of the crude material revealed **3q** was obtained in >95% yield as a mixture of diastereomers; the ratio of **3q-***anti* and **3q-***syn* was determined to be 1.6:1. $[\alpha]^{25}_{D} = -18.2^{\circ}$ (c = 1.0, EtOH). The absolute configuration of **3q-***anti* was assigned in analogy (see SI Section 4).

¹**H NMR** (600 MHz, CDCl₃) δ 6.55 (d, J = 2.9 Hz, 1H), 6.49 (d, J = 3.0 Hz, 1H), 4.20 (td, J = 9.0, 4.8 Hz, 1H), 4.04 – 3.99 (m, 2H), 3.73 (s, 3H), 3.68 (dd, J = 8.0, 6.7 Hz, 1H), 3.60 (dt, J = 10.5, 9.1 Hz, 1H), 3.32 (q, J = 7.5 Hz, 1H), 3.13 (ddd, J = 10.4, 9.2, 4.8 Hz, 1H), 2.99 (td, J = 8.4, 4.6 Hz, 1H), 2.27 (s, 3H), 2.22 (s, 3H), 2.14 – 2.08 (m, 1H), 2.01 – 1.94 (m, 1H), 1.93 – 1.86 (m, 1H), 1.77 – 1.71 (m, 1H), 1.12 (d, J = 6.9 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 176.38, 156.66, 152.99, 141.13, 140.81, 136.78, 113.74, 112.42, 62.76, 61.67, 55.16, 51.74, 42.88, 42.58, 30.84, 24.38, 19.40, 19.14, 15.56; **IR** (neat) 2962, 2837, 1775, 1695, 1601, 1478, 1384, 1267, 1221, 1194, 1154, 1066 cm⁻¹; **HRMS** (DART) m/z Calcd for C₁₉H₂₇N₂O₄ (MH⁺): 347.1971; found: 347.1964. **HPLC** (Chiralpak IA; 10%/ 90% isopropanol/ hexanes, 1.0 mL/min; **3q-anti:** tr = 6.8 min (major), 6.2 min (minor); 80:20 er; **3q-syn**: 8.4 min (major), 7.6 min (minor) 68:32 er).

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	6.220	BV R	0.1227	2598.01807	317.40524	50.1526
2	6.790	VB	0.1303	2582.20337	300.33380	49.8474

```
Acq. Operator: SYSTEMSeq. Line : 2Acq. Instrument: Wasa_LC1Location : 81Injection Date: 12/4/2017 3:14:54 PMInj : 1Method: C:\Chem32\1\Data\JOE 2017-12-04 14-42-57\column110% IPA 90% hexane 30min-1.omL.M (Sequence Method).omL.M (Sequence Method)Last changed: 12/4/2017 2:42:59 PM by SYSTEMMethod Info: Washing 30min-10% iPrOH 90% hexane-1.0mL
```

Additional Info : Peak(s) manually integrated

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	6.445	VB R	0.1153	1247.11548	163.76060	19.9504
2	6.996	BV R	0.1234	5003.96973	619.55853	80.0496

Acq. Operator	:	SYSTEM	Seq. Li	ne	:	2				
			Locati	on	:	11				
Injection Date	:	6/17/2017 6:58:53 PM	I	nj	:	1				
Acq. Method	:	column1 10% IPA 90% hexane 60mi	in-1.0mL	.М						
Analysis Method	:	C:\Chem32\1\Data\JOE 2017-06-17	7 18-41-	04\	col	umn1 10	0% IPA	90%	hexane	60min-1
		.0mL.M (Sequence Method)								
Last changed	:	6/17/2017 6:41:05 PM by SYSTEM								
Method Info	:	Washing 60min-10% iPrOH 90% her	ane-1.0	mL						

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	7.616	MM	0.1688	602.57312	59.48536	49.7443
2	8.360	MM	0.1794	608.76910	56.56682	50.2557

```
Acq. Operator : SYSTEM
                                                   Seq. Line : 2
                                                    Location : 81
Acq. Instrument : Wasa_LC1
                                                         Inj: 1
Injection Date : 12/4/2017 3:14:54 PM
                                                  Inj Volume : 4.000 \mu l
Method
                 : C:\Chem32\1\Data\JOE 2017-12-04 14-42-57\column1 10% IPA 90% hexane 30min-1
                   .0mL.M (Sequence Method)
Last changed
                 : 12/4/2017 2:42:59 PM by SYSTEM
Method Info
                : Washing 30min-10% iPrOH 90% hexane-1.0mL
       DAD1 A, Sig=254,4 Ref=360,100 (JOE 2017-12-04 14-42-57\081-0201.D)
   mAU _
   500 -
```


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	7.897	BB	0.1432	1078.82910	115.25144	31.6807
2	8.560	BB	0.1625	2326.48999	221.55330	68.3193

3-(2-(1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propanoyl)-4,4-

dimethyloxazolidin-2-one (3r)

1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine **1a** was reacted with 3-acryloyl-4,4dimethyloxazolidin-2-one **2r** following the **General Procedure for Stereoselective Mannich Reactions**. The ¹H NMR analysis of the crude material revealed **3r** was obtained in 88% yield as a mixture of diastereomers; the ratio of **3r**-*anti* and **3r**-*syn* was determined to be $4.3:1. [\alpha]^{25}{}_{D} = -31.1^{\circ}$ (c = 1.0, EtOH). The absolute configuration of **3r**-*anti* was assigned as described in SI Section 4.

¹**H NMR** (500 MHz, CDCl₃) δ 6.53 – 6.50 (m, 2H), 4.02 (q, J = 6.7 Hz, 1H), 3.84 (d, J = 8.3 Hz, 1H), 3.74 (d, J = 8.4 Hz, 1H), 3.73 – 3.71 (m, 4H), 3.30 (ddd, J = 8.4, 7.2, 5.6 Hz, 1H), 2.97 (td, J = 7.9, 6.1 Hz, 1H), 2.26 (s, 3H), 2.24 (s, 3H), 2.10 (dtd, J = 11.8, 7.0, 5.9 Hz, 1H), 2.01 – 1.88 (m, 2H), 1.87 – 1.80 (m, 1H), 1.37 (s, 3H), 1.12 (d, J = 7.0 Hz, 3H), 1.10 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 177.09, 156.68, 153.51, 140.56, 139.49, 137.55, 114.39, 112.82, 74.69, 61.81, 55.13, 53.97, 52.52, 44.23, 29.90, 25.05, 24.43, 24.13, 19.35, 14.97; **IR** (neat) 2963, 2836, 1773, 1698, 1602, 1481, 1376, 1303, 1176, 1154, 1071, 765 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₁H₃₁N₂O₄ (MH⁺): 375.2284; found: 375.2292. **HPLC** (Chiralpak IC; 2.5%/ 97.5% isopropanol/ hexanes, 0.5 mL/min; **3r**-*anti*: tr = 25.1 min (major), 19.3 min (minor); 97:3 er; **3r**-*syn*: 22.1 min (major), 20.9 min (minor) 98:2 er).

Seq. Line : Acq. Operator : SYSTEM 2 Acq. Instrument : Wasa_LC1 Location : 1 Injection Date : 8/7/2017 11:53:09 PM Inj : 1 Inj Volume : 4.000 µl Method : C:\Chem32\1\Data\JOE 2017-08-07 23-36-08\column1 2.5% IPA 97.5% hex 40min-0 .5mL.M (Sequence Method) : 8/7/2017 11:36:10 PM by SYSTEM Last changed Method Info : Washing 40min-2.5% iPrOH 97.5% hexane-0.5mL

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	19.268	BB	0.3750	1255.30591	52.11531	50.1904
2	25.068	BB	0.5073	1245.78149	37.91677	49.8096

```
Acq. Operator:SYSTEMSeq. Line :4Acq. Instrument:Wasa_LC1Location :12Injection Date:8/9/2017 10:38:27 PMInj :1Method:::Inj Volume :4.000 µlMethod::::Last changed:8/9/2017 9:23:43 PM by SYSTEMMethod Info:Washing 40min-2.5% iPrOH 97.5% hexane-0.5mL
```


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	17.586	BB	0.3424	139.11646	6.28083	2.8199
2	23.353	BB	0.4809	4794.23730	153.27171	97.1801

Acq. Operator : SYSTEM Seq. Line : 2 Acq. Instrument : Wasa_LC1 Location : 1 Injection Date : 8/7/2017 11:53:09 PM Inj : 1 Inj Volume : 4.000 µl Method : C:\Chem32\1\Data\JOE 2017-08-07 23-36-08\column1 2.5% IPA 97.5% hex 40min-0 .5mL.M (Sequence Method) Last changed : 8/7/2017 11:36:10 PM by SYSTEM : Washing 40min-2.5% iPrOH 97.5% hexane-0.5mL Method Info

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	20.955	MM	0.4269	688.14746	26.86458	50.5235
2	22.110	MM	0.4435	673.88586	25.32295	49.4765

```
      Acq. Operator
      : SYSTEM
      Seq. Line : 4

      Acq. Instrument
      : Wasa_LC1
      Location : 12

      Injection Date
      : 8/9/2017 10:38:27 PM
      Inj : 1

      Inj Volume : 4.000 µl
      Inj Volume : 4.000 µl

      Method
      : C:\Chem32\l\Data\JOE 2017-08-09 21-23-42\column1 2.5% IPA 97.5% hex 40min-0

      .5mL.M (Sequence Method)

      Last changed
      : 8/9/2017 9:23:43 PM by SYSTEM

      Method Info
      : Washing 40min-2.5% iPrOH 97.5% hexane-0.5mL
```


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	19.007	MM	0.3936	29.89911	1.26620	1.8707
2	20.035	MM	0.4209	1568.36365	62.10253	98.1293

1-(2-(1-(4-Methoxy-2, 6-dimethylphenyl) pyrrolidin-2-yl) propanoyl)-3-oxa-1-(2-(1-(4-Methoxy-2, 6-dimethylphenyl) pyrrolidin-2-yl) propanoyl)-3-oxa-1-(2-(1-(4-Methoxy-2, 6-dimethylphenyl) pyrrolidin-2-yl) propanoyl)-3-oxa-1-(2-(1-(4-Methoxy-2, 6-dimethylphenyl) pyrrolidin-2-yl) propanoyl)-3-oxa-1-(2-(1-(4-Methoxy-2, 6-dimethylphenyl) pyrrolidin-2-yl) pyrrolid

azaspiro[4.5]decan-2-one (3s)

1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine **1a** was reacted with 1-acryloyl-3-oxa-1azaspiro[4.5]decan-2-one **2s** following the **General Procedure for Stereoselective Mannich Reactions**. The ¹H NMR analysis of the crude material revealed **3s** was obtained in 79% yield as a mixture of diastereomers; the ratio of **3s**-*anti* and **3s**-*syn* was determined to be $5.6:1. [\alpha]^{25}{}_{D} = -47.5^{\circ}$ (c = 1.0, EtOH). The absolute configuration of **3s**-*anti* was assigned in analogy (see SI Section 4).

¹**H NMR** (600 MHz, CDCl₃) $\delta 6.52$ (t, J = 2.8 Hz, 2H), 4.07 (d, J = 8.5 Hz, 1H), 3.99 (q, J = 6.6 Hz, 1H), 3.87 (dd, J = 8.5, 1.1 Hz, 1H), 3.75 (t, J = 6.8 Hz, 1H), 3.71 (s, 3H), 3.29 (td, J = 7.8, 5.5 Hz, 1H), 2.97 (td, J = 8.0, 6.5 Hz, 1H), 2.25 (s, 3H), 2.24 (s, 3H), 2.17 – 2.06 (m, 2H), 1.97 – 1.89 (m, 2H), 1.85 (ddd, J = 11.3, 7.4, 5.7 Hz, 1H), 1.76 – 1.69 (m, 1H), 1.66 – 1.62 (m, 1H), 1.57 – 1.53 (m, 1H), 1.49 – 1.45 (m, 1H), 1.18 – 1.08 (m, 7H), 1.07 – 1.01 (m, 1H); 1³C NMR (151 MHz, CDCl₃) δ 177.55, 156.67, 154.03, 140.52, 139.28, 137.62, 114.27, 112.91, 71.29, 63.87, 61.87, 55.08, 52.57, 44.34, 31.89, 31.21, 29.65, 25.16, 24.02, 22.86, 22.81, 19.39, 19.21, 14.79; IR (neat) 2929, 2860, 1771, 1698, 1602, 1482, 1456, 1375, 1318, 1262, 1224, 1157, 1071 cm⁻¹; HRMS (DART) m/z Calcd for C₂₄H₃₅N₂O₄ (MH⁺): 415.2597; found: 415.2594. HPLC (Chiralcel IA; 2.5%/ 97.5% isopropanol/ hexanes, 0.5 mL/min; **3s***anti*: tr = 12.6 min (major), 14.7 min (minor); 95:5 er; **3s***-syn*: 13.4 min (major), 16.9 min (minor) 98:2 er).

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	12.586	BV	0.2193	7810.43555	544.58679	50.0593
2	14.686	MM	0.2769	7791.93359	469.04736	49.9407

```
Acq. Operator : SYSTEM
                                                       Seq. Line :
                                                                       2
Acq. Instrument : Wasa_LC1
                                                        Location :
                                                                       1
Injection Date : 7/31/2017 3:20:09 PM
                                                              Inj :
                                                                     1
                                                      Inj Volume : 4.000 µl
Method
                  : C:\Chem32\1\Data\JOE 2017-07-31 15-02-20\column1 2.5% IPA 97.5% hex 40min-0
                    .5mL.M (Sequence Method)
Last changed
                  : 7/31/2017 3:02:21 PM by SYSTEM
Method Info
                  : Washing 40min-2.5% iPrOH 97.5% hexane-0.5mL
        DAD1 B, Sig=210,4 Ref=360,100 (JOE 2017-07-31 15-02-20\001-0201.D)
   mAU
3000 -
                                          69766.
                                       12:929
   2500 -
   2000 -
   1500 -
                                               3323.25
   1000 -
                                            15.222
   500 -
```

20

35

min

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

10

15

0

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	12.929	MM	0.3012	5.97661e4	3306.89624	94.7325
2	15.222	MM	0.2748	3323.25269	201.53804	5.2675

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	13.398	MM	0.2555	2172.76001	141.74721	49.6999
2	16.882	MM	0.3208	2199.00220	114.25597	50.3001

10

```
Acq. Operator : SYSTEM
                                                Seq. Line :
                                                              2
Acq. Instrument : Wasa_LC1
                                                 Location :
                                                              1
Injection Date : 7/31/2017 3:20:09 PM
                                                      Inj :
                                                             1
                                               Inj Volume : 4.000 \mu l
Method
                : C:\Chem32\1\Data\JOE 2017-07-31 15-02-20\column1 2.5% IPA 97.5% hex 40min-0
                 .5mL.M (Sequence Method)
Last changed
                : 7/31/2017 3:02:21 PM by SYSTEM
Method Info
               : Washing 40min-2.5% iPrOH 97.5% hexane-0.5mL
```


Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	13.795	VB	0.2598	1.22359e4	721.54706	98.0554
2	17.645	BB	0.3192	242.66100	11.73826	1.9446

(4R)-4-Benzyl-3-(2-(1-(4-methoxy-2,6-dimethylphenyl)pyrrolidin-2-

yl)propanoyl)oxazolidin-2-one (3t)

1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine **1a** was reacted with (*R*)-3-acryloyl-4benzyloxazolidin-2-one **2t** following the **General Procedure for Stereoselective Mannich Reactions**. The ¹H NMR analysis of the crude material revealed **3t** was obtained in 66% yield as a mixture of diastereomers; the ratio of diastereomers was determined to be 12:2:1:0. The absolute configuration of **3t**-*anti* was assigned in analogy (see SI Section 4).

¹**H NMR** (500 MHz, CDCl₃) δ 7.32 – 7.22 (m, 3H), 7.10 – 7.04 (m, 2H), 6.50 (s, 2H), 4.05 (td, J = 8.2, 5.9 Hz, 1H), 3.93 (dd, J = 8.3, 1.5 Hz, 1H), 3.85 – 3.75 (m, 2H), 3.68 (s, 3H), 3.66 – 3.59 (m,1H), 3.32 (q, J = 7.5 Hz, 1H), 3.03 – 2.97 (m, 2H), 2.62 (dd, J = 13.5, 8.7 Hz, 1H), 2.26 (s, 3H), 2.24 (s, 3H), 2.16 – 2.09 (m, 1H), 2.01 – 1.89 (m, 2H), 1.74 (dq, J = 11.0, 8.4 Hz, 1H), 1.17 (d, J = 6.9 Hz, 3H); ¹³C **NMR** (151 MHz, CDCl₃) δ 178.69, 159.38, 155.53, 143.80, 143.76, 139.38, 138.03, 131.99, 131.41, 129.81, 116.32, 115.15, 68.53, 65.16, 57.76, 54.24, 45.64, 40.32, 33.56, 27.05, 22.09, 21.82, 18.53; IR (neat) 2959, 2923, 2852, 1776, 1692, 1601, 1481, 1383, 1210, 1154, 1067, 703 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₆H₃₃N₂O₄ (MH⁺): 437.244; found: 437.2436.

(4*S*)-3-(2-(1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propanoyl)-4phenyloxazolidin-2-one (3u-(*S*))

1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine **1a** was reacted with (*S*)-3-acryloyl-4phenyloxazolidin-2-one **2u-(S)** following the **General Procedure for Stereoselective Mannich Reactions**. The ¹H NMR analysis of the crude material revealed **3u-(S)** was obtained in 61% yield as a mixture of diastereomers; the ratio of diaseteromers was determined to be 3.6:2.1:1:0. The absolute configuration of **3u(S)-anti** was assigned in analogy (see SI Section 4).

¹**H NMR** (600 MHz, CDCl₃) δ 7.38 – 7.29 (m, 3H), 7.21 – 7.17 (m, 2H), 6.53 (s, 2H), 5.31 (dd, J = 8.8, 3.8 Hz, 1H), 4.57 (t, J = 8.8 Hz, 1H), 4.18 (dd, J = 8.9, 3.9 Hz, 1H), 3.87 (dt, J = 7.1, 4.5 Hz, 1H), 3.75 (s, 3H), 3.70 – 3.65 (m, 1H), 3.23 (ddd, J = 8.5, 6.9, 3.4 Hz, 1H), 2.97 (q, J = 8.1 Hz, 1H), 2.24 (s, 3H), 2.19 (s, 3H), 1.85 – 1.79 (m, 2H), 1.76 – 1.72 (m, 2H), 1.19 (d, J = 6.9 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ175.62, 156.54, 152.95, 140.31, 139.24, 138.23, 137.51, 129.04, 128.52, 125.95, 114.60, 113.01, 69.58, 61.75, 57.73, 55.04, 52.75, 42.76, 27.18, 25.66, 19.30, 19.25, 11.35; **IR** (neat) 2955, 2835, 1777, 1699, 1602, 1480, 1457, 1382, 1316, 1262, 1194, 1153, 699 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₅H₃₁N₂O₄ (MH⁺): 423.2284; found: 423.2267.

(*R*)-3-((*R*)-2-((*R*)-1-(4-methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propanoyl)-4phenyloxazolidin-2-one (3u-(*R*))

1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine **1a** was reacted with (*R*)-3-acryloyl-4phenyloxazolidin-2-one **2u**-(*R*) following the **General Procedure for Stereoselective Mannich Reactions**. The ¹H NMR analysis of the crude material revealed **3u**-(*R*) was obtained in >95% yield as a mixture of diastereomers; the ratio of **3u**-(*R*)-*anti* and **3u**-(*R*)*syn* was determined to be 87:13. $[\alpha]_{D}^{25} = -160.8^{\circ}$ (c = 1.0, EtOH). The absolute configurations of **3u**-(*R*)-*anti* and **3u**-(*R*)-*syn* were assigned as described in SI Section 4.

3u-(*R***)-***anti***: ¹H NMR** (600 MHz, CDCl₃) δ 7.29 (t, J = 7.4 Hz, 2H), 7.26 – 7.23 (m, 1H), 7.06 (d, J = 7.5 Hz,2H), 6.60 (d, J = 3.0 Hz, 1H), 6.54 (d, J = 3.0 Hz, 1H), 4.56 (dd, J = 8.4, 2.4 Hz, 1H), 4.27 (t, J = 8.4 Hz, 1H), 4.03 – 3.94 (m, 2H), 3.77 (s, 3H), 3.71 (q, J = 7.3 Hz, 1H), 3.33 (q, J = 7.5 Hz, 1H), 3.01 (td, J = 8.4, 4.6 Hz, 1H), 2.31 (s, 3H), 2.21 (s, 3H), 2.13 – 2.04 (m, 1H), 2.10 – 2.05 (m, 1H), 1.92 – 1.86 (m, 1H), 1.74 – 1.68 (m, 1H), 1.07 (d, J = 6.9 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.18, 156.76, 153.16, 141.34, 141.23, 139.54, 136.71, 128.97, 128.20, 125.13, 113.83, 112.42, 69.76, 62.38, 57.37, 55.24, 51.45, 42.74, 30.73, 24.36, 19.38, 19.21, 15.57; **IR** (neat) 2962, 2836, 1776, 1698, 1600, 1479, 1456, 1380, 1193, 1153, 699 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₅H₃₁N₂O₄ (MH⁺): 423.2284; found: 423.2282.

3u-(*R***)-***syn***:** ¹**H NMR** (600 MHz, CDCl₃) δ 7.33 – 7.29 (m, 2H), 7.28 – 7.24 (m, 1H), 7.16 – 7.12 (m, 2H), 6.59 (d, *J* = 3.1 Hz, 1H), 6.54 (d, *J* = 3.1 Hz, 1H), 4.70 (dd, *J* = 8.4, 2.9 Hz, 1H), 4.37 (t, *J* = 8.5 Hz, 1H), 4.13 – 4.03 (m, 2H), 3.81 – 3.70 (m, 4H), 3.35 – 3.26 (m, 1H), 2.95 – 2.85 (m, 1H), 2.31 (s, 3H), 2.28 – 2.19 (m, 4H), 2.03 – 1.94 (m, 1H), 1.91 – 1.85 (m, 1H), 1.84 – 1.80 (m, 1H), 1.00 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 174.96, 156.36,

153.47, 140.71, 139.45, 139.38, 136.97, 128.99, 128.37, 125.50, 114.38, 113.01, 69.99, 62.52, 57.85, 55.21, 53.64, 44.56, 30.93, 25.25, 19.37, 19.31, 12.56; **IR** (neat) 2957, 2835, 1774, 1701, 1602, 1479, 1457, 1380, 1317, 1193, 1042, 698 cm⁻¹; **HRMS** (DART) m/z Calcd for $C_{25}H_{31}N_2O_4$ (MH⁺): 423.2284; found: 423.2291.

(4*R*)-3-(2-(1-(4-Methoxy-2,6-dimethylphenyl)-4,4-dimethylpyrrolidin-2-yl)propanoyl)-4phenyloxazolidin-2-one (3v)

1-(4-Methoxy-2,6-dimethylphenyl)-3,3-dimethylpyrrolidine 11 was reacted with (*R*)-3acryloyl-4-phenyloxazolidin-2-one 2u-(*R*) following the General Procedure for Stereoselective Mannich Reactions. ¹H NMR analysis of the crude material revealed that 3v-major and 3v-minor were obtained in the ratio of 58:17:0:0. After purification by column chromatography (hexanes: $Et_2O = 17:3$ then 15:5), 3v-major (52 mg, 58%) and 3v-minor (15 mg, 17%) were obtained as single diastereomers. The absolute configurations of 3vmajor and 3v-minor were assigned in analogy, see SI Section 4.

3v-major: ¹**H NMR** (500 MHz, CDCl₃) δ 7.34 – 7.20 (m, 3H), 7.08 – 7.02 (m, 2H), 6.60 (d, J = 3.0 Hz, 1H), 6.53 (d, J = 3.0 Hz, 1H), 4.45 (dd, J = 8.4, 2.2 Hz, 1H), 4.23 – 4.11 (m, 2H), 4.01 – 3.93 (m, 1H), 3.81 – 3.71 (m, 4H), 3.17 (d, J = 7.9 Hz, 1H), 2.80 (d, J = 7.9 Hz, 1H), 2.33 (s, 3H), 2.24 (s, 3H), 1.78 (dd, J = 11.6, 5.5 Hz, 1H), 1.56 (dd, J = 11.7, 9.7 Hz, 1H), 1.19 (s, 3H), 1.17 (s, 3H), 1.00 (d, J = 6.9 Hz, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 175.02, 156.78, 153.15, 142.50, 141.45, 139.61, 135.71, 128.95, 128.18, 125.13, 113.69, 112.45, 69.74, 65.06, 61.89, 57.39, 55.29, 46.19, 42.64, 36.69, 29.22, 28.41, 19.65, 19.32, 16.14; **IR** (neat) 2953, 2863, 2836, 1780, 1698, 1600, 1481, 1380, 1196, 1154, 702 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₇H₃₅N₂O₄ (MH⁺): 451.2597; found: 451.2612; $[\alpha]^{25}_{D}$ = -152.7° (c = 1.0, EtOH).

3v-minor: ¹**H NMR** (500 MHz, CDCl₃) δ7.41 – 7.30 (m, 3H), 7.16 – 7.11 (m, 2H), 6.48 (d, *J* = 3.1 Hz, 1H), 6.40 (d, *J* = 3.0 Hz, 1H), 5.27 (dd, *J* = 8.8, 4.0 Hz, 1H), 4.57 (t, *J* = 8.8 Hz, 1H), 4.18 (ddd, *J* = 12.5, 8.8, 5.2 Hz, 2H), 3.81 (t, *J* = 6.6 Hz, 1H), 3.73 (s, 3H), 3.03 (d, *J* = 8.4 Hz, 1H), 2.76 (d, *J* = 8.4 Hz, 1H), 2.25 (s, 6H), 1.50 (dd, *J* = 12.3, 8.6 Hz, 1H), 1.24 –

1.18 (m, 1H), 1.12 (s, 3H), 1.05 (s, 3H), 1.01 (d, J = 6.9 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.64, 156.34, 153.13, 139.35, 139.04, 139.01, 135.49, 129.03, 128.49, 126.08, 114.39, 113.25, 69.63, 65.92, 60.12, 57.85, 54.98, 42.68, 41.06, 36.01, 29.47, 28.77, 19.71, 19.35, 12.66; **IR** (neat) 2952, 2920, 2850, 1779, 1702, 1481, 1381, 1319, 1193, 1067, 700 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₇H₃₅N₂O₄ (MH⁺): 451.2597; found: 451.2613.

3v-major was transformed into the corresponding benzyl ester **5v-major** following previously reported literatures.^{19,20}

(*R*)-2-((*R*)-1-(4-Methoxy-2,6-dimethylphenyl)-4,4-dimethylpyrrolidin-2-yl)propanoic acid

(*R*)-2-((*R*)-1-(4-Methoxy-2,6-dimethylphenyl)-4,4-dimethylpyrrolidin-2-yl)propanoic acid was prepared by following a known procedure.¹⁹ To a solution of Mannich product **3v-major** (90 mg, 0.2 mmol) in THF:H₂O (3:1, 2.4 mL) at 0 °C was added H₂O₂ (30% v/v, 0.02 mL, 0.8 mmol) and 2 M LiOH (0.14 mL, 0.28 mmol), dropwise. The mixture was stirred at 22 °C for 5 h, whereupon the reaction was quenched with NaHSO₃. The crude mixture was then concentrated *in vacuo*, then diluted with EtOAc (2 mL), H₂O (2 mL), and 1 M NaOH (2 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (3 x 5 mL). Subsequently, the aqueous layer was acidified with 6 M HCl (2 mL) and extracted with EtOAc (3 x 5 mL). The combined organic layers were washed with brine (10 mL), dried (MgSO₄), filtered. and concentrated *in vacuo* to afford (*R*)-2-((*R*)-1-(4-Methoxy-2,6-dimethylphenyl)-4,4-dimethylpyrrolidin-2-yl)propanoic acid as a yellow solid (60 mg, 98%) which was used without further purification.

Benzyl (*R*)-2-((*R*)-1-(4-methoxy-2,6-dimethylphenyl)-4,4-dimethylpyrrolidin-2yl)propanoate (5v-major)

Benzyl (R)-2-((R)-1-(4-methoxy-2,6-dimethylphenyl)-4,4-dimethylpyrrolidin-2yl)propanoate was prepared by following a known procedure. ²⁰ Benzyl bromide (0.12 mL, 1.0 mmol) was added dropwise to a mixture of (R)-2-((R)-1-(4-Methoxy-2,6dimethylphenyl)-4,4-dimethylpyrrolidin-2-yl)propanoic acid (61 mg, 0.2 mmol) and K₂CO₃ (28 mg, 0.2 mmol) in acetone (1.0 mL). The reaction mixture was heated at reflux for 12 h. The reaction mixture was filtered through a pad of celite and the solvent was evaporated by rotary evaporation. The crude product was purified by silica gel column chromatography (19:1 Hexanes: Et₂O) to afford **5v-major** as a colorless oil (74 mg, 93% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.31 (qd, J = 7.7, 4.0 Hz, 3H), 7.20 (d, J = 7.2 Hz, 2H), 6.51 (d, J = 3.0 Hz, 1H), 6.47 (d, J = 3.1 Hz, 1H), 4.61 – 4.38 (m, 2H), 4.10 (q, J = 7.6 Hz, 1H), 3.70 (s, 3H), 3.12 – 3.02 (m, 1H), 2.87 – 2.77 (m, 1H), 2.48 – 2.38 (m, 1H), 2.29 (s, 3H), 2.27 (s, 3H), 1.82 – 1.75 (m, 1H), 1.52 (dd, J = 12.2, 8.1 Hz, 1H), 1.21 – 1.18 (m, 3H), 1.14 (d, J = 1.3 Hz, 3H), 1.05 (dd, J = 7.0, 1.4 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 175.54, 156.49, 140.47, 139.41, 136.16, 135.67, 128.28, 127.80, 127.75, 114.24, 113.04, 65.96, 65.69, 61.86, 55.10, 45.25, 44.63, 36.32, 29.44, 28.59, 19.73, 19.52, 14.66; **HPLC** (Chiralpak AD-H; 1%/ 99% isopropanol/ hexanes, 0.5 mL/min; **5v-major:** tr = 11.4 min (minor), 12.1 min (major); >99:1 er.

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	11.372	BV	0.3234	6.31420e4	3076.77075	50.4308
2	12.077	VB	0.3114	6.20631e4	3129.58765	49.5692

Acq. Operator	: SYSTEM	Seq. Line	: 3		
Acq. Instrument	: Wasa_LC1	Location	: 2		
Injection Date	: 1/19/2018 1:53:28 PM	Inj	: 1		
		Inj Volume	: 4.000 µ	1	
Method	: C:\Chem32\1\Data\JOE	2018-01-19 12-09-44	column1 1	% IPA 99% hex	40min-0.5mL
	.M (Sequence Method)				
Last changed	: 1/19/2018 12:09:46 P	M by SYSTEM			
Method Info	: Column 1 40min-1% iP	rOH 99% hexane-0.5mL			
DAD1 B Sig	210 4 Ref=360 100 (JOE 2018-01-19 12	-09-44\002-0301 D)			
mAU 1	g	50 Those 500 Hzy			
	¥	522.5			
1200	"sa.	2			
1000 -	Pro				

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	12.109	MM	0.2945	2.61223e4	1478.15210	100.0000

(4*R*)-3-(2-Methyl-3-(2,2,6,6-tetramethylpiperidin-1-yl)propanoyl)-4-phenyloxazolidin-2one (4f)

1,2,2,6,6-Pentamethylpiperidine 1q was reacted with (*R*)-3-acryloyl-4-phenyloxazolidin-2one 2u-(*R*) following the General Procedure for Stereoselective Mannich Reactions at 50 °C. ¹H NMR analysis of the crude material revealed that 4f-major and 4f-minor were obtained in the ratio of 2.0:1. After purification by PTLC (hexanes: EtOAc: Et₃N = 16:4:1), 4f-major (35 mg, 47%) and 4f-minor (28 mg, 24%) were obtained as single diastereomers.

4f-major: ¹**H NMR** (500 MHz, CDCl₃) δ 7.37 (t, J = 7.0 Hz, 2H), 7.33 (d, J = 6.8 Hz, 1H), 7.29 – 7.25 (m, 2H), 5.44 – 5.36 (m, 1H), 4.69 – 4.60 (m, 1H), 4.23 (ddd, J = 8.9, 3.4, 1.6 Hz, 1H), 4.03 (p, J = 6.8 Hz, 1H), 2.95 (dd, J = 15.5, 6.5 Hz, 1H), 2.49 (dd, J = 15.5, 5.8 Hz, 1H), 1.51 (d, J = 5.9 Hz, 2H), 1.39 (dd, J = 8.5, 4.6 Hz,4H), 1.10 (d, J = 7.1 Hz,3H), 1.03 (s, 6H), 0.97 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 177.60, 153.26, 139.37, 129.12, 128.51, 125.60, 69.57, 57.82, 54.61, 47.77, 41.38, 41.26, 17.81, 16.41; **IR** (neat) 2963, 2926, 1780, 1699, 1381, 1320, 1242, 1197, 1042, 761 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₂H₃₃N₂O₃ (MH⁺): 373.2491; found: 373.2504; $[\alpha]^{25}{}_{D} = -107.9^{\circ}$ (c = 0.3, EtOH).

4f-minor: ¹**H NMR** (500 MHz, CDCl₃) δ 7.40 – 7.30 (m, 5H), 5.45 (dd, J = 8.9, 4.0 Hz, 1H), 4.67 (dd, J = 9.6, 8.2 Hz, 1H), 4.31 – 4.24 (m, 1H), 3.97 (q, J = 6.8 Hz, 1H), 2.90 (dd, J = 15.4, 6.3 Hz, 1H), 2.37 (dd, J = 15.4, 6.3 Hz, 1H), 1.47 (s, 2H), 1.32 (t, J = 6.0 Hz, 4H), 1.16 (dd, J = 7.1, 1.3 Hz, 3H), 0.96 (s, 6H), 0.78 (s, 6H); ¹³**C NMR** (151 MHz, CDCl₃) δ 177.67, 153.35, 139.33, 129.03, 128.59, 126.34, 69.52, 57.88, 54.57, 47.48, 41.59, 41.35, 17.82, 16.43; **IR** (neat) 2964, 2925, 2872, 1777, 1700, 1457, 1380, 1319, 1196, 1044, 949, 699 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₂H₃₃N₂O₃ (MH⁺): 373.2491; found: 373.2474.

4f-major was transformed into the corresponding benzyl ester **4a** following previously reported literatures.^{19,20} **HPLC** (Chiralcel OD-H; 2.5%/ 97.5% isopropanol/ hexanes, 0.3 mL/min; **4a:** tr = 12.6 min (major), 13.3 min (minor); >99:1 er.

Acq. Operator	:	SYSTEM	Seq.	Line	:	3				
Acq. Instrument	:	Wasa_LC1	Loca	tion	:	51				
Injection Date	:	1/24/2018 1:20:46 PM		Inj	:	1				
			Inj Vo	lume	:	4.000	μl			
Method	:	C:\Chem32\1\Data\JOE	2018-01-24 11-5	7-03	\cc	olumn1	2.5%IPA	97.5%	hexane	40min
		-0.3mL.M (Sequence Me	thod)							
Last changed	:	1/24/2018 11:57:04 AM	by SYSTEM							
Method Info	:	Column1 40min-2.5% iP	rOH 97.5% hexan	e-0.3	3mI					
DAD1 D, Sig=	230),4 Ref=360,100 (JOE 2018-01-24 11-5	57-03\051-0301.D)							
mAU		9993 938								
-										

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	12.553	BV	0.2982	7523.91992	374.85226	49.2105
2	13.338	VB	0.3294	7765.33203	351.95917	50.7895

Acq. Operator	:	SYSTEM	Seq. Line	:	2					
Acq. Instrument	:	Wasa_LC1	Location	:	52					
Injection Date	:	1/25/2018 5:34:58 PM	Inj	:	1					
			Inj Volume	:	8.000	μl				
Method	:	C:\Chem32\1\Data\JOE	2018-01-25 17-02-55	\c	olumn1	2.5%	IPA	97.5%	hex	30min-0
		.3mL.M (Sequence Meth	nod)							
Last changed	:	1/25/2018 5:02:57 PM	by SYSTEM							
Method Info	:	Washing 40min-2.5% iB	PrOH 97.5% hexane-0.	5m:	L					
	00	A D-6 000 400 (10E 0040 04 05 47	00 551050 0004 D)							
DAD1 D, Sig=	23	0,4 Ret=360,100 (JOE 2018-01-25 17-	-02-55\052-0201.D)							
mALL 1			é v							

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	12.886	MM	0.3695	5700.90869	257.16043	100.0000

(4*R*)-3-(3-(*tert*-Butyl(isopropyl)amino)-2-methylpropanoyl)-4-phenyloxazolidin-2-one (4g)

N-Isopropyl-*N*,2-dimethylpropan-2-amine **1r** was reacted with (*R*)-3-acryloyl-4phenyloxazolidin-2-one **2u**-(*R*) following the **General Procedure for Stereoselective Mannich Reactions**. ¹H NMR analysis of the crude material revealed that **4g-major** and **4gminor** were obtained in the ratio of 1.8:1. After purification by PTLC (hexanes: EtOAc: Et₃N = 16:4:1), **4g-major** (35 mg, 50%) and **4g-minor** (14 mg, 20%) were obtained as single diastereomers.

4g-major: ¹**H NMR** (500 MHz, CDCl₃) δ 7.37 (dd, J = 8.1, 6.5 Hz, 2H), 7.33 (d, J = 7.3 Hz, 1H), 7.28 (dd, J = 7.0, 1.8 Hz, 2H), 5.42 (dd, J = 8.5, 3.3 Hz, 1H), 4.65 (t, J = 8.7 Hz, 1H), 4.23 (dd, J = 8.8, 3.3 Hz, 1H), 4.02 (q, J = 6.9 Hz, 1H), 3.23 (p, J = 6.7 Hz, 1H), 2.92 (dd, J = 14.6, 7.4 Hz, 1H), 2.51 (dd, J = 14.6, 6.5 Hz, 1H), 1.07 (d, J = 5.5 Hz, 12H), 0.99 (d, J = 6.7 Hz, 3H), 0.97 (d, J = 6.7 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 177.22, 153.39, 139.43, 129.14, 128.50, 125.58, 69.66, 57.75, 55.75, 46.54, 46.26, 40.01, 28.46, 23.14, 22.32, 15.54; **IR** (neat) 2965, 2924, 2854, 1761, 1701, 1384, 1197, 1078, 699 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₀H₃₁N₂O₃ (MH⁺): 347.2335; found: 347.232; $[\alpha]^{25}_{D} = -80.2^{\circ}$ (c = 0.5, EtOH).

4g-minor: ¹**H NMR** (500 MHz, CDCl₃) δ 7.40 – 7.30 (m, 5H), 5.46 (dd, J = 8.9, 4.3 Hz, 1H), 4.72 – 4.63 (m, 1H), 4.30 – 4.20 (m, 1H), 4.01 (q, J = 7.0 Hz, 1H), 3.20 – 3.11 (m, 1H), 3.00 – 2.87 (m, 1H), 2.39 (dd, J = 14.3, 6.3 Hz, 1H), 1.11 (dd, J = 6.9, 1.4 Hz, 3H), 1.00 – 0.97 (m, 3H), 0.95 (s, 9H), 0.83 (d, J = 6.7 Hz, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 177.24, 153.51, 139.27, 128.97, 128.49, 126.28, 69.54, 57.83, 55.66, 46.57, 46.47, 40.03, 28.36, 23.48, 21.94, 15.52; **IR** (neat) 2969, 2928, 2873, 1776, 1703, 1457, 1383, 1320, 1198, 1043, 698 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₀H₃₁N₂O₃ (MH⁺): 347.2335; found: 347.235.

4g-major was transformed into the corresponding benzyl ester **4b** following previously reported literatures.^{19,20} **HPLC** (Chiralcel OD-H; 0.5%/ 99.5% isopropanol/ hexanes, 1.0 mL/min; **4b:** tr = 7.9 min (major), 8.5 min (minor); >99:1 er.

```
Acq. Operator : SYSTEM Seq. Line : 2

Acq. Instrument : Wasa_LC1 Location : 41

Injection Date : 1/22/2018 8:13:40 PM Inj : 1

Inj Volume : 4.000 µl

Acq. Method : C:\Chem32\1\Data\JOE 2018-01-22 19-11-39\column1 1% IPA 99% hex 60min-0.5mL

.M
```


Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	7.895	VV R	0.1798	1.00079e4	856.65320	48.9703
2	8.503	VB	0.2983	1.04288e4	595.46783	51.0297

Acq. Ope	erator	:	SYSTEM	Seq. Line	:	3						
Acq. In:	strument	:	Wasa_LC1	Location	:	71						
Injectio	on Date	:	3/7/2018 8:14:34 PM	Inj	:	1						
				Inj Volume	:	8.000	μl					
Acq. Me	thod	:	C:\Chem32\1\Data\JOE .M	2018-03-07 18-30-44	(CO	lumn1	1%	IPA	99%	hex	40min-0	.5mL

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	7.918	MM	0.3683	8067.87891	365.05762	100.0000

(4*R*)-3-(3-((1-((*tert*-Butyldimethylsilyl)oxy)-2-methylpropan-2-yl)(isopropyl)amino)-2methylpropanoyl)-4-phenyloxazolidin-2-one (4h)

1-((*tert*-Butyldimethylsilyl)oxy)-*N*-ethyl-*N*-isopropyl-2-methylpropan-2-amine **1s** was reacted with (*R*)-3-acryloyl-4-phenyloxazolidin-2-one **2u**-(*R*) following the **General Procedure for Stereoselective Mannich Reactions**. ¹H NMR analysis of the crude material revealed that **4h-major** and **4h-minor** were obtained in the ratio of 7.4:1. After purification by silica gel column chromatography (hexanes: $Et_3N = 50:1$ then 19:1), **4h-major** (71 mg, 70%) and **4h-minor** (9 mg, 10%) were obtained as single diastereomers.

4h-major: ¹**H NMR** (600 MHz, CDCl₃) δ 7.37 (dd, J = 8.2, 6.7 Hz, 2H), 7.33 (d, J = 7.1 Hz, 1H), 7.29 – 7.27 (m, 2H), 5.42 (dd, J = 8.5, 3.2 Hz, 1H), 4.64 (t, J = 8.7 Hz, 1H), 4.23 (dd, J = 8.8, 3.3 Hz, 1H), 3.99 (h, J = 7.0 Hz, 1H), 3.43 – 3.34 (m, 2H), 3.27 (p, J = 6.7 Hz, 1H), 3.03 (dd, J = 14.8, 7.3 Hz, 1H), 2.68 (dd, J = 14.8, 6.6 Hz, 1H), 1.06 (d, J = 7.2 Hz, 9H), 1.01 (d, J = 6.7 Hz, 3H), 0.98 (d, J = 6.7 Hz, 3H), 0.89 (s, 9H), 0.02 (d, J = 1.3 Hz, 6H); ¹³**C NMR** (151 MHz, CDCl₃) δ 179.81, 156.03, 142.11, 131.81, 131.17, 128.25, 72.31, 72.21, 62.06, 60.42, 49.16, 49.04, 42.75, 28.52, 26.84, 26.81, 20.84, 18.14, -2.91; **IR** (neat) 2956, 2925, 2854, 1781, 1702, 1459, 1381, 1195, 1086, 1044, 836, 774 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₆H₄₅N₂O₄Si (MH⁺): 477.3147; found: 477.3171; $[\alpha]^{25}_{D} = -60.9^{\circ}$ (c = 0.8, EtOH).

4h-major was transformed into the corresponding benzyl ester **4c** following previously reported literatures.^{19,20} **HPLC** (Chiralcel OD-H; 0.5%/ 99.5% isopropanol/ hexanes, 1.0 mL/min; **4c:** tr = 8.5 min (minor), 9.6 min (major); >99:1 er.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	8.478	BV	0.2633	540.04773	30.10438	50.2350
2	9.565	VB	0.3001	534.99445	26.21741	49.7650

Acq. Operator	: SYSTEM	Seq. Line : 1	
Acq. Instrument	: Wasa_LC1	Location : 3	2
Injection Date	: 1/22/2018 5:27:21 PM	Inj : 1	
		Inj Volume : 4.0	00 µl
Method	: C:\Chem32\1\Data\JOE 2	018-01-22 17-26-19\colum	n1 0.5% IPA 99.5% hex 40min-1
	.OmL.M (Sequence Metho	d)	
Last changed	: 1/22/2018 5:26:21 PM b	y SYSTEM	
Method Info	: Column1 40min-0.5% iPr	OH 99.5% hexane-1.0mL	
DAD1 B, Sig=2	210,4 Ref=360,100 (JOE 2018-01-22 17-26-	19\032-0101.D)	1
mAU]	φ		
500	· , , , , , , , , , , , , , , , , , , ,		
400	Ned.		
	4.		
300			
200			
100			
		_	
0 +			· · · · · · · · · · · · · · · · · · ·
	5 10 15	20 25	30 35 min

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	9.553	MM	0.3346	1.11078e4	553.30640	100.0000

3-(2-(1-(2,6-dimethylphenyl)pyrrolidin-2-yl)propanoyl)-4,4-dimethyloxazolidin-2-one (3w)

1-(2,6-dimethylphenyl)pyrrolidine **1w** was reacted with 3-acryloyl-4,4-dimethyloxazolidin-2one **2r** following the **General Procedure for Stereoselective Mannich Reactions**. The ¹H NMR analysis of the crude material revealed that **3w**-*anti* and **3w**-*syn* were obtained in the ratio of 3.8:1. After purification by column chromatography (hexanes: $Et_2O = 19:1$ then 9:1), **3w**-*anti* (39 mg, 56%) and **3w**-*syn* (10 mg, 15%) were obtained as single diastereomers. The absolute configurations of **3w**-*anti* and **3w**-*syn* were assigned in analogy, see SI Section 4.

3w-anti: ¹**H** NMR (600 MHz, CDCl₃) δ 6.98 – 6.89 (m, 3H), 4.09 (q, *J* = 6.7 Hz, 1H), 3.83 (d, *J* = 8.2 Hz, 1H), 3.78 – 3.70 (m, 2H), 3.34 (ddd, *J* = 8.2, 7.0, 5.4 Hz, 1H), 2.96 (td, *J* = 7.9, 6.2 Hz, 1H), 2.27 (d, *J* = 1.9 Hz, 6H), 2.13 (dq, *J* = 12.0, 6.7 Hz, 1H), 2.02 – 1.82 (m, 3H), 1.35 (s, 3H), 1.12 (d, *J* = 6.9 Hz, 3H), 1.04 (s, 3H); ¹³**C** NMR (151 MHz, CDCl₃) δ 177.04, 153.56, 144.81, 139.12, 137.98, 129.43, 127.90, 125.16, 74.71, 61.71, 60.25, 52.50, 44.52, 29.84, 25.27, 24.43, 24.08, 19.28, 18.98, 14.99; **IR** (neat) 2965, 2874, 1774, 1699, 1466, 1374, 1304, 1219, 1176, 1085, 1035, 766 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₀H₂₈N₂O₃ (MH⁺): 345.2172; found: 345.2181; $[\alpha]^{25}{}_{D} = -36.2^{\circ}$ (c = 0.8, EtOH); **HPLC** (Chiralcel IC; 5.0%/ 95.0% *n*-butanol/ hexanes, 0.2 mL/min; tr = 27.3 min (minor), 30.4 min (major); 89:11 er.

3w-syn: ¹**H NMR** (500 MHz, CDCl₃) δ 6.98 (t, J = 8.1 Hz, 2H), 6.92 (t, J = 7.4 Hz, 1H), 4.04 (ddd, J = 8.9, 6.5, 2.7 Hz, 1H), 3.90 (d, J = 8.3 Hz, 1H), 3.82 (d, J = 8.3 Hz, 1H), 3.75 (q, J = 6.7 Hz, 1H), 3.36 (td, J = 7.9, 2.8 Hz, 1H), 2.89 (td, J = 8.9, 6.7 Hz, 1H), 2.35 (s, 3H), 2.27 (s, 1H), 2.25 (s, 3H), 2.09 – 1.96 (m, 1H), 1.95 – 1.84 (m, 1H), 1.75 (ddt, J = 12.9, 6.7, 2.9 Hz, 1H), 1.45 (s, 3H), 1.17 (s, 3H), 1.00 (d, J = 6.7 Hz, 3H); ¹³C **NMR** (151 MHz, CDCl₃) δ

177.12, 153.92, 146.85, 138.99, 135.49, 129.56, 128.34, 124.83, 74.93, 63.31, 60.53, 53.70, 46.52, 31.66, 25.46, 24.62, 23.87, 19.31, 19.12, 13.65; **IR** (neat) 2965, 2874, 1774, 1699, 1466, 1374, 1304, 1219, 1176, 1085, 1035, 766 cm⁻¹; **HRMS** (DART) m/z Calcd for $C_{20}H_{28}N_2O_3$ (MH⁺): 345.2172; found: 345.2181; **HPLC** (Chiralcel IC; 5.0%/ 95.0% *n*-butanol/ hexanes, 0.5 mL/min; tr = 10.5 min (minor), 11.7 min (major); 93:7 er.

 Acq. Operator
 : SYSTEM
 Seq. Line : 1

 Acq. Instrument
 : Wasa_LC1
 Location : 1

 Injection Date
 : 6/21/2018 12:30:35 AM
 Inj : 1

 Inj Volume : 6.000 μl
 Inj Volume : 6.000 μl

 Acq. Method
 : C:\Chem32\1\Data\JOE 2018-06-21 00-28-47\column2 5.0%BuOH 95% hex 60min-0.

 2mL.M
 2mL.M

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	27.264	BB	0.8812	8043.24463	141.49239	51.0721
2	30.367	BB	1.1558	7705.54541	99.46435	48.9279

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

S-87

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	26.061	VB R	0.4427	4418.16357	152.59972	11.1586
2	28.510	MM	0.5518	3.51761e4	1062.52637	88.8414

min

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	10.508	MM	0.2688	4047.02881	250.90140	51.1561
2	11.701	MM	0.4140	3864.10767	155.56763	48.8439

Acq.	Operator	:	SYSTEM			Seq.	Line	:	4				
Acq.	Instrument	:	Wasa_LC1			Loca	ation	:	4				
Inje	ction Date	:	6/21/2018 2:53:28 AM				Inj	:	1				
					I	nj V	olume	:	6.000	μl			
Acq.	Method	:	C:\Chem32\1\Data\JOE	20	18-06-21	00-3	28-47	\ca	olumn2	5.0%BuOH	95%	hex	20min-0.
			5mL.M										
-													
	DAD1 A, Sig=2	54	,4 Ref=360,100 (JOE 2018-06-21 00-2	8-47	\OnlineEdited	-004.D)						
m	AU			129									
8	00 -			Ä									
	1												
6	00			1									
4	00 -												
			99										
2	00 -		3.6		1								

15

min

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

10

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	10.566	BV	0.1815	936.54675	80.62458	6.8448
2	11.129	VB	0.2014	1.27461e4	982.07147	93.1552

11

3-(2-(1-mesitylpyrrolidin-2-yl)propanoyl)-4,4-dimethyloxazolidin-2-one (3x)

1-mesitylpyrrolidine 1x was reacted with 3-acryloyl-4,4-dimethyloxazolidin-2-one 2r following the General Procedure for Stereoselective Mannich Reactions. The ¹H NMR analysis of the crude material revealed that 3x-anti and 3x-syn were obtained in the ratio of 3.5:1. After purification by column chromatography (hexanes: Et₂O = 19:1 then 9:1), 3x-anti (39 mg, 54%) and 3x-syn (11 mg, 15%) were obtained as single diastereomers. The absolute configurations of 3x-anti and 3x-syn were assigned in analogy, see SI Section 4.

3x-anti: ¹**H NMR** (600 MHz, CDCl₃) δ 6.77 (d, J = 9.0 Hz, 2H), 4.04 (q, J = 6.7 Hz, 1H), 3.83 (d, J = 8.2 Hz, 1H), 3.78 – 3.63 (m, 2H), 3.31 (td, J = 7.8, 5.6 Hz, 1H), 2.95 (td, J = 7.9, 6.2 Hz, 1H), 2.23 (d, J = 6.3 Hz, 6H), 2.19 (s, 3H), 2.14 – 2.06 (m, 1H), 1.99 – 1.88 (m, 2H), 1.88 – 1.78 (m, 1H), 1.36 (s, 3H), 1.12 (d, J = 7.0 Hz, 3H), 1.06 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 177.11, 153.53, 141.99, 139.02, 137.81, 134.53, 130.16, 128.62, 74.71, 61.73, 60.24, 52.53, 44.37, 29.81, 25.19, 24.46, 23.91, 20.70, 19.10, 18.84, 14.84; **IR** (neat) 2965, 1775, 1700, 1477, 1375, 1304, 1176, 1084, 765 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₁H₃₀N₂O₃ (MH⁺): 359.2329; found: 359.2311; $[\alpha]^{25}_{D} = -10.6^{\circ}$ (c = 0.3, EtOH).

3x-*syn*: ¹**H NMR** (600 MHz, CDCl₃) δ 6.79 (d, J = 14.1 Hz, 2H), 4.02 – 3.93 (m, 1H), 3.90 (dd, J = 8.3, 1.2 Hz, 1H), 3.82 (d, J = 8.3 Hz, 1H), 3.74 (p, J = 6.7 Hz, 1H), 3.32 (td, J = 9.6, 5.0 Hz, 1H), 2.87 (q, J = 8.3 Hz, 1H), 2.30 (s, 3H), 2.27 – 2.21 (m, 1H), 2.20 (s, 6H), 2.06 – 1.94 (m, 1H), 1.88 (d, J = 9.8 Hz, 1H), 1.73 (dd, J = 14.3, 6.7 Hz, 1H), 1.45 (s, 3H), 1.18 (s, 3H), 0.99 (dd, J = 6.8, 1.2 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 177.21, 153.92, 144.21, 138.73, 135.22, 134.22, 130.20, 129.05, 74.92, 63.38, 60.53, 53.84, 46.51, 31.64, 25.42, 24.64, 23.80, 20.66, 19.17, 18.98, 13.74; **IR** (neat) 2965, 1775, 1700, 1477, 1375, 1304, 1176, 1084, 765 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₁H₃₀N₂O₃ (MH⁺): 359.2329; found:

359.2311; **HPLC** (Chiralpak AS-H then OD-H; 2.5%/ 97.5% isopropanol/ hexanes, 0.5 mL/min; tr = 19.7 min (major), 19.9 min (minor); 93:7 er.

3x-*anti* was transformed into the corresponding benzyl ester **5x**-*anti* following previously reported literatures.^{19,20} ¹**H** NMR (600 MHz, CDCl₃) δ 7.35 – 7.25 (m, 3H), 7.22 – 7.17 (m, 2H), 6.79 (d, J = 20.5 Hz, 2H), 4.69 (d, J = 12.4 Hz, 1H), 4.62 (d, J = 12.5 Hz, 1H), 3.96 (dt, J = 7.5, 5.6 Hz, 1H), 3.37 – 3.26 (m, 1H), 2.97 (q, J = 7.7 Hz, 1H), 2.42 (p, J = 6.8 Hz, 1H), 2.24 (s, 3H), 2.20 (d, J = 8.8 Hz, 6H), 2.05 (dq, J = 12.2, 7.6 Hz, 1H), 1.96 – 1.86 (m, 2H), 1.82 – 1.73 (m, 1H), 1.15 – 1.11 (m, 3H); **IR** (neat) 2921, 2852, 1718, 1480, 1455, 1373, 1262, 1183, 1150, 1110, 851, 750, 696 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₃H₃₀NO₂ (MH⁺): 352.2271; found: 352.2254; $[\alpha]^{25}{}_{D} = -30.1^{\circ}$ (c = 0.4, EtOH); **HPLC** (Chiralpak OJ-H; 1.0%/ 99.0% isopropanol/ hexanes, 0.5 mL/min; tr = 11.1 min (minor), 16.5 min (major); 89:11 er.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	11.121	BB	0.4735	4593.83643	149.91234	49.8195
2	16.495	BB	1.1162	4627.12061	63.79744	50.1805

mAU 600			14.924									
DAD1 B, Sig=2	210	,4 Ref=360,100 (JOE 2018-06-21 22-2	25-30\022-0401.D)									
Method	:	.M (Sequence Method)	2018-06-21 22-2	.5-30	(CC) L UIIII L	72	IPA	993	nex	40min-0	. SILL
Mothod		$C \cdot (Chom 32) 1 (Data) TOF$	2019-06-21 22-2	5-30\	•	lumpl	19	трл	008	hov	40min-0	5mT
			Ini Vo	lume		8.000	11]					
Injection Date	:	6/22/2018 12:30:17 AM		Inj	:	1						
Acq. Instrument	:	Wasa_LC1	Loca	tion	:	22						
Acq. Operator	:	SYSTEM	Seq.	Line	:	4						

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	10.061	BB	0.4193	6072.40137	223.25262	11.2162
2	14.924	VB R	1.1847	4.80673e4	629.66699	88.7838

Acq. Operator	:	SYSTEM	Seq. Line	:	2					
Acq. Instrument	:	Wasa_LC1	Location	:	11					
Injection Date	:	6/22/2018 6:04:59 PM	Inj	:	1					
			Inj Volume	:	4.000	μl				
Acq. Method	:	C:\Chem32\1\Data\JOE .5mL.M	2018-06-22 17-02-06	\cc	lumn1	2.5%	IPA	97.5%	hex	40min-0

Signal 5: DAD1 E, Sig=260,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	19.308	BV	0.2767	774.05029	43.28084	49.4364
2	19.933	VB	0.2932	791.69958	41.37559	50.5636

Acq. Operator	:	SYSTEM	Seq. Lin	ne	:	3					
Acq. Instrument	::	Wasa_LC1	Locatio	on	:	12					
Injection Date	:	6/22/2018 12:33:57 PM	II	nj	:	1					
			Inj Volur	me	:	4.000	μl				
Acq. Method	:	C:\Chem32\1\Data\JOE .5mL.M	2018-06-22 11-10-3	12\	co	lumn1	2.5%	IPA	97.5%	hex	40min-0

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	19.713	MM	0.3134	2289.55151	121.74718	93.1911
2	20.348	MM	0.3734	167.28326	7.46763	6.8089

3-(2-(1-(4-(*tert*-Butyl)-2,6-dimethylphenyl)pyrrolidin-2-yl)propanoyl)-4,4dimethyloxazolidin-2-one (3y)

1-(4-(*tert*-Butyl)-2,6-dimethylphenyl)pyrrolidine **1y** was reacted with 3-acryloyl-4,4dimethyloxazolidin-2-one **2r** following the **General Procedure for Stereoselective Mannich Reactions**. The ¹H NMR analysis of the crude material revealed that **3y**-*anti* and **3y**-*syn* were obtained in the ratio of 4.4:1. After purification by column chromatography (hexanes: $Et_2O =$ 19:1 then 9:1), **3y**-*anti* (46 mg, 57%) and **3y**-*syn* (10 mg, 13%) were obtained as single diastereomers. The absolute configurations of **3y**-*anti* and **3y**-*syn* were assigned in analogy, see SI Section 4.

3y-anti: ¹**H NMR** (500 MHz, CDCl₃) δ 6.99 – 6.91 (m, 2H), 4.10 (q, J = 6.8 Hz, 1H), 3.83 (dd, J = 8.2, 1.0 Hz, 1H), 3.77 – 3.67 (m, 2H), 3.38 – 3.26 (m, 1H), 2.99 – 2.89 (m, 1H), 2.26 (d, J = 3.0 Hz, 6H), 2.17 – 2.08 (m, 1H), 1.90 (dddd, J = 27.8, 23.7, 12.1, 6.6 Hz, 3H), 1.34 (s, 3H), 1.25 (d, J = 1.0 Hz, 9H), 1.12 (dd, J = 7.0, 1.0 Hz, 3H), 0.98 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 177.07, 153.57, 147.42, 142.12, 138.16, 137.05, 126.32, 124.94, 74.70, 61.68, 60.22, 52.76, 44.74, 34.01, 31.46, 30.16, 25.20, 24.40, 24.18, 19.55, 19.23, 15.34; **IR** (neat) 2963, 2871, 1774, 1700, 1483, 1459, 1373, 1305, 1221, 1176, 1084, 766 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₄H₃₆N₂O₃ (MH⁺): 401.2799; found: 401.2789; $[\alpha]^{25}_{D} = -40.6^{\circ}$ (c = 1.0, EtOH).

3y-syn: ¹**H NMR** (500 MHz, CDCl₃) δ 7.05 – 6.87 (m, 2H), 4.06 (ddd, *J* = 8.4, 5.4, 2.4 Hz, 1H), 3.87 (d, *J* = 8.3 Hz, 1H), 3.73 (dd, *J* = 12.8, 7.4 Hz, 2H), 3.41 – 3.28 (m, 1H), 2.89 (ddd, *J* = 9.5, 8.5, 6.5 Hz, 1H), 2.34 (s, 3H), 2.32 – 2.25 (m, 1H), 2.22 (s, 3H), 2.09 – 1.94 (m, 1H), 1.94 – 1.84 (m, 1H), 1.78 (ddt, *J* = 12.6, 7.2, 2.7 Hz, 1H), 1.42 (s, 3H), 1.25 (s, 9H), 1.06 (d, *J*

= 6.7 Hz, 3H), 1.00 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.79, 153.95, 147.42, 143.99, 138.31, 134.51, 126.44, 125.34, 74.92, 63.20, 60.51, 54.05, 46.42, 33.98, 31.61, 31.41, 25.52, 24.58, 24.45, 23.65, 19.54, 12.71; **IR** (neat) 2963, 2871, 1774, 1700, 1483, 1459, 1373, 1305, 1221, 1176, 1084, 766 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₄H₃₆N₂O₃ (MH⁺): 401.2799; found: 401.2789; **HPLC** (Chiralpak IA then OJ-H; 1.0%/ 99.0% isopropanol/ hexanes, 0.1 mL/min; tr = 103.3 min (major), 108.1 min (minor); 98:2 er.

3*y-anti* was transformed into the corresponding benzyl ester **5***y-anti* following previously reported literatures.^{19,20} ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.27 (m, 3H), 7.21 – 7.18 (m, 2H), 7.00 (d, J = 2.4 Hz, 1H), 6.96 (d, J = 2.4 Hz, 1H), 4.65 (d, J = 12.5 Hz, 1H), 4.54 (d, J = 12.5 Hz, 1H), 3.98 (td, J = 6.9, 5.3 Hz, 1H), 3.39 – 3.29 (m, 1H), 3.00 (q, J = 7.7 Hz, 1H), 2.43 (p, J = 6.9 Hz, 1H), 2.29 (s, 3H), 2.24 (s, 3H), 2.07 (dq, J = 12.1, 7.6 Hz, 1H), 1.98 – 1.85 (m, 2H), 1.84 – 1.73 (m, 1H), 1.25 (s, 9H), 1.13 (d, J = 7.0 Hz, 3H); **IR** (neat) 2959, 2924, 2869, 2359, 2158, 1720, 1553, 1482, 1455, 1361, 1222, 1151, 1109, 732, 696 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₆H₃₆NO₂ (MH⁺): 394.2741; found: 394.2733; $[\alpha]^{25}_D = -38.9^{\circ}$ (c = 0.5, EtOH); **HPLC** (Chiralpak OJ-H; 1.0%/ 99.0% isopropanol/ hexanes, 0.5 mL/min; tr = 7.3 min (minor), 8.3 min (major); 91:9 er.

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	7.283	BV	0.2095	2.62151e4	1917.36487	50.9982
2	8.313	VB	1.0825	2.51889e4	390.51810	49.0018

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	7.282	BV	0.2137	1.23096e4	877.13251	8.7194
2	8.068	VB	0.8255	1.28865e5	2238.84619	91.2806

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
		·				
1	103.340	MM	2.2579	4.75404e4	350.91858	51.9740
2	108.109	MM	2.4702	4.39292e4	296.39090	48.0260

Acq. Operator	:	SYSTEM	Seq.	Line	:		3				
Acq. Instrument	:	Wasa_LC1	Loca	ation	:		2				
Injection Date	:	6/23/2018 9:39:38 PM		Inj	:		1				
			Inj Vo	olume	:	4	.000	μl			
Method	:	C:\Chem32\1\Data\JOE 203	18-06-23 18-0)6-37	\c	01	umn1	18	IPA 9	99% hex	150min-0.
		1mL.M (Sequence Method)									
Last changed	:	6/23/2018 6:06:40 PM by	SYSTEM								
Method Info	:	column1 1% IPA 99% hex-	150min-0.1mL								
DAD1 A, Sig=2	54,	4 Ref=360,100 (JOE 2018-06-23 18-06-37\	002-0301.D)								
mAU							C St	2	2		
120 -								1	3701		
100								Jeg.			
80								1			
60										~	
40								8		Ö	
20								10.4	.e ^{3.}		
0					_	~		1-1	22		
l <u>1</u> ,,						-					

120

140

min

100

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	9
1	105.362	MM	2.4176	2.01022e4	138.58492	97.6433
2	110.493	MM	2.1680	485.18082	3.72993	2.3567

20 40 60 80

3-(3-(*tert***-Butyl**(**isopropyl**)**amino**)**-2-methylpropanoyl**)**-4,4-dimethyloxazolidin-2-one (4i)** *N*-Isopropyl-*N*,2-dimethylpropan-2-amine **1r** was reacted with 3-acryloyl-4,4dimethyloxazolidin-2-one **2r** following the **General Procedure for Stereoselective Mannich Reactions**. After purification by silica gel column chromatography (hexanes: $Et_3N = 98.5$: 1.5), **4i** (30.8 mg, 52%) was obtained as a colorless oil.

4i: ¹**H NMR** (600 MHz, CDCl₃) δ 4.01 – 3.93 (m, 2H), 3.83 (h, *J* = 6.9 Hz, 1H), 3.24 (hept, *J* = 6.8 Hz, 1H), 3.02 (dd, *J* = 14.2, 7.9 Hz, 1H), 2.49 (dd, *J* = 14.2, 6.3 Hz, 1H), 1.58 (s, 3H), 1.56 (s, 3H), 1.11 (d, *J* = 6.9 Hz, 3H), 1.06 (s, 9H), 1.01 (dd, *J* = 9.1, 6.8 Hz, 6H); ¹³**C NMR** (151 MHz, CDCl₃) δ 178.92, 153.92, 75.03, 60.62, 55.73, 46.50, 46.47, 41.02, 28.49, 24.85, 24.81, 23.48, 22.12, 15.70; **IR** (neat) 2969, 2874, 1774, 1703, 1460, 1366, 1305, 1223, 1177, 1082, 939, 765 cm⁻¹; **HRMS** (DART) m/z Calcd for C₁₆H₃₀N₂O₃ (MH⁺): 299.2329; found: 299.2338; [*a*]²⁵_D = -20.7° (c = 1.0, EtOH).

4i was transformed into the corresponding benzyl ester **4b** following previously reported literatures.^{19,20} **HPLC** (Chiralcel OD-H; 0.5%/99.5% isopropanol/ hexanes, 1.0 mL/min; **4b**: tr = 7.9 min (major), 8.5 min (minor); 88:12 er.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.894	MM	0.1943	1997.41541	171.33118	48.6461
2	8.503	VB	0.3002	2108.59668	119.28552	51.3539

Acq. Operator	:	SYSTEM	Seq. Line	:	2					
Acq. Instrument	:	Wasa_LC1	Location	:	42					
Injection Date	:	6/11/2018 7:49:16 PM	Inj	:	1					
			Inj Volume	:	4.000	μl				
Acq. Method	:	C:\Chem32\1\Data\JOE .M	2018-06-11 19-06-23	\cc	lumn1	1%	IPA	99%	hex	30min-0.5mL
-										

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	8.382	MF	0.2447	3562.28613	242.67213	12.4436
2	8.776	FM	0.2838	2.50651e4	1471.84851	87.5564

3-(3-((1-((*tert*-Butyldimethylsilyl)oxy)-2-methylpropan-2-yl)(isopropyl)amino)-2methylpropanoyl)-4,4-dimethyloxazolidin-2-one (4j)

1-((*tert*-Butyldimethylsilyl)oxy)-*N*-ethyl-*N*-isopropyl-2-methylpropan-2-amine **1s** was reacted with 3-acryloyl-4,4-dimethyloxazolidin-2-one **2r** following the **General Procedure for Stereoselective Mannich Reactions**. After purification by silica gel column chromatography (hexanes: $Et_3N = 98.5 : 1.5$), **4j** (40 mg, 46%) was obtained as a colorless oil.

4j: ¹**H NMR** (400 MHz, CDCl₃) δ 4.03 – 3.91 (m, 2H), 3.81 (h, *J* = 6.9 Hz, 1H), 3.37 (s, 2H), 3.26 (h, *J* = 6.7 Hz, 1H), 3.13 (dd, *J* = 14.4, 7.8 Hz, 1H), 2.64 (dd, *J* = 14.4, 6.6 Hz, 1H), 1.56 (d, *J* = 7.3 Hz, 6H), 1.09 (d, *J* = 6.8 Hz, 3H), 1.07 – 0.99 (m, 12H), 0.88 (s, 9H), 0.01 (s, 6H); ¹³C **NMR** (151 MHz, CDCl₃) δ 178.83, 153.87, 75.00, 69.38, 60.57, 59.40, 46.88, 46.31, 41.06, 25.84, 24.80, 24.34, 24.24, 23.52, 22.22, 18.15, 15.51, -5.60; **IR** (neat) 2958, 2930, 2888, 2857, 1780, 1705, 1467, 1387, 1362, 1304, 1252, 1087, 837, 774 cm⁻¹; **HRMS** (DART) m/z Calcd for C₂₂H₄₄N₂O₄Si (MH⁺): 429.3143; found: 429.3133; $[\alpha]^{25}{}_{D} = -7.3^{\circ}$ (c = 1.0, EtOH).

4j was transformed into the corresponding benzyl ester **4c** following previously reported literatures.^{19,20} **HPLC** (Chiralcel OD-H; 0.5%/ 99.5% *n*-butanol/ hexanes, 1.0 mL/min; **4c:** tr = 6.5 min (minor), 12.0 min (major); 96:4 er.

Acq. Operator	: SYSTEM	Seq. Line : 4	
Acq. Instrument	: Wasa_LC1	Location : 31	
Injection Date	: 6/19/2018 11:06:37 PM	Inj: 1	
	I	nj Volume : 4.000 µl	
Acq. Method	: C:\Chem32\1\Data\JOE 2018-06-19	21-01-56\column1 0.5%	nBuOH 99.5% hex 40min
Teet sheered	. 6/10/2019 0.01.E0 DM br CVCEEM		
Last changed	: 0/19/2010 9:01:59 PM by SISIEM		
Analysis Method	: C:\Chem32\1\Data\JOE 2018-06-19	21-01-56\column1 0.5%	nBuOH 99.5% hex 40min
	-1.0mL.M (Sequence Method)		
DAD1 C, Sig=	214,4 Ref=360,100 (JOE 2018-06-19 21-01-56\031-0401.[))	
mAU 🛔	N		27
			2
17.5	o n ∧ nà:		
15	Pro-		
12.5			
10			
7.5			
5			
5		-	

10

mir

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.522	MM	0.2577	240.53671	15.55946	47.8882
2	12.027	BB	0.2228	261.75095	17.87901	52.1118

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

```
      Acq. Operator
      : SYSTEM
      Seq. Line : 3

      Acq. Instrument
      : Was_LC1
      Location : 32

      Injection Date
      : 6/19/2018 10:25:42 PM
      Inj : 1

      Inj Volume : 4.000 µl

      Acq. Method
      : C:\Chem32\1\Data\JOE 2018-06-19 21-01-56\column1
      0.5% nBuOH 99.5% hex 40min

      Last changed
      : 6/19/2018 9:01:59 PM by SYSTEM

      Analysis Method
      : C:\Chem32\1\Data\JOE 2018-06-19 21-01-56\column1
      0.5% nBuOH 99.5% hex 40min

      -1.0mL.M
      : C:\Chem32\1\Data\JOE 2018-06-19 21-01-56\column1
      0.5% nBuOH 99.5% hex 40min
```


Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	7.880	BB	0.1410	22.67528	2.51915	3.5358
2	12.178	MF	0.2820	618.63849	36.55745	96.4642

Table SI-9. Evaluation of Amine Substrates for the Stereoselective Mannich Reactions.

4. Procedure for Large Scale Reaction, Determination of Absolute Configuration, Derivatizations of the Mannich Products and Control Experiments

4.1 Procedure for the Large Scale Reaction

We carried out the following studies in order to determine the absolute configuration of enantioenriched products 3q, 3r, 3s, 3t, 3u-(S), 3u-(R), and 3v and the relative configuration of products 3a to 3p and 4a to 4h. We first obtained product 3u-(R) in 1.63 g by the following procedure.

To a 35 mL oven-dried sealed tube was added Mg(OTf)₂ (0.25 mmol), ligand L4 (0.30 mmol), DCM (10 mL) under nitrogen atmosphere. The mixture was stirred for 30 min at 22 °C, then (*R*)-3-acryloyl-4-phenyloxazolidin-2-one **2u-(***R***)** (1.3 g, 6.0 mmol), 1-(4-methoxy-2,6-dimethylphenyl)pyrrolidine **1a** (1.02 g, 5.0 mmol), B(C₆F₅)₃ (0.25 mmol), and DCM (5.0 mL) were added to the vessel. The reaction mixture was stirred at 22 °C for 48 h. Upon completion, the solvent was removed *in vacuo*. The *anti:syn* ratio was determined to be 6.8:1:0:0 by ¹H NMR analysis of the crude reaction mixture. Purification by silica gel column chromatography using 4:1 hexanes:Et₂O gave the product as a colorless solid as a mixture of diastereomers (1.63 g, 78% yield). Further purification was carried out by silica gel column chromatography using 4:1 hexanes:Et₂O to obtain the major diastereomer in 1.47 g as a colorless oil.

We then subjected **3u**-(**R**) to the following derivatization studies which yielded **5a**, **5b**, **5c**, and **5d**.

III

4.2 Determination of the Absolute Configuration

The absolute configuration of **3u-(***R***)-major** was determined by X-ray crystallographic analysis of **5d-major**.

(*R*)-*N*-((*R*)-2-Hydroxy-1-phenylethyl)-2-((*R*)-1-(4-methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propanamide (5d-major)

(*R*)-*N*-((*R*)-2-Hydroxy-1-phenylethyl)-2-((*R*)-1-(4-methoxy-2,6-dimethylphenyl)pyrrolidin-2yl)propanamide (**5d-major**) was synthesized following a known procedure.²¹ A solution of **3u-(***R***)-major** (590 mg, 1.4 mmol) in MeOH (3.5 mL) was chilled to 0 °C, whereupon NaOMe (827 mg, 15.3 mmol) was added portionwise. The reaction was allowed to stir for 1 h, whereupon the reaction was quenched with aq. NH₄Cl (3 mL). The aqueous layer was extracted with EtOAc (3 x 5 mL). The combined organic layers were dried (MgSO₄), filtered, and concentrated *in vacuo*. The crude product was purified by silica gel chromatography (3:1 hexanes:EtOAc) to afford **5d-major** as a crystalline solid (393 mg, 97% yield). The solid material was recrystallized in 19:1 hexanes:isopropanol to obtain a single crystal, which was subjected to the X-ray crystallographic analysis. The X-ray crystallographic analysis revealed that the absolute configuration of **5d-major** is (*R*,*R*,*R*); see SI Section 8 for X-ray crystallographic data.

¹**H NMR** (600 MHz, CDCl₃) δ 7.32 (t, J = 7.5 Hz, 2H), 7.29 – 7.25 (m, 1H), 7.20 – 7.17 (m, 2H), 6.59 (d, J = 3.0 Hz, 1H), 6.56 (d, J = 3.1 Hz, 1H), 5.89 (d, J = 6.3 Hz, 1H), 4.74 (td, J = 6.0, 3.6 Hz, 1H), 3.92 (dt, J = 7.1, 5.4 Hz, 1H), 3.75 (s, 3H), 3.63 (tdd, J = 10.7, 8.9, 7.2, 3.6 Hz, 2H), 3.26 (dt, J = 8.4, 5.9 Hz, 1H), 2.98 (q, J = 7.6 Hz, 1H), 2.89 (d, J = 6.1 Hz, 1H), 2.29 (s, 3H), 2.25 (s, 3H), 2.17 (qd, J = 6.9, 5.1 Hz, 1H), 2.07 (dq, J = 11.7, 7.5, 7.1 Hz, 1H), 1.93 – 1.83 (m, 3H), 1.13 (d, J = 7.0 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 178.92, 159.42, 142.80, 141.78, 141.64, 140.38, 131.52, 130.50, 129.26, 117.31, 115.72, 69.52, 65.50, 59.15, 57.85, 55.28, 49.10, 31.64, 27.75, 22.27, 22.18, 16.66; **IR** (neat) 3383, 3305, 2952, 1644,

1602, 1601, 1512, 1492, 1466, 1261, 1154,1068, 700 cm⁻¹; **HRMS** (DART) m/z Calcd for $C_{26}H_{33}N_2O_4$ (MH⁺): 274.1596; found: 274.1588.

The absolute configuration of **3u-(***R***)-minor** was determined by X-ray crystallographic analysis of **5d-minor**.

(*R*)-*N*-((*R*)-2-Hydroxy-1-phenylethyl)-2-((*S*)-1-(4-methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propanamide (5d-minor)

(*R*)-*N*-((*R*)-2-Hydroxy-1-phenylethyl)-2-((*S*)-1-(4-methoxy-2,6-dimethylphenyl)pyrrolidin-2yl)propanamide (**5d-minor**) was synthesized following a known procedure²¹, and the Mannich product **5d-minor** was obtained as a colorless oil. Upon addition of isopropanol, **5d-minor** precipitated to a white solid. **5d-minor** was recrystallized using the vapor-vapor diffusion method, using MeOH to dissolve the product in an inner vial, and pentane as the precipitant placed in the outer vial in order for slow diffusion to occur into the inner vial. The solution was cooled to 0 °C, whereupon a crystal was obtained for X-ray crystallography. The X-ray crystallographic analysis revealed that the absolute configuration of **5d-minor** is (*R*,*R*,*S*), see SI Section 8 for X-ray crystallographic data. ¹**H NMR** (500 MHz, CDCl₃) δ 7.38 – 7.24 (m, 5H), 6.94 (d, *J* = 6.2 Hz, 1H), 6.58 – 6.50 (m, 2H), 4.99 (td, *J* = 6.5, 3.7 Hz, 1H), 3.97 – 3.88 (m, 1H), 3.88 – 3.81 (m, 1H), 3.74 (s, 3H), 3.72 – 3.67 (m, 1H), 3.33 (dq, *J* = 9.7, 3.3 Hz, 2H), 3.04 – 2.94 (m, 1H), 2.37 – 2.31 (m, 1H), 2.25 (s, 3H), 2.20 (dd, *J* = 12.3, 8.3 Hz, 1H), 2.16 (s, 3H), 2.10 – 2.02 (m, 1H), 1.97 (ddq, *J* = 20.5, 12.3, 4.4 Hz, 1H), 0.97 (dd, *J* = 7.0, 1.1 Hz, 3H).

4.3 Procedures for the Derivatization of Enantioenriched Mannich Products

Compounds 3u(R)-anti, 3u(R)-syn, and 3r could be converted into the corresponding methyl esters (5a-anti or 5a-syn).

(*R*)-2-((*R*)-1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propanoic acid (S9)

(*R*)-2-((*R*)-1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propanoic acid was prepared by following a known procedure.¹⁹ To a solution of Mannich product **3u**-(*R*)-**major** (169 mg, 0.4 mmol) in THF:H₂O (3:1, 4.8 mL) at 0 °C was added H₂O₂ (30% v/v, 0.16 mL, 1.6 mmol) and 2 M LiOH (0.28 mL, 0.56 mmol), dropwise. The mixture was stirred at 22 °C for 5 h, whereupon the reaction was quenched with NaHSO₃. The crude mixture was then concentrated *in vacuo*, then diluted with EtOAc (10 mL), H₂O (10 mL), and 1 M NaOH (5 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (3 x

15 mL). Subsequently, the aqueous layer was acidified with 6 M HCl (3 mL) and extracted with EtOAc (3 x 15 mL). The combined organic layers were washed with brine (20 mL), dried (MgSO₄), filtered. and concentrated *in vacuo* to afford **S9** as a colorless solid (102 mg, 92%) which was used without further purification. ¹H NMR (600 MHz, CDCl₃) δ 6.66 – 6.40 (m, 1H), 3.92 (dt, *J* = 9.0, 4.9 Hz, 1H), 3.71 (s, 3H), 3.34 (td, *J* = 7.9, 3.9 Hz, 1H), 3.02 (q, *J* = 8.1 Hz, 1H), 2.39 (m, 1H), 2.29 (s, 3H), 2.25 (s, 3H), 2.16 – 2.06 (m, 1H), 2.02 – 1.89 (m, 1H), 1.87 – 1.78 (m, 1H), 1.12 (d, *J* = 7.1 Hz, 3H).

Methyl (*R*)-2-((*R*)-1-(4-methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propanoate (5aanti)

Methyl (*R*)-2-((*R*)-1-(4-methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propanoate was prepared by following a known procedure.²² Acetyl chloride (0.14 mL, 2.0 mmol) was added dropwise to a solution of propanoic acid **S9** (111 mg, 0.4 mmol) in MeOH (1.8 mL). The reaction mixture was heated at reflux for 12 h. The reaction mixture was concentrated *in vacuo*, then saturated K₂CO₃ (6 mL) was added at 0 °C. The aqueous layer was extracted with DCM (3 x 10 mL) and the combined organic layers were washed with brine (15 mL), dried (MgSO₄), filtered, and concentrated *in vacuo*. The crude product was purified by silica gel column chromatography (50:1 Hexanes: Et₂O) to afford **5a** as a colorless oil (110 mg, 94% yield). **HPLC** (Chiralpak IC then Chiralcel OJ-H; 1%/ 99% isopropanol/ hexanes, 0.5 mL/min; **5a**-anti: tr = 33.1 min (major), 42.1 min (minor); >99:1 er.


```
Signal 1: DAD1 A, Sig=254,4 Ref=360,100
```

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	00	
1	33.307	BB	0.7908	3803.36499	74.34589	50.3094	
2	42.070	BB	1.9461	3756.58228	28.98495	49.6906	

Acq. Operator	:	SYSTEM	Seq. Line	:	3					
Acq. Instrument	:	Wasa_LC1	Location	:	51					
Injection Date	:	12/7/2017 10:24:43 PM	Inj	:	1					
		I	nj Volume	:	8.000	μl				
Method	:	C:\Chem32\1\Data\JOE 2017-12-07	19-50-57	\CC	olumn2	1%	IPA	99%	hexane	50min-0.
		5mL.M (Sequence Method)								
Last changed	:	12/7/2017 7:50:58 PM by SYSTEM								
Method Info	:	Column2 50min-1% iPrOH 99% hexa	ne-0.5mL							

DAD1 A, Sig=254,4 Ref=360,100 (JOE 2017-12-07 19-50-57\051-0301.D)												
mAU 140 120 100 80 60 40 		DAD1 A, Sig=2	54,4 Ref=360	,100 (JOE 20	17-12-07 19-	50-57\051-03	01.D)					
$ \begin{array}{c} 140 \\ 120 \\ 100 \\ 80 \\ 60 \\ 40 \\ 20 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 35 \\ 40 \\ 45 \\ mir \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 35 \\ 40 \\ 45 \\ mir \\ 15 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 35 \\ 40 \\ 45 \\ mir \\ 10 \\ 15 \\ 10 \\ 10 \\ 15 \\ 10 \\ 15 \\ 10 \\ 15 \\ 10 \\ 15 \\ 10 \\ 15 \\ 10 \\ 15 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	mAU -	1							K 33			
$120 \frac{1}{100} $	140 -	-							ģ			
100 80 40 20 5 10 15 20 25 30 35 40 45 mir	120 -	1							Π			
80 60 40 20 5 10 15 20 25 30 35 40 45 mir	100 -	-										
60 40 20 0 5 5 10 15 20 25 30 35 40 40 40 7 40 7 40 7 40 7 40 7 40 7 40	80 -	-										
40 20 0 5 5 10 15 20 25 30 35 40 45 mir	60 -	-										
20-1 0-1 5 10 15 20 25 30 35 40 45 mir	40 -	-										
0-1	20 -	-										
5 10 15 20 25 30 35 40 45 mir	0 -			^				J				
		5		10	15	20	25	30	35	40	45	min

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	mAU*s] [mAU]	
1	33.323	BB	0.7542	7793.69141	158.89992	100.0000

3u-(*R*)**-minor** and **3r** were subjected to analogous conditions to afford **5a**-*syn* and **5a**-*anti*.²³ **3r** was carried through as a mixture of diastereomers.

5a-syn from **3u**-(*R*)-minor: **HPLC** (Chiralpak IC then Chiralcel OJ-H; 1%/ 99% isopropanol/ hexanes, 0.5 mL/min; tr = 30.9 min (major), 32.6 min (minor); 98:2 er.

Acq. Operator: SYSTEMSeq. Line : 3Acq. Instrument: Wasa_LC1Location : 42Injection Date: 10/28/2017 4:40:15 PMInj : 1Inj Volume : 8.000 µlMethod: C:\Chem32\1\Data\JOE 2017-10-28 14-56-02\column2 1% IPA 99% hexane 50min-0.
5mL.M (Sequence Method)Last changed: 10/28/2017 2:56:04 PM by SYSTEMMethod Info: Column2 50min-1% iPrOH 99% hexane-0.5mL

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	30.930	BV	0.8350	3518.35767	65.67362	47.7326
2	32.666	VB	0.8595	3852.61475	69.41617	52.2674

Acq. Operator	: SYSTEM	Seq. Line	: 2		
Acq. Instrument	: Wasa_LC1	Location	: 21		
Injection Date	: 10/30/2017 9:45:42	PM Inj	: 1		
		Inj Volume	: 8.000 µl		
Method	: C:\Chem32\1\Data\JC	E 2017-10-30 20-52-54∖	column2 1%	IPA 99% hexane	50min-0.
	5mL.M (Sequence Met	hod)			
Last changed	: 10/30/2017 8:52:56	PM by SYSTEM			
Method Info	: Column2 50min-1% iB	PrOH 99% hexane-0.5mL			
DAD1 A, Sig=	254,4 Ref=360,100 (JOE 2017-10-30	20-52-54\021-0201.D)			
mAU			્રે ક્રિ		
700			R RPP		
600			Meg.		
1 1					

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	30.262	MM	0.8462	4.28605e4	844.14630	98.4942
2	32.330	MM	0.7432	655.23840	14.69504	1.5058

Product **5a**, derived from **3r**, was isolated as a mixture of diastereomers. The following is the HPLC trace for the mixture of **5a**-*anti* and **5a**-*syn*.

5a-anti (from 3r): HPLC (Chiralpak IC then Chiralcel OJ-H; 1%/ 99% isopropanol/ hexanes,

0.5 mL/min; **5a**-anti: tr = 33.3 min (major), 42.0 min (minor); 98:2 er.

Acq. Operator	:	SYSTEM	Seq. Line	: :	2					
Acq. Instrument	:	Wasa_LC1	Locatior	1:	11					
Injection Date	:	10/11/2017 4:19:51 PM	In	: :	1					
			Inj Volume	: :	2.000	μl				
Method	:	C:\Chem32\1\Data\JOE 2017-1	0-11 15-27-57	/\c	olumn2	1%	IPA	99%	hexane	50 min - 0.
		5mL.M (Sequence Method)								
Last changed	:	10/11/2017 3:27:59 PM by SY	STEM							
Method Info	:	Column2 50min-1% iPrOH 99%	hexane-0.5mL							

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	0 0
1	33.361	FM	0.8837	3505.75146	66.12045	63.7219
2	42.046	MM	2.0717	1995.89001	16.05654	36.2781

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

35

40

mi

30

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

10

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	33.680	MM	0.8687	2.86252e4	549.18225	97.6429
2	43.612	MM	2.0869	691.01215	5.51856	2.3571

5a-*syn* (from 3r): HPLC (Chiralpak IC then Chiralcel OJ-H; 1%/ 99% isopropanol/ hexanes, 0.5 mL/min; tr = 33.4 min (major), 31.7 min (minor); >99:1 er.

Acq. Operator	:	SYSTEM	Seq. Line	:	2					
Acq. Instrument	:	Wasa_LC1	Location	:	11					
Injection Date	:	10/11/2017 4:19:51 PM	Inj	:	1					
			Inj Volume	:	2.000	μl				
Method	:	C:\Chem32\1\Data\JOE 2017-10-	ll 15-27-57	\co	lumn2	1%	IPA	99%	hexane	50min-0.
		5mL.M (Sequence Method)								
Last changed	:	10/11/2017 3:27:59 PM by SYST	EM							
Method Info	:	Column2 50min-1% iPrOH 99% he:	kane-0.5mL							

By comparing the HPLC traces of **5a**-*anti* and **5a**-*syn* prepared as above, we determined that the absolute configuration of **3r**-*anti* is (R,R).

Procedure for the Removal of the Chiral Auxiliary to obtain Amino Alcohol 5c

(R)-2-((R)-1-(4-Mmethoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propan-1-ol (5c)

(*R*)-2-((*R*)-1-(4-Mmethoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propan-1-ol (5c) was prepared using a known procedure.²⁴ A solution of LiBH₄ in THF (2 M, 0.15 mL, 0.3 mmol) was added to a solution of imide **3u**-(*R*)-*anti* (85 mg, 0.2 mmol) in Et₂O (2.0 mL) under N₂ atmosphere at -20 °C. Subsequently, MeOH (0.3 mmol) was added dropwise at -20 °C. The reaction mixture was then allowed to stir at 0 °C for 1 h. Upon completion of the reaction (monitored by TLC), aq. NaHCO₃ (2 mL) was added slowly and was extracted with EtOAc (3 x 5 mL). The combined organic layers were dried (MgSO₄), filtered, and concentrated *in vacuo*. The crude product was purified by silica gel column chromatography (3:1 Hexanes: Et₂O) to afford **5c** as a colorless solid (48 mg, 91% yield).

¹**H** NMR (600 MHz, CDCl₃) δ 6.58 (s, 1H), 6.53 (s, 1H), 3.74 (s, 3H), 3.70 – 3.59 (m, 1H), 3.49 – 3.33 (m, 2H), 3.27 (ddd, J = 11.7, 5.7, 3.6 Hz, 1H), 2.98 (q, J = 7.8 Hz, 1H), 2.30 (s, 3H), 2.24 (s, 3H), 2.01 – 1.84 (m, 3H), 1.82 – 1.67 (m, 1H), 1.57 (dt, J = 6.5, 3.3 Hz, 1H), 1.30 (s, 1H), 0.90 (dd, J = 6.9, 1.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 156.37, 140.26, 138.58, 137.74, 114.65, 113.16, 66.70, 62.12, 55.11, 52.43, 40.16, 27.26, 25.47, 19.63, 19.33, 12.24; **HPLC** (Chiralpak AD-H; 2.5%/ 98.5% isopropanol/ hexanes, 0.5 mL/min; **5c:** tr = 29.6 min (minor), 33.4 min (major); >99:1 er.

Acq. Operator	:	SYSTEM	Seq. Line	:	2					
Acq. Instrument	:	Wasa_LC1	Location	:	3					
Injection Date	:	1/9/2018 8:29:07 PM	Inj	:	1					
			Inj Volume	:	4.000	μl				
Method	:	C:\Chem32\1\Data\JOE	2018-01-09 19-25-54	/cc	lumn1	2.5%	IPA	97.5%	hex	60min-0
		.5mL.M (Sequence Meth	iod)							
Last changed	:	1/9/2018 7:25:56 PM b	DY SYSTEM							
Method Info	:	Washing 40min-2.5% iB	PrOH 97.5% hexane-0.5	ōmI						

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	29.632	MM	0.7208	3.81312e4	881.72113	50.6034
2	33.383	MM	0.8097	3.72217e4	766.20929	49.3966

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	33.561	MM	0.8663	1.88582e4	362.82062	100.0000

Procedure for the Removal of the para-Methoxyphenyl Group

(R)-2-((R)-Pyrrolidin-2-yl)propanoic acid (5b)

(*R*)-2-((*R*)-Pyrrolidin-2-yl)propanoic acid (**5b**) was prepared using a known procedure.²⁵ A solution of ceric ammonium nitrate (CAN, 548 mg, 1.0 mmol) in H₂O (3.3 mL, 0.3 M to CAN) was added to a solution of propanoic acid **S9** (55.5 mg, 0.2 mmol) in MeCN (2 mL) at 0 °C under N₂ atmosphere. The mixture was stirred at 0 °C for 1 h, whereupon the reaction was diluted with EtOAc (2 mL) then concentrated *in vacuo* to remove volatile side products and solvent (H₂O was evaporated by azeotropic distillation with toluene). The solid residue was then filtered over a pad of Celite using EtOAc as the eluent. The filtrate was concentrated to afford **5b** as a solid (19.9 mg, 70% yield). ¹**H NMR** (500 MHz, D₂O) δ 3.75 (q, *J* = 9.1 Hz, 1H), 3.36 (dt, *J* = 19.6, 11.4 Hz, 2H), 2.90 (ddt, *J* = 13.5, 8.5, 4.1 Hz, 1H), 2.33 (td, *J* = 7.6, 7.1, 3.8 Hz, 1H), 2.17 – 2.07 (m, 1H), 2.01 (dt, *J* = 14.0, 8.4 Hz, 1H), 1.84 – 1.70 (m, 1H), 1.35 (dd, *J* = 7.2, 2.0 Hz, 3H).

4.5 Effect of Mg(OTf)₂/L4 Co-Catalyst in the Diastereoselective C–C Bond Forming Reactions

Experimental Procedure

An oven-dried sealed tube equipped with a magnetic stir bar was used. Amine **1** (0.20 mmol), (*R*)-3-acryloyl-4-phenyloxazolidin-2-one **2u-**(*R*) (0.24 mmol), B(C₆F₅)₃ (0.02 mmol), and DCM (0.3 mL) were added under nitrogen atmosphere. The reaction mixture was stirred at 22 °C for 12 h. Upon completion, the reaction mixture was concentrated *in vacuo*. The product yield was determined by the ¹H NMR analysis of the crude product using mesitylene as the internal standard.

5. Kinetics Experiment Data for B(C₆F₅)₃-Catalyzed C–C Bond Forming

General Procedure for time course reaction monitoring by *in situ* ¹H NMR

In a nitrogen-filled glove box, 1-(4-methoxy-2,6-dimethylphenyl)pyrrolidine (400 mg, 1.95 mmol), isopropyl acrylate (269 mg, 2.3 mmol), mesitylene (235 mg, 1.95 mmol), was weighed in a 20 mL dram vial, which was dissolved in C_6D_6 (1.63 mL, Stock Solution A). In another 20 mL dram vial, $B(C_6F_5)_3$ (0.125 mmol) was weighed and dissolved in C_6D_6 (1.5 mL, Stock Solution B). Using stock solutions A and B and neat C_6D_6 (in total of 0.6 mL), reaction mixtures with 0.3 mmol of 1-(4-methoxy-2,6-dimethylphenyl)pyrrolidine and the following amount of $B(C_6F_5)_3$ were prepared (2.50, 3.75, 5.00, 6.25, 7.50, and 8.75 mol%) and placed in a J-Young tube. After the J-Young tube was tightly capped with the Teflon plug, ¹H NMR spectra were acquired using a pre-acquisition delay in array mode, with a spectrum taken every 30 seconds for the length of the experiment. The data were processed using MestReNova and peak integrations were normalized using mesitylene as the internal standard.

A study was conducted following the procedure for time course reaction monitoring by ¹H NMR (using internal standard) while varying $[B(C_6F_5)_3]$ in order to find the order of the catalyst in the reaction.^{26,27}

6. Density Functional Theory (DFT) Calculations

DFT computations²⁸ were performed with the Gaussian 09 suite of programs.²⁹ Geometries were optimized with the $M06L^{30}$ functional and the def2-SVP basis set³¹ in conjunction with the corresponding Coulomb fitting basis set to speed up calculations (denoted DF; density fitting).³² An ultrafine integration grid was applied. The effect of a polar reaction medium (dichloromethane, DCM) was approximated by means of an integral equation formalism variant of the polarizable continuum model (IEFPCM).³³ Stationary points were probed through vibrational analysis and Gibbs free energy corrections were performed under standard conditions (298.15 K, 1.0 atm). Additionally, we probed the performance of various density functionals through single-point energy calculations at the geometries optimized with the level described above by means of the SMD³⁴ solvation model with DCM as solvent and the larger def2-TZVPP basis set.³¹ Since the correct density functional is not known we tested several state of the art approaches that have been developed over the past decade, all of which are have been designed to account for dispersion:^{28,35} M06L,³⁰ M06,³⁰ MN15,²⁸ⁱ ω B97XD³⁶ and PBE0-D3BJ.^{28b,37} Additionally, results with the corresponding parent functionals $\omega B97X$ and $PBE0^{28b}$ are included. In the manuscript we only report the M06L/def2-TZVPP_{DCM(SMD)}//M06L/DF-def2-SVP_{DCM(IEFPCM)} energies and the comparison of other density functionals is provided in Figures S4-S12. Images of computed geometries are shown in Figures S1-S3 and a file for convenient viewing of computed geometries with the program Mercury 3.3 is appended as separate "coordinates.xyz" file in SI Section 9.38

6.1 Challenges and Simplifications

(a) All transition state calculations have been carried out in absence of the triflate counterions, rendering the overall charge of the transition state structures +2 (Figure S1). Furthermore, the solvent has been approximated by a continuum and it is assumed that the M06L/DF-def2-SVP_{DCM(IEFPCM)} optimized structures are an appropriate reflection of the geometry in solution. Nonetheless, the exact solution geometry is likely unknown.

- (b) Initial scans of the potential energy surface have revealed a very flat region for C–C distances between 2.2 and 2.6 Å and attempts to locate a transition state were unsuccessful in most instances. We hence decided to perform a number of constrained optimizations in 0.03–0.10 Å intervals (Figures S4–S8), including the assessment of thermal corrections to the free energy (G_{corr}; see Figure S4c). The largest energy values from Figures S4–S8 have been used in the comparsion of various density functionals (Figures S9–S12).
- (c) The stereochemical model under investigation resembles molecular balance experiments designed to assess the contribution of dispersion interactions in solution.^{39,40} The challenge here lies in the accurate comparison of two kinds of molecular assemblies: that is, in some structures dispersion is a dominant contributor to the interaction energy (for example, **IX'** and **X'**; Figure S1), whereas dispersion interactions are much less pronounced in alternative geometries (for example, **XI** and **XII**; Figure S1).
- (d) Accurate electronic energies are likely not sufficient in assessing the relative energies of **IX–XII**. Equally important are thermal/entropic contributions ($G_{corr} = \Delta G - \Delta E$; see Figure S4c). The large G_{corr} -values for **IX'** and **X'** (22–23 kcal/mol) are expected and are likely the result from significantly reduced vibrational freedom due to the close alignment between the aryl ring of the substrate and the ligand. It is, however, much less clear why the G_{corr} -values for structures **IX**, **X**, **XI** and **XII** fluctuate between 17–20 kcal/mol. We assume an error bar of 1–2 kcal/mol, particularly since G_{corr} -values for the immediate sphere of solvent molecules, which has not been explicitly modeled, are unknown.
- (e) To assess the error due to basis set incompleteness associated with the def2-TZVPP basis set we performed additional single point calculations with M06L/DF-def2-QZVPP_{DCM(SMD)}. The energies relative to the separate iminium ion and Z-enolate complex increased by less than 0.3 kcal/mol, suggesting that the def2-TZVPP basis set is of sufficient quality.

6.2 The Stereochemical Model

An extended stereochemical model (than the one provided in the manuscript) for reaction of L3-Mg-enolate complex with the *in situ* generated iminium ion is shown in Figure S1 and the computed electronic (ΔE) and free energies (ΔE) at the M06L/DF-def2-TZVPP_{DCM(SMD)}//M06L/DF-def2-SVP_{DCM(IEFPCM)} level of theory are provided in Figure S2. In addition to the four modes shown in the manuscript (IX-XII), we considered two additional modes that lead to the minor diastereomer (i.e., IX' and X'), wherein the iminium ion is approaching the enolate nucleophile with its aryl ring pointing up. It appears that accurate determination of free energy values is challenging and will strongly depend on the attenuation of dispersion interactions in solution^{39,40}. For instance, we find that functionals accounting for dispersion (e.g., M06–L) clearly favor pathway **IX'** over **XI** electronically (ΔE values), particularly with the small def2-SVP basis set applied during geometry optimization (-8.8 vs -5.0 kcal/mol; grey curve in Figure S2). While correcting for basis set incompleteness reduces the energy difference to 2.0 kcal/mol (-3.3 vs -1.3 kcal/mol; red curve in Figure S2), it is only after addition of thermal corrections ($\Delta G = \Delta E + G_{corr}$) when XI becomes the most favorable mode of addition (19.1 vs 18.1 kcal/mol; blue curve in Figure S2).

6.3 Steric Influence of the *para*-Substituent on the Substrate on Diastereoselectivity

Based on these large fluctuations in the relative energy between pathways **IX**' and **XI** we decided to test experimentally the influence of substituent R on diastereoselectivity (Figure S3a). We hypothesized that increasing the size of R would lead to destabilization of mode **IX**' and result in an increase in d.r. We indeed observed a minor effect when R is altered from H to *tert*-butyl (3.8:1.0 vs 4.4:1.0 d.r.), although this change is likely too small to render **IX**' the major pathway for generation of the minor diastereomer. In addition to these experimental trends we investigated the effect of a more sizable *tert*-butyl group on the relative energy between **IX**' and **XI** computationally (labeled as **IX**'_{*t*-Bu} and **XI**_{*t*-Bu}; Figure S3b). While the electronic energy (ΔE) of **IX**' is 2.0 kcal/mol lower than for **XI** (R = OMe), **IX**'_{*t*-Bu} is destabilized by 0.8 kcal/mol relative to **XI**_{*t*-Bu}. A side view of the corresponding S-130

transition state structures for **IX'** and **IX'**_{*t*-**Bu**} illustrates the significantly increased steric demand in the latter structure. This is reflected in the longer distance between C^2 on the substrate and C^1 on the ligand in **IX'**_{*t*-**Bu**} (3.65 Å; Figure S2), as opposed to **IX'** (3.15 Å).

On the basis of these results we propose that the minor diastereomer is generated through a combination of pathways **IX'** and **IX**, with **IX** likely being favored, otherwise a much more pronounced effect on diastereoselectivity would be expected.

6.4 Comparison of Results with Various Density Functionals

A comparison of electronic energies (ΔE) with a range of density functionals is provided in Figures S9–S10, the corresponding free energy values are shown in Figures S11–S12. Various state of the art methods (M06L, M06, MN15, ωB97XD and PBE0-D3BJ) yield similar electronic energies relative to the separate iminium ion and Z-enolate complex (Figure S9–S10), while ΔE -values are significantly larger with density functionals that do not properly account for dispersion (ω B97X and PBE0). It is worth mentioning that the electronic energy of **IX**' is predicted to be lower than that of **XI** by approximately 3 kcal/mol with functionals M06L, M06, MN15, ω B97XD and PBE0-D3BJ (Figure S10), whereas **IX**' is destabilized relative to **XI** by approximately 3 kcal/mol with ω B97X and PBE0 (Figure S9). These data indicate that dispersion terms (D) contribute about 6 kcal/mol to the stabilization of IX' relative to XI. After addition of thermal contributions (G_{corr}; cf. Figure S4c) the energy values for **IX'** and **XI** are of similar magnitude with functionals M06L, M06, MN15, ω B97XD and PBE0-D3BJ (Figure S12). Based on these results and considering the expected error bar associated with density functionals (>1-2 kcal/mol),²⁸ we chose to report the single point energies with M06-L, which is also the method used during geometry optimization.

Figure S1. Geometries of computed structures [M06L/DF-def2-SVP_{DCM(IEFPCM)}] including free energy values obtained at the M06L/DF-def2-TZVPP_{DCM(SMD)}//M06L/DF-def2-SVP_{DCM(IEFPCM)} level of theory; the C–C distance between the electrophilic carbon on the iminium and the nucleophilic carbon on the enolate has been constrained to 2.3 Å.

Figure S2. Comparison of electronic and free energies for transition states IX'–XII obtained at the M06L/DF-def2-TZVPP_{DCM(SMD)}//M06L/DF-def2-SVP_{DCM(IEFPCM)} level of theory.

a Experimentally observed influcence of the size of the para substituent on the substrate on diastereoselectivity

b Computationally investigated influcence of a tert-butyl group in para position of the substrate on diastereoselectivity

Figure S3. Influence of the para-substituent on the substrate on the relative energy between IX' and XI; electronic and free energies have been assessed at the M06L/DF-def2-TZVPP_{DCM(SMD)}//M06L/DF-def2-SVP_{DCM(IEFPCM)} level of theory; the C–C distance between the electrophilic carbon on the iminium and the nucleophilic carbon on the enolate has been constrained to 2.3 Å.

Figure S4. (a) Electronic energies (ΔE), (b) free energies (ΔG) and (c) thermal corrections to the free energy (G_{corr}) at the level of optimization [M06L/DF-def2-SVP_{DCM(IEFPCM)}] as a function of the C–C distance [Å] and (d,e) single point energies with the SMD solvation model [M06L/DF-def2-SVP_{DCM(SMD)}]; $\Delta G = \Delta E + G_{corr}$.

Figure S5. (a,b) Single point electronic energies (ΔE) and free energies (ΔG) at the M06L/DF-def2-TZVPP_{DCM(SMD)} level as a function of the C–C distance [Å]; (c,d) single point electronic energies (ΔE) and free energies (ΔG) at the M06/def2-TZVPP_{DCM(SMD)} level as a function of the C–C distance [Å]; $\Delta G = \Delta E + G_{corr}$.

Figure S6. (a,b) Single point electronic energies (ΔE) and free energies (ΔG) at the M06L/DF-def2-TZVPP_{DCM(SMD)} level as a function of the C–C distance [Å]; (c,d) single point electronic energies (ΔE) and free energies (ΔG) at the MN15/def2-TZVPP_{DCM(SMD)} level as a function of the C–C distance [Å]; $\Delta G = \Delta E + G_{corr}$.

Figure S7. (a,b) Single point electronic energies (ΔE) and free energies (ΔG) at the $\omega B97XD/DF$ def2-TZVPP_{DCM(SMD)} level as a function of the C–C distance [Å]; (c,d) single point electronic energies (ΔE) and free energies (ΔG) at the $\omega B97X/def2$ -TZVPP_{DCM(SMD)} level as a function of the C–C distance [Å]; $\Delta G = \Delta E + G_{corr}$.

Figure S8. (a,b) Single point electronic energies (ΔE) and free energies (ΔG) at the PBE0-D3BJ/DF-def2-TZVPP_{DCM(SMD)} level as a function of the C–C distance [Å]; (c,d) single point electronic energies (ΔE) and free energies (ΔG) at the PBE0/def2-TZVPP_{DCM(SMD)} level as a function of the C–C distance [Å]; $\Delta G = \Delta E + G_{corr}$.

comparison of density functionals (ΔE)

Figure S9. Comparison of electronic energies (ΔE in kcal/mol) for IX'-XII obtained with several density functionals; the maximum values from the corresponding graphs in Figures S4–S8 have been used.

comparison of density functionals (ΔE)

Figure S10. Comparison of electronic energies (ΔE in kcal/mol) for IX'–XII obtained with several density functionals; expansion of the energy range between –7 and 8 kcal/mol in Figure S9.

comparison of density functionals (ΔG)

Figure S11. Comparison of free energies (ΔG in kcal/mol) for IX'–XII obtained with several density functionals; the maximum values from the corresponding graphs in Figures S4–S8 have been used.

comparison of density functionals (ΔG)

Figure S12. Comparison of free energies (ΔG in kcal/mol) for IX'–XII obtained with several density functionals; expansion of the energy range between 15 and 30 kcal/mol in Figure S11.

7. References

- Tse, M. D.; Bhor, S.; Klawonn, M.; Anilkumar, G.; Jiao, H.; Döbler, C.; Spannenberg,
 A.; Mägerlein, W.; Hugl, H.; Beller, M. *Chem. Eur. J.* 2006, *12*, 1855-1874.
- (2) Shen, H.; Zhang, X.; Liu, Q.; Pan, J.; Hu, W.; Xiong, Y.; Zhu, X. *Tetrahedron Lett.* 2015, 56, 5628-5631.
- (3) Giumanini, A. G.; Chiavari, G.; Musiani, M. M.; Rossi, P. Synthesis 2008, 743-746.
- (4) Collins, K. D.; Rühling, A.; Lied, F.; Glorius, F. Chem. Eur. J. 2014, 20, 3800-3805.
- (5) Benson, Jr, O.; Demirdji, S. H.; Haltiwanger, R. C.; Koch, T. H. J. Am. Chem. Soc. 1991, 113, 8879-8886.
- (6) Brown, H. C.; Kanth, J. V. B.; Dalvi, P. V.; Zaidlewicz, M. J. Org. Chem. 1994, 64, 6263-6274.
- (7) Rao, R.; Shewalkar, M. P.; Nandipati, R.; Yadav, J. S.; Khagga, M.; Shinde, D. B. Synth. Commun. 2012, 42, 589-598.
- (8) Simov, B. P.; Wuggenig, F.; Mereiter, K.; Andres, H.; France, J.; Schnelli, P.; Hammerschmidt, F. J. Am. Chem. Soc. 2005, 127, 13934-13940.
- (9) Burgy, G.; Tahtouh, T.; Durieu, E.; Foll-Josselin, B.; Limanton, E.; Meijer, L.; Carreaux, F.; Bazurea, J. P. Eur. J. Med. Chem. 2013, 62, 728-737.
- (10) Nam, K.-H.; Kim, H.; Choi, H. K.; Yeo, H.; Goh, M.; Yu, J.; Hahn, J. R.; Han, H.;
 Ku, B.-C.; You. N.-H. *Polymer* 2017, *108*, 502-512.
- (11) Noël, S.; Hoegy, F.; Rivault, F.; Rognan, D.; Schalk, I. J.; Mislin, G. L. A. Bioorg. Med. Chem. Lett. 2014, 24, 132-135.
- (12) Youn, S. W.; Kim, Y. H. Org. Lett. 2016, 18, 6140-6143.
- Lombardi, C.; Day, J.; Chandrasoma, N.; Mitchell, D.; Rodriguez, M. J.; Farmer, J. L.; Organ, M. G. *Organometallics* 2017, *36*, 251-254.
- (14) Miura, T.; Mikano, Y.; Murakami, M. Org. Lett. 2011, 13, 3560-3563.
- (15) Zhou, G. Q.; Yost, J. M.; Sauer, S. J.; Coltart, D. M. Org. Lett. 2007, 9, 4663-4665.
- (16) Andrade, C. K. Z.; Rocha, R. O.; Vercillo, O. E.; Silva, W. A.; Matos, R. A. F. Synlett
 2003, 15, 2351-2352.
- (17) Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc. 1984, 106, 4261-4263.
- (18) Davies, S. G.; Epstein, S. W.; Garner, A. C.; Ichihara, O.; Smith, A. D. *Tetrahedron: Asymmetry* **2002**, *13*, 1555-1565.
- (19) Kawakamie, T.; Ohtake, H.; Arakawa, H.; Okachi, T.; Imada, Y.; Murahashi, S.-I. Bull. Chem. Soc. Jpn. 2000, 73, 2423-2444.
- (20) Liao, Y.; Bhattacharjee, S.; Firestone, K. A.; Eichinger, B. E.; Paranji, R.; Anderson, C. A.; Robinson, B. H.; Reid, P. J.; Dalton, L. R. *J. Am. Chem. Soc.* 2006, *128*, 6847-6853.
- (21) Hirose, T.; Sunazuka, T.; Yamamoto, D.; Kojima, N.; Shirahata, T.; Harigaya, Y.; Kuwajima, I.; Ōmura, S. *Tetrahedron* 2005, *61*, 6015-6039.
- (22) Lim, C.-K.: Kim, S.; Kwon, I. C.; Ahn, C.-H.; Park, S. Y. Chem. Mater. 2009, 21, 5819-5825.
- (23) Ellis, D. A.; Blazel, J. K.; Tran, C. V.; Ruebsam, F.; Murphy. D. E.; Li, L.-S.; Zhao, J.; Zhou, Y.; McGuire, H. M.; Xiang, A. X.; Webber, S. E.; Zhao, Q.; Han, Q.; Kissinger, C. R.; Lardy, M.; Gobbi, A.; Showlater, R. E.; Shah, A. M.; Tsan, M.; Patel, R. A.; LeBrun, L. A.; Kamran, R.; Bartkowski, D. M.; Nolan, T. G.; Norris, D. A.; Sergeeva, M. V.; Kirkovsky, L. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 6047-6052.
- (24) Williams, D. R.; Nold, A. L.; Mullins, R. J. J. Org. Chem. 2004, 69, 5374-5382.
- (25) Jurberg, I. D.; Peng, B.; Wöstefeld, E.; Wasserloos, M.; Malide, N. Angew. Chem., Int. Ed. 2012, 51, 1950-1953.
- (26) Blackmond, D. G. J. Am. Chem. Soc. 2015, 137, 10852-10866.
- (27) Burés, J. Angew. Chem., Int. Ed. 2016, 55, 2028-2031.
- (28) For reviews on the application of DFT calculations to transition metal chemistry, see:
 (a) Cramer, C. J. & Truhlar, D. G. *Phys. Chem. Chem. Phys.* 2009, *11*, 10757-10816.
 (b) Grimme, S., Ehrlich, S. & Goerigk, L. *J. Comp. Chem.* 2011, *32*, 1456-1465. (c) Peverati, R.; Truhlar, D. G. *Phil. Trans. R. Soc. A* 2014, *372*, 20120476. For recent comparisons of density funcionals in benchmark studies, see: (d) Mardirossian, N.; Head-Gordon, M. *J. Chem. Theory Comput.* 2016, *12*, 4303-4325. (e) Mardirossian, N.; Head-Gordon, M. *J. Chem. Phys.* 2016, *144*, 214110. (f) Brauer, B.; Kesharwani, M. K.; Kozuch, S.; Martin, J. M. *Phys. Chem. Chem. Phys.* 2016, *18*, 20905-20925. (g) Weymuth, T.; Couzijn, E. P. A.; Chen, P.; Reiher, M. *J. Chem. Theory Comput.*

2014, 10, 3092-3103. (h) Zhang, W.; Truhlar, D. G.; Tang M. J. Chem. Theory Comput. 2013, 9, 3965-3977. (i) Yu, H. S.; He, X.; Li, S. L.; Truhlar, D. G. Chem. Sci. 2016, 7, 5032-5051. (j) Steinmetz, M.; Grimme S. ChemistryOpen 2013, 2, 115-124. (k) Goerigk, L.; Kruse H.; Grimme, S. ChemPhysChem 2011, 12, 3421-3433.

- (29) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09, Revision D.01*, Gaussian, Inc., Wallingford CT (2009).
- (30) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157-167.
- (31) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- (32) Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.
- (33) Scalmani, G.; Frisch, M. J. J. Chem. Phys. 2010, 132, 114110.
- (34) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378-6396.
- (35) For selected examples highlighting the importance of including treatment of dispersion interactions in modeling olefin metathesis reactions promoted by Ru carbene complexes, see: (a) Torker, S.; Merki, D.; Chen. P. J. Am. Chem. Soc. 2008, 130, 4808-4814. (b) Minenkov, Y.; Occhipinti, G.; Singstad, A.; Jensen, V. R. Dalton Trans. 2012, 41, 5526-5541. (c) Minenkov, Y.; Occhipinti, G.; Jensen, V. R. Organometallics 2013, 32, 2099-2111. (d) Khan, R. K. M.; Torker, S.; Hoveyda, A.

H. J. Am. Chem. Soc. 2014, 136, 14337–14340. (e) Torker, S.; Koh, M. J.; Khan, R.
K. M.; Hoveyda, A. H. Organometallics 2016, 35, 543-562. (f) Mikus, M. S.; Torker,
S.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2016, 55, 4997–5002.

- (36) Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.
- (37) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158-6169.
- (38) Lichtenberger, D. L.; Gladysz, J. A. Organometallics 2014, 33, 835–835. The "coordinates.xyz" file can be generated by copying all the coordinates in SI Section 9 into a text file without empty lines and changing the extension to ".xyz".
- (39) Yang, L.; Adam, C.; Nichol, G. S.; Cockroft, S. L. Nat. Chem. 2013, 5, 1006-1010.
- (40) Pollice, R.; Bot, M.; Kobylianskii, I. J.; Shenderovich, I.; Chen, P. J. Am. Chem. Soc. 2017, 139, 13126-13140.

8. NMR Spectra for New Compounds

Data file AnomeNALLAWINGAGesCourte_dat_PTLC_chi_NOESY.fet

S-178

F2 (ppm)

Piol date 2017-12-04

S-202

9. X-Ray Crystallography Data of 5d-major and 5d-minor X-Ray Crystallography Data of 5d-major

Table SI-10. Crystal data and structure refinement for $C_{24}H_{32}N_2O_3$.

•		
Identification code	$C_{24}H_{32}N_2O_3$	
Empirical formula	C24 H32 N2 O3	
Formula weight	396.51	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P21	
Unit cell dimensions	a = 9.6090(4) Å	a= 90°.
	b = 8.9512(4) Å	b=101.0730(10)°.
	c = 12.4737(5) Å	g = 90°.
Volume	1052.92(8) Å ³	
Z	2	
	S-216	
Density (calculated)	1.251 Mg/m ³	
--	---------------------------------------	
Absorption coefficient	0.653 mm ⁻¹	
F(000)	428	
Crystal size	0.560 x 0.460 x 0.280 mm ³	
Theta range for data collection	3.611 to 66.644°.	
Index ranges	-11<=h<=11, -10<=k<=10, -	
Reflections collected	19999	
Independent reflections	3701 [R(int) = 0.0307]	
Completeness to theta = 66.644°	99.2 %	
Absorption correction	Semi-empirical from equiva	
Max. and min. transmission	0.7528 and 0.6460	
Refinement method	Full-matrix least-squares on	
Data / restraints / parameters	3701 / 3 / 274	
Goodness-of-fit on F ²	1.062	
Final R indices [I>2sigma(I)]	R1 = 0.0265, WR2 = 0.0684	
R indices (all data)	R1 = 0.0265, WR2 = 0.0684	
Absolute structure parameter	0.00(4)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.202 and -0.152 e.Å ⁻³	

=k<=10, -14<=l<=14 307] om equivalents quares on F² = 0.0684 = 0.0684 e.Å-3

	x	у	Z	U(eq)	
O(1)	3778(1)	479(1)	3668(1)	19(1)	
O(2)	3233(1)	7976(1)	8767(1)	18(1)	
O(3)	5761(1)	4564(2)	9403(1)	24(1)	
N(1)	1480(1)	4266(2)	6437(1)	13(1)	
N(2)	5086(1)	7038(2)	8098(1)	12(1)	
C(1)	4082(2)	-1055(2)	3948(2)	21(1)	
C(2)	3296(2)	1369(2)	4423(1)	15(1)	
C(3)	2672(2)	2705(2)	4018(1)	15(1)	
C(4)	2108(2)	3670(2)	4694(1)	14(1)	
C(5)	2169(2)	3294(2)	5797(1)	12(1)	
C(6)	2841(2)	1965(2)	6215(1)	14(1)	
C(7)	3406(2)	1008(2)	5518(2)	15(1)	
C(8)	88(2)	3780(2)	6616(1)	17(1)	
C(9)	-193(2)	4773(2)	7542(2)	18(1)	
C(10)	1290(2)	5034(2)	8226(1)	17(1)	
C(11)	2283(2)	5042(2)	7394(1)	13(1)	
C(12)	2722(2)	6636(2)	7062(1)	13(1)	
C(13)	3703(2)	7297(2)	8049(1)	12(1)	
C(14)	6166(2)	7167(2)	9095(1)	14(1)	
C(15)	7229(2)	8400(2)	9002(1)	14(1)	
C(16)	6755(2)	9878(2)	8888(2)	19(1)	
C(17)	7683(2)	11043(2)	8816(2)	22(1)	
C(18)	9111(2)	10750(2)	8856(2)	21(1)	
C(19)	9598(2)	9294(2)	8968(1)	20(1)	
C(20)	8666(2)	8124(2)	9044(1)	16(1)	
C(21)	3003(2)	1548(2)	7406(2)	20(1)	
C(22)	1424(2)	5109(2)	4235(1)	18(1)	
C(23)	1464(2)	7650(2)	6638(1)	16(1)	
C(24)	6834(2)	5629(2)	9354(2)	18(1)	

Table SI-11. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10³) for C₂₄H₃₂N₂O₃. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S-218

O(1)-C(2)	1.380(2)
O(1)-C(1)	1.434(2)
O(2)-C(13)	1.236(2)
O(3)-C(24)	1.415(2)
O(3)-H(3O)	0.85(2)
N(1)-C(5)	1.427(2)
N(1)-C(8)	1.464(2)
N(1)-C(11)	1.466(2)
N(2)-C(13)	1.339(2)
N(2)-C(14)	1.464(2)
N(2)-H(2N)	0.854(18)
C(1)-H(1A)	0.9800
C(1)-H(1B)	0.9800
C(1)-H(1C)	0.9800
C(2)-C(7)	1.388(3)
C(2)-C(3)	1.390(2)
C(3)-C(4)	1.388(2)
C(3)-H(3A)	0.9500
C(4)-C(5)	1.407(2)
C(4)-C(22)	1.508(2)
C(5)-C(6)	1.405(2)
C(6)-C(7)	1.402(3)
C(6)-C(21)	1.510(2)
C(7)-H(7)	0.9500
C(8)-C(9)	1.523(2)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(9)-C(10)	1.532(2)
C(9)-H(9A)	0.9900
C(9)-H(9B)	0.9900
C(10)-C(11)	1.539(2)
C(10)-H(10A)	0.9900
C(10)-H(10B)	0.9900

 $\label{eq:sigma_stable} \textbf{Table SI-12.} \quad \text{Bond lengths } [\text{\AA}] \text{ and angles } [^\circ] \text{ for } C_{24}H_{32}N_2O_3.$

C(11)-C(12)	1.566(2)
C(11)-H(11)	1.0000
C(12)-C(13)	1.520(2)
C(12)-C(23)	1.523(2)
С(12)-Н(12)	1.0000
C(14)-C(15)	1.524(2)
C(14)-C(24)	1.527(2)
C(14)-H(14)	1.0000
C(15)-C(20)	1.394(2)
C(15)-C(16)	1.397(3)
C(16)-C(17)	1.386(3)
C(16)-H(16)	0.9500
C(17)-C(18)	1.389(3)
C(17)-H(17)	0.9500
C(18)-C(19)	1.383(3)
C(18)-H(18)	0.9500
C(19)-C(20)	1.393(3)
C(19)-H(19)	0.9500
C(20)-H(20)	0.9500
C(21)-H(21A)	0.9800
C(21)-H(21B)	0.9800
C(21)-H(21C)	0.9800
C(22)-H(22A)	0.9800
C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800
C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800
C(23)-H(23C)	0.9800
C(24)-H(24A)	0.9900
C(24)-H(24B)	0.9900
C(2)-O(1)-C(1)	117.77(14)
C(24)-O(3)-H(3O)	107.4(18)
C(5)-N(1)-C(8)	116.10(14)
C(5)-N(1)-C(11)	121.06(13)

C(8)-N(1)-C(11)	111.76(13)
C(13)-N(2)-C(14)	124.06(14)
C(13)-N(2)-H(2N)	117.4(14)
C(14)-N(2)-H(2N)	116.3(14)
O(1)-C(1)-H(1A)	109.5
O(1)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
O(1)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
O(1)-C(2)-C(7)	124.44(16)
O(1)-C(2)-C(3)	115.22(15)
C(7)-C(2)-C(3)	120.33(15)
C(4)-C(3)-C(2)	120.41(15)
C(4)-C(3)-H(3A)	119.8
C(2)-C(3)-H(3A)	119.8
C(3)-C(4)-C(5)	119.86(16)
C(3)-C(4)-C(22)	119.57(15)
C(5)-C(4)-C(22)	120.57(15)
C(6)-C(5)-C(4)	119.67(15)
C(6)-C(5)-N(1)	122.55(15)
C(4)-C(5)-N(1)	117.71(15)
C(7)-C(6)-C(5)	119.52(16)
C(7)-C(6)-C(21)	118.62(16)
C(5)-C(6)-C(21)	121.84(16)
C(2)-C(7)-C(6)	120.14(16)
C(2)-C(7)-H(7)	119.9
C(6)-C(7)-H(7)	119.9
N(1)-C(8)-C(9)	103.99(14)
N(1)-C(8)-H(8A)	111.0
C(9)-C(8)-H(8A)	111.0
N(1)-C(8)-H(8B)	111.0
C(9)-C(8)-H(8B)	111.0
H(8A)-C(8)-H(8B)	109.0
C(8)-C(9)-C(10)	103.33(14)

C(8)-C(9)-H(9A)	111.1
C(10)-C(9)-H(9A)	111.1
C(8)-C(9)-H(9B)	111.1
C(10)-C(9)-H(9B)	111.1
H(9A)-C(9)-H(9B)	109.1
C(9)-C(10)-C(11)	104.84(14)
C(9)-C(10)-H(10A)	110.8
С(11)-С(10)-Н(10А)	110.8
C(9)-C(10)-H(10B)	110.8
С(11)-С(10)-Н(10В)	110.8
H(10A)-C(10)-H(10B)	108.9
N(1)-C(11)-C(10)	104.45(13)
N(1)-C(11)-C(12)	110.05(13)
C(10)-C(11)-C(12)	114.55(14)
N(1)-C(11)-H(11)	109.2
C(10)-C(11)-H(11)	109.2
C(12)-C(11)-H(11)	109.2
C(13)-C(12)-C(23)	112.13(14)
C(13)-C(12)-C(11)	107.31(14)
C(23)-C(12)-C(11)	113.50(14)
C(13)-C(12)-H(12)	107.9
C(23)-C(12)-H(12)	107.9
С(11)-С(12)-Н(12)	107.9
O(2)-C(13)-N(2)	123.33(15)
O(2)-C(13)-C(12)	121.49(15)
N(2)-C(13)-C(12)	115.13(14)
N(2)-C(14)-C(15)	111.66(14)
N(2)-C(14)-C(24)	108.00(14)
C(15)-C(14)-C(24)	114.08(13)
N(2)-C(14)-H(14)	107.6
C(15)-C(14)-H(14)	107.6
C(24)-C(14)-H(14)	107.6
C(20)-C(15)-C(16)	118.26(17)
C(20)-C(15)-C(14)	122.85(16)
C(16)-C(15)-C(14)	118.87(15)

C(17)-C(16)-C(15)	121.15(17)
C(17)-C(16)-H(16)	119.4
C(15)-C(16)-H(16)	119.4
C(16)-C(17)-C(18)	119.96(18)
С(16)-С(17)-Н(17)	120.0
C(18)-C(17)-H(17)	120.0
C(19)-C(18)-C(17)	119.60(17)
C(19)-C(18)-H(18)	120.2
C(17)-C(18)-H(18)	120.2
C(18)-C(19)-C(20)	120.45(17)
C(18)-C(19)-H(19)	119.8
C(20)-C(19)-H(19)	119.8
C(19)-C(20)-C(15)	120.58(17)
С(19)-С(20)-Н(20)	119.7
C(15)-C(20)-H(20)	119.7
C(6)-C(21)-H(21A)	109.5
C(6)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
C(6)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
C(4)-C(22)-H(22A)	109.5
C(4)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(4)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
C(12)-C(23)-H(23A)	109.5
C(12)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5
С(12)-С(23)-Н(23С)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
O(3)-C(24)-C(14)	109.66(14)
O(3)-C(24)-H(24A)	109.7

C(14)-C(24)-H(24A)	109.7
O(3)-C(24)-H(24B)	109.7
C(14)-C(24)-H(24B)	109.7
H(24A)-C(24)-H(24B)	108.2

Table SI-13. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for $C_{24}H_{32}N_2O_3$. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	U ¹¹	U ²²	U33	U ²³	U13	U12	
O(1)	24(1)	17(1)	18(1)	-1(1)	9(1)	4(1)	
O(2)	15(1)	19(1)	19(1)	-7(1)	1(1)	3(1)	
O(3)	20(1)	25(1)	26(1)	14(1)	-1(1)	-4(1)	
N(1)	11(1)	14(1)	13(1)	-3(1)	1(1)	-1(1)	
N(2)	13(1)	14(1)	10(1)	-2(1)	2(1)	-1(1)	
C(1)	21(1)	16(1)	26(1)	-2(1)	7(1)	4(1)	
C(2)	12(1)	16(1)	17(1)	-3(1)	4(1)	-2(1)	
C(3)	16(1)	17(1)	11(1)	1(1)	2(1)	-2(1)	
C(4)	12(1)	14(1)	14(1)	-1(1)	-1(1)	-3(1)	
C(5)	11(1)	12(1)	13(1)	-2(1)	2(1)	-4(1)	
C(6)	13(1)	13(1)	16(1)	1(1)	2(1)	-4(1)	
C(7)	14(1)	11(1)	20(1)	2(1)	2(1)	0(1)	
C(8)	13(1)	21(1)	18(1)	-3(1)	3(1)	-3(1)	
C(9)	18(1)	18(1)	19(1)	-3(1)	8(1)	-2(1)	
C(10)	22(1)	17(1)	13(1)	-1(1)	4(1)	-3(1)	
C(11)	14(1)	12(1)	12(1)	0(1)	1(1)	0(1)	
C(12)	13(1)	13(1)	12(1)	0(1)	1(1)	-1(1)	
C(13)	15(1)	8(1)	13(1)	2(1)	2(1)	0(1)	
C(14)	12(1)	19(1)	10(1)	0(1)	2(1)	1(1)	
C(15)	16(1)	20(1)	7(1)	-2(1)	1(1)	-1(1)	
C(16)	17(1)	21(1)	17(1)	1(1)	2(1)	2(1)	
C(17)	30(1)	18(1)	18(1)	-1(1)	2(1)	-2(1)	
C(18)	25(1)	25(1)	14(1)	-3(1)	3(1)	-11(1)	
C(19)	16(1)	29(1)	15(1)	-6(1)	3(1)	-5(1)	
C(20)	16(1)	21(1)	11(1)	-4(1)	1(1)	0(1)	
C(21)	28(1)	17(1)	16(1)	4(1)	5(1)	2(1)	
C(22)	24(1)	15(1)	13(1)	0(1)	1(1)	2(1)	
C(23)	16(1)	15(1)	16(1)	1(1)	0(1)	0(1)	
C(24)	14(1)	20(1)	19(1)	5(1)	2(1)	0(1)	
				S-226			

Х	у	Z	U(eq)	
6050(30)	4010(30)	9961(19)	34(7)	
5320(20)	6540(20)	7575(16)	12(5)	
4909	-1113	4545	31	
4284	-1591	3310	31	
3263	-1512	4182	31	
2630	2960	3273	18	
3866	110	5797	18	
105	2713	6827	21	
-647	3927	5950	21	
-814	4266	7976	21	
-639	5727	7258	21	
1551	4224	8767	20	
1334	6001	8617	20	
3156	4455	7694	15	
3277	6515	6467	16	
5672	7442	9704	16	
5779	10088	8859	22	
7342	12041	8738	27	
9750	11546	8806	26	
10574	9090	8995	24	
9013	7128	9124	20	
3183	473	7492	30	
2130	1798	7664	30	
3800	2101	7834	30	
467	5178	4397	26	
1366	5128	3442	26	
1993	5957	4568	26	
980	7902	7238	24	
802	7132	6061	24	
	x 6050(30) 5320(20) 4909 4284 3263 2630 3866 105 -647 -814 -639 1551 1334 3156 3277 5672 5779 7342 9750 10574 9013 3183 2130 3800 467 1366 1993 980 802	xy6050(30)4010(30)5320(20)6540(20)4909-11134284-15913263-15122630296038661101052713-6473927-8144266-6395727155142241334600131564455327765155672744257791008873421204197501154610574909090137128318347321301798380021014675178136651281993595798079028027132	x y z 6050(30) 4010(30) 9961(19) 5320(20) 6540(20) 7575(16) 4909 -1113 4545 4284 -1591 3310 3263 -1512 4182 2630 2960 3273 3866 110 5797 105 2713 6827 -647 3927 5950 -814 4266 7976 -639 5727 7258 1551 4224 8767 1334 6001 8617 3156 4455 7694 3277 6515 6467 5672 7442 9704 5779 10088 8859 7342 12041 8738 9750 11546 8806 10574 9090 8995 9013 7128 9124 3183 473 7492 2130 1798 7664<	x y z U(eq) 6050(30) 4010(30) 9961(19) 34(7) 5320(20) 6540(20) 7575(16) 12(5) 4909 -1113 4545 31 4284 -1591 3310 31 3263 -1512 4182 31 2630 2960 3273 18 3866 110 5797 18 105 2713 6827 21 -647 3927 5950 21 -814 4266 7976 21 -639 5727 7258 21 1551 4224 8767 20 1334 6001 8617 20 3156 4455 7694 15 3277 6515 6467 16 5672 7442 9704 16 5779 10088 8859 22 7342 12041 8738 27 9

Table SI-14. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for C₂₄H₃₂N₂O₃.

H(23C)	1800	8567	6342	24
H(24A)	7368	5341	8782	22
H(24B)	7506	5662	10063	22

C(1)-O(1)-C(2)-C(7)	16.3(2)
C(1)-O(1)-C(2)-C(3)	-163.85(15)
O(1)-C(2)-C(3)-C(4)	178.00(15)
C(7)-C(2)-C(3)-C(4)	-2.2(2)
C(2)-C(3)-C(4)-C(5)	0.0(2)
C(2)-C(3)-C(4)-C(22)	-179.48(15)
C(3)-C(4)-C(5)-C(6)	2.0(2)
C(22)-C(4)-C(5)-C(6)	-178.54(15)
C(3)-C(4)-C(5)-N(1)	-175.27(14)
C(22)-C(4)-C(5)-N(1)	4.2(2)
C(8)-N(1)-C(5)-C(6)	-76.47(19)
C(11)-N(1)-C(5)-C(6)	64.5(2)
C(8)-N(1)-C(5)-C(4)	100.69(18)
C(11)-N(1)-C(5)-C(4)	-118.33(17)
C(4)-C(5)-C(6)-C(7)	-1.8(2)
N(1)-C(5)-C(6)-C(7)	175.31(15)
C(4)-C(5)-C(6)-C(21)	176.78(16)
N(1)-C(5)-C(6)-C(21)	-6.1(2)
O(1)-C(2)-C(7)-C(6)	-177.86(15)
C(3)-C(2)-C(7)-C(6)	2.3(2)
C(5)-C(6)-C(7)-C(2)	-0.3(2)
C(21)-C(6)-C(7)-C(2)	-178.97(16)
C(5)-N(1)-C(8)-C(9)	165.36(14)
C(11)-N(1)-C(8)-C(9)	20.86(19)
N(1)-C(8)-C(9)-C(10)	-32.52(18)
C(8)-C(9)-C(10)-C(11)	32.71(18)
C(5)-N(1)-C(11)-C(10)	-142.80(15)
C(8)-N(1)-C(11)-C(10)	-0.30(18)
C(5)-N(1)-C(11)-C(12)	93.78(17)
C(8)-N(1)-C(11)-C(12)	-123.72(15)
C(9)-C(10)-C(11)-N(1)	-20.34(17)
C(9)-C(10)-C(11)-C(12)	100.12(17)
N(1)-C(11)-C(12)-C(13)	-172.91(13)
	S-230

 $\label{eq:constraint} \textbf{Table SI-15.} \quad \text{Torsion angles } [^\circ] \text{ for } C_{24}H_{32}N_2O_3.$

C(10)-C(11)-C(12)-C(13)	69.79(18)
N(1)-C(11)-C(12)-C(23)	62.63(17)
C(10)-C(11)-C(12)-C(23)	-54.7(2)
C(14)-N(2)-C(13)-O(2)	16.3(3)
C(14)-N(2)-C(13)-C(12)	-161.18(15)
C(23)-C(12)-C(13)-O(2)	39.1(2)
C(11)-C(12)-C(13)-O(2)	-86.24(18)
C(23)-C(12)-C(13)-N(2)	-143.46(15)
C(11)-C(12)-C(13)-N(2)	91.25(16)
C(13)-N(2)-C(14)-C(15)	-116.08(17)
C(13)-N(2)-C(14)-C(24)	117.72(17)
N(2)-C(14)-C(15)-C(20)	-116.86(17)
C(24)-C(14)-C(15)-C(20)	5.9(2)
N(2)-C(14)-C(15)-C(16)	64.2(2)
C(24)-C(14)-C(15)-C(16)	-172.99(16)
C(20)-C(15)-C(16)-C(17)	0.1(3)
C(14)-C(15)-C(16)-C(17)	179.08(15)
C(15)-C(16)-C(17)-C(18)	0.0(3)
C(16)-C(17)-C(18)-C(19)	0.0(3)
C(17)-C(18)-C(19)-C(20)	-0.1(3)
C(18)-C(19)-C(20)-C(15)	0.3(3)
C(16)-C(15)-C(20)-C(19)	-0.2(2)
C(14)-C(15)-C(20)-C(19)	-179.18(15)
N(2)-C(14)-C(24)-O(3)	-54.14(18)
C(15)-C(14)-C(24)-O(3)	-178.91(13)

 $\label{eq:constraint} \mbox{Table SI-16.} \quad \mbox{Hydrogen bonds for $C_{24}H_{32}N_2O_3$ [Å and °].}$

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(3)-H(3O)O(2)#1	0.85(2)	1.85(2)	2.7054(18)	175(3)
N(2)-H(2N)O(1)#2	0.854(18)	2.139(19)	2.9855(19)	170.7(19)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y-1/2,-z+2 #2 -x+1,y+1/2,-z+1

Table SI-17. Crystal data and structure refinement for $C_{24}H_{32}N_2O_3(CH_3OH)$.

Identification code	C ₂₄ H ₃₂ N ₂ O ₃ (CH ₃ OH)	
Empirical formula	C25 H36 N2 O4	
Formula weight	428.56	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 7.8167(3) Å	α= 90°.
	b = 15.1723(5) Å	β= 90°.
	c = 20.1325(7) Å	$\gamma = 90^{\circ}$.
Volume	2387.66(15) Å ³	
Z	4	
Density (calculated)	1.192 Mg/m ³	
Absorption coefficient	0.642 mm ⁻¹	
	S-233	

F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 66.655° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole

928 0.420 x 0.120 x 0.080 mm³ 3.648 to 66.655°. -9<=h<=9, -18<=k<=18, -23<=l<=23 16235 4210 [R(int) = 0.0707]100.0 % Semi-empirical from equivalents 0.7533 and 0.5967 Full-matrix least-squares on F² 4210 / 3 / 291 1.026 R1 = 0.0461, wR2 = 0.1154R1 = 0.0574, wR2 = 0.12320.4(2) n/a 0.329 and -0.277 e.Å-3

Table SI-18. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 103) for $C_{24}H_{32}N_2O_3(CH_3OH)$. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	X	у	Z	U(eq)	
O(1)	6880(3)	8180(2)	6883(1)	30(1)	
O(2)	447(3)	3858(2)	6329(1)	27(1)	
O(3)	844(3)	2292(2)	4622(1)	29(1)	
N(1)	4030(3)	5621(2)	5210(1)	23(1)	
N(2)	2348(3)	2929(2)	5834(1)	23(1)	
C(1)	8564(5)	8055(2)	7136(2)	34(1)	
C(2)	6263(4)	7545(2)	6459(2)	24(1)	
C(3)	4600(5)	7669(2)	6227(2)	26(1)	
C(4)	3840(4)	7059(2)	5808(2)	24(1)	
C(5)	4759(4)	6301(2)	5619(2)	22(1)	
C(6)	6457(4)	6202(2)	5827(2)	26(1)	
C(7)	7195(4)	6821(2)	6252(2)	27(1)	
C(8)	3785(5)	5818(2)	4498(2)	29(1)	
C(9)	2138(5)	5349(2)	4310(2)	34(1)	
C(10)	1970(5)	4630(2)	4834(2)	28(1)	
C(11)	2608(4)	5086(2)	5465(2)	24(1)	
C(12)	3190(4)	4437(2)	6013(2)	22(1)	
C(13)	1866(4)	3714(2)	6078(2)	22(1)	
C(14)	1262(4)	2154(2)	5799(2)	25(1)	
C(15)	1653(5)	1492(2)	6348(2)	32(1)	
C(16)	348(6)	1077(3)	6685(2)	43(1)	
C(17)	744(8)	456(3)	7186(2)	56(1)	
C(18)	2407(8)	270(3)	7337(2)	55(1)	
C(19)	3694(8)	661(3)	6996(2)	58(1)	
C(20)	3326(6)	1271(3)	6503(2)	43(1)	
C(21)	2027(4)	7231(2)	5579(2)	31(1)	
C(22)	7494(5)	5420(2)	5612(2)	35(1)	
C(23)	3432(5)	4884(2)	6690(2)	32(1)	
C(24)	1480(4)	1717(2)	5124(2)	26(1)	
		S-235			

C(1S)	1972(5)	2149(3)	2839(2)	41(1)
O(1S)	2391(4)	1889(3)	3488(1)	59(1)

O(1)-C(2)	1.376(4)
O(1)-C(1)	1.424(4)
O(2)-C(13)	1.238(4)
O(3)-C(24)	1.422(4)
O(3)-H(3O)	0.84(2)
N(1)-C(5)	1.438(4)
N(1)-C(11)	1.469(4)
N(1)-C(8)	1.476(4)
N(2)-C(13)	1.343(4)
N(2)-C(14)	1.452(4)
N(2)-H(2N)	0.88(2)
C(1)-H(1A)	0.9800
C(1)-H(1B)	0.9800
C(1)-H(1C)	0.9800
C(2)-C(7)	1.383(5)
C(2)-C(3)	1.394(5)
C(3)-C(4)	1.385(5)
C(3)-H(3)	0.9500
C(4)-C(5)	1.408(5)
C(4)-C(21)	1.513(5)
C(5)-C(6)	1.399(5)
C(6)-C(7)	1.395(5)
C(6)-C(22)	1.501(5)
C(7)-H(7)	0.9500
C(8)-C(9)	1.519(5)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(9)-C(10)	1.523(5)
C(9)-H(9A)	0.9900
C(9)-H(9B)	0.9900
C(10)-C(11)	1.531(5)
C(10)-H(10A)	0.9900
C(10)-H(10B)	0.9900

 $\label{eq:constraint} \textbf{Table SI-19.} \quad \text{Bond lengths [Å] and angles [°] for $C_{24}H_{32}N_2O_3(CH_3OH)$.}$

C(11)-C(12)	1.547(4)
С(11)-Н(11)	1.0000
C(12)-C(13)	1.514(5)
C(12)-C(23)	1.535(5)
С(12)-Н(12)	1.0000
C(14)-C(24)	1.522(4)
C(14)-C(15)	1.524(5)
C(14)-H(14)	1.0000
C(15)-C(16)	1.378(5)
C(15)-C(20)	1.386(6)
C(16)-C(17)	1.414(7)
C(16)-H(16)	0.9500
C(17)-C(18)	1.365(8)
C(17)-H(17)	0.9500
C(18)-C(19)	1.355(8)
C(18)-H(18)	0.9500
C(19)-C(20)	1.386(6)
C(19)-H(19)	0.9500
C(20)-H(20)	0.9500
C(21)-H(21A)	0.9800
C(21)-H(21B)	0.9800
C(21)-H(21C)	0.9800
C(22)-H(22A)	0.9800
C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800
C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800
C(23)-H(23C)	0.9800
C(24)-H(24A)	0.9900
C(24)-H(24B)	0.9900
C(1S)-O(1S)	1.403(5)
C(1S)-H(1S1)	0.9800
C(1S)-H(1S2)	0.9800
C(1S)-H(1S3)	0.9800
O(1S)-H(1SO)	0.85(3)

C(2)-O(1)-C(1)	116.9(3)
C(24)-O(3)-H(3O)	106(3)
C(5)-N(1)-C(11)	119.7(2)
C(5)-N(1)-C(8)	117.6(2)
C(11)-N(1)-C(8)	110.7(3)
C(13)-N(2)-C(14)	124.9(3)
C(13)-N(2)-H(2N)	116(3)
C(14)-N(2)-H(2N)	119(3)
O(1)-C(1)-H(1A)	109.5
O(1)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
O(1)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
O(1)-C(2)-C(7)	124.0(3)
O(1)-C(2)-C(3)	116.2(3)
C(7)-C(2)-C(3)	119.8(3)
C(4)-C(3)-C(2)	120.9(3)
C(4)-C(3)-H(3)	119.5
C(2)-C(3)-H(3)	119.5
C(3)-C(4)-C(5)	119.4(3)
C(3)-C(4)-C(21)	118.1(3)
C(5)-C(4)-C(21)	122.5(3)
C(6)-C(5)-C(4)	119.4(3)
C(6)-C(5)-N(1)	118.0(3)
C(4)-C(5)-N(1)	122.6(3)
C(7)-C(6)-C(5)	120.2(3)
C(7)-C(6)-C(22)	119.0(3)
C(5)-C(6)-C(22)	120.7(3)
C(2)-C(7)-C(6)	120.1(3)
C(2)-C(7)-H(7)	120.0
C(6)-C(7)-H(7)	120.0
N(1)-C(8)-C(9)	104.9(3)
N(1)-C(8)-H(8A)	110.8

C(9)-C(8)-H(8A)	110.8
N(1)-C(8)-H(8B)	110.8
C(9)-C(8)-H(8B)	110.8
H(8A)-C(8)-H(8B)	108.8
C(8)-C(9)-C(10)	103.7(3)
C(8)-C(9)-H(9A)	111.0
C(10)-C(9)-H(9A)	111.0
C(8)-C(9)-H(9B)	111.0
C(10)-C(9)-H(9B)	111.0
H(9A)-C(9)-H(9B)	109.0
C(9)-C(10)-C(11)	102.9(3)
C(9)-C(10)-H(10A)	111.2
С(11)-С(10)-Н(10А)	111.2
C(9)-C(10)-H(10B)	111.2
C(11)-C(10)-H(10B)	111.2
H(10A)-C(10)-H(10B)	109.1
N(1)-C(11)-C(10)	101.9(3)
N(1)-C(11)-C(12)	112.3(3)
C(10)-C(11)-C(12)	113.6(3)
N(1)-C(11)-H(11)	109.6
C(10)-C(11)-H(11)	109.6
C(12)-C(11)-H(11)	109.6
C(13)-C(12)-C(23)	109.1(3)
C(13)-C(12)-C(11)	108.8(3)
C(23)-C(12)-C(11)	112.9(3)
C(13)-C(12)-H(12)	108.7
C(23)-C(12)-H(12)	108.7
C(11)-C(12)-H(12)	108.7
O(2)-C(13)-N(2)	123.9(3)
O(2)-C(13)-C(12)	121.3(3)
N(2)-C(13)-C(12)	114.8(3)
N(2)-C(14)-C(24)	109.3(3)
N(2)-C(14)-C(15)	112.4(3)
C(24)-C(14)-C(15)	109.8(3)
N(2)-C(14)-H(14)	108.4

C(24)-C(14)-H(14)	108.4
C(15)-C(14)-H(14)	108.4
C(16)-C(15)-C(20)	118.5(4)
C(16)-C(15)-C(14)	120.7(4)
C(20)-C(15)-C(14)	120.8(3)
C(15)-C(16)-C(17)	119.6(5)
C(15)-C(16)-H(16)	120.2
C(17)-C(16)-H(16)	120.2
C(18)-C(17)-C(16)	120.3(4)
C(18)-C(17)-H(17)	119.8
C(16)-C(17)-H(17)	119.8
C(19)-C(18)-C(17)	120.2(4)
C(19)-C(18)-H(18)	119.9
C(17)-C(18)-H(18)	119.9
C(18)-C(19)-C(20)	120.0(5)
C(18)-C(19)-H(19)	120.0
C(20)-C(19)-H(19)	120.0
C(15)-C(20)-C(19)	121.3(4)
C(15)-C(20)-H(20)	119.4
C(19)-C(20)-H(20)	119.4
C(4)-C(21)-H(21A)	109.5
C(4)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
C(4)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
C(6)-C(22)-H(22A)	109.5
C(6)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(6)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
C(12)-C(23)-H(23A)	109.5
C(12)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5

C(12)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
O(3)-C(24)-C(14)	109.1(3)
O(3)-C(24)-H(24A)	109.9
C(14)-C(24)-H(24A)	109.9
O(3)-C(24)-H(24B)	109.9
C(14)-C(24)-H(24B)	109.9
H(24A)-C(24)-H(24B)	108.3
O(1S)-C(1S)-H(1S1)	109.5
O(1S)-C(1S)-H(1S2)	109.5
H(1S1)-C(1S)-H(1S2)	109.5
O(1S)-C(1S)-H(1S3)	109.5
H(1S1)-C(1S)-H(1S3)	109.5
H(1S2)-C(1S)-H(1S3)	109.5
C(1S)-O(1S)-H(1SO)	111(4)

	U11	U22	U33	U23	U13
O(1)	36(1)	30(1)	26(1)	-6(1)	-2(1)
O(2)	24(1)	29(1)	28(1)	2(1)	6(1)
O(3)	30(1)	33(1)	24(1)	0(1)	-5(1)
N(1)	25(1)	25(1)	21(1)	2(1)	0(1)
N(2)	22(1)	25(1)	22(1)	0(1)	2(1)
C(1)	39(2)	37(2)	25(2)	-3(2)	-6(2)
C(2)	30(2)	25(2)	18(2)	1(1)	4(1)
C(3)	31(2)	25(2)	22(2)	2(1)	7(1)
C(4)	24(2)	26(2)	22(2)	6(1)	5(1)
C(5)	23(2)	22(1)	20(2)	4(1)	4(1)
C(6)	26(2)	23(1)	28(2)	1(1)	2(1)
C(7)	23(2)	29(2)	31(2)	4(1)	-1(1)
C(8)	33(2)	29(2)	24(2)	1(1)	2(2)
C(9)	39(2)	35(2)	27(2)	7(2)	-6(2)
C(10)	27(2)	29(2)	27(2)	5(1)	-6(1)
C(11)	21(2)	22(1)	28(2)	2(1)	-2(1)
C(12)	21(2)	27(2)	18(2)	1(1)	0(1)
C(13)	26(2)	26(2)	14(1)	4(1)	-2(1)
C(14)	24(2)	26(2)	26(2)	-2(1)	4(1)
C(15)	45(2)	28(2)	24(2)	-2(1)	6(2)
C(16)	56(3)	36(2)	37(2)	-6(2)	17(2)
C(17)	87(4)	38(2)	42(2)	-4(2)	32(3)
C(18)	91(4)	43(2)	31(2)	8(2)	-2(2)
C(19)	74(3)	58(3)	41(2)	21(2)	-9(2)
C(20)	48(2)	50(2)	32(2)	17(2)	-5(2)
C(21)	27(2)	30(2)	37(2)	2(2)	-2(2)
C(22)	27(2)	29(2)	50(2)	-9(2)	-6(2)
C(23)	41(2)	34(2)	23(2)	0(1)	1(2)
C(24)	27(2)	28(2)	22(2)	-2(1)	-2(1)
		S-243			

Table SI-20. Anisotropic displacement parameters (Å2x 103) for $C_{24}H_{32}N_2O_3(CH_3OH)$.The anisotropic displacement factor exponent takes the form:-2p2[h2 a*2U11 + ... + 2 h k a* b* U12]

C(1S)	41(2)	54(2)	28(2)	2(2)	-6(2)
O(1S)	36(2)	116(3)	26(1)	11(2)	0(1)

	Х	У	Z	U(eq)	
H(3O)	1380(50)	2170(30)	4271(15)	34	
H(2N)	3380(30)	2900(30)	5658(18)	28	
H(1A)	8861	8546	7430	50	
H(1B)	8614	7501	7385	50	
H(1C)	9378	8033	6766	50	
H(3)	3979	8178	6357	31	
H(7)	8341	6745	6399	33	
H(8A)	4758	5593	4233	35	
H(8B)	3680	6461	4425	35	
H(9A)	2220	5092	3859	40	
H(9B)	1152	5758	4325	40	
H(10A)	2687	4113	4722	33	
H(10B)	766	4438	4882	33	
H(11)	1693	5481	5643	28	
H(12)	4301	4166	5876	27	
H(14)	44	2346	5845	30	
H(16)	-810	1207	6582	52	
H(17)	-153	166	7418	67	
H(18)	2664	-136	7682	66	
H(19)	4850	519	7095	69	
H(20)	4237	1542	6267	52	
H(21A)	1227	6907	5864	47	
H(21B)	1896	7035	5119	47	
H(21C)	1783	7863	5608	47	
H(22A)	6806	5048	5317	53	
H(22B)	8517	5622	5375	53	
H(22C)	7837	5078	6003	53	
H(23A)	4289	5353	6651	49	
H(23B)	2343	5137	6837	49	
		S-245			

Table SI-21. Hydrogen coordinates (x 104) and isotropic displacement parameters(Å2x 10 3) for $C_{24}H_{32}N_2O_3(CH_3OH)$.

H(23C)	3821	4447	7016	49	
H(24A)	2706	1591	5042	31	
H(24B)	846	1153	5113	31	
H(1S1)	728	2210	2800	62	
H(1S2)	2376	1702	2524	62	
H(1S3)	2519	2715	2740	62	
H(1SO)	3420(40)	1710(40)	3510(30)	71	

C(1)-O(1)-C(2)-C(7)	-2.2(4)
C(1)-O(1)-C(2)-C(3)	178.8(3)
O(1)-C(2)-C(3)-C(4)	-178.6(3)
C(7)-C(2)-C(3)-C(4)	2.3(5)
C(2)-C(3)-C(4)-C(5)	0.5(5)
C(2)-C(3)-C(4)-C(21)	179.5(3)
C(3)-C(4)-C(5)-C(6)	-3.7(5)
C(21)-C(4)-C(5)-C(6)	177.4(3)
C(3)-C(4)-C(5)-N(1)	177.3(3)
C(21)-C(4)-C(5)-N(1)	-1.7(5)
C(11)-N(1)-C(5)-C(6)	114.7(3)
C(8)-N(1)-C(5)-C(6)	-106.1(3)
C(11)-N(1)-C(5)-C(4)	-66.2(4)
C(8)-N(1)-C(5)-C(4)	73.0(4)
C(4)-C(5)-C(6)-C(7)	4.1(5)
N(1)-C(5)-C(6)-C(7)	-176.8(3)
C(4)-C(5)-C(6)-C(22)	-177.5(3)
N(1)-C(5)-C(6)-C(22)	1.6(5)
O(1)-C(2)-C(7)-C(6)	179.1(3)
C(3)-C(2)-C(7)-C(6)	-1.9(5)
C(5)-C(6)-C(7)-C(2)	-1.3(5)
C(22)-C(6)-C(7)-C(2)	-179.7(3)
C(5)-N(1)-C(8)-C(9)	-144.3(3)
C(11)-N(1)-C(8)-C(9)	-1.7(3)
N(1)-C(8)-C(9)-C(10)	-22.6(4)
C(8)-C(9)-C(10)-C(11)	37.8(4)
C(5)-N(1)-C(11)-C(10)	166.7(3)
C(8)-N(1)-C(11)-C(10)	25.0(3)
C(5)-N(1)-C(11)-C(12)	-71.3(3)
C(8)-N(1)-C(11)-C(12)	146.9(3)
C(9)-C(10)-C(11)-N(1)	-38.2(3)
C(9)-C(10)-C(11)-C(12)	-159.2(3)
N(1)-C(11)-C(12)-C(13)	-160.5(3)

 $\label{eq:constraint} \textbf{Table SI-22.} \quad \text{Torsion angles } [^\circ] \text{ for } C_{24}H_{32}N_2O_3(CH_3OH).$

```
C(10)-C(11)-C(12)-C(13)-45.6(4)
N(1)-C(11)-C(12)-C(23) 78.2(3)
C(10)-C(11)-C(12)-C(23)-166.8(3)
C(14)-N(2)-C(13)-O(2)
                        3.2(5)
C(14)-N(2)-C(13)-C(12) -175.6(3)
C(23)-C(12)-C(13)-O(2) 51.7(4)
C(11)-C(12)-C(13)-O(2) -71.9(4)
C(23)-C(12)-C(13)-N(2) -129.4(3)
C(11)-C(12)-C(13)-N(2) 107.0(3)
C(13)-N(2)-C(14)-C(24) 135.8(3)
C(13)-N(2)-C(14)-C(15) -102.0(4)
N(2)-C(14)-C(15)-C(16) 137.3(3)
C(24)-C(14)-C(15)-C(16)-100.8(4)
N(2)-C(14)-C(15)-C(20) -45.0(5)
C(24)-C(14)-C(15)-C(20)76.9(4)
C(20)-C(15)-C(16)-C(17) 1.3(5)
C(14)-C(15)-C(16)-C(17)179.1(3)
C(15)-C(16)-C(17)-C(18) 0.3(6)
C(16)-C(17)-C(18)-C(19) -1.8(7)
C(17)-C(18)-C(19)-C(20) 1.6(8)
C(16)-C(15)-C(20)-C(19) -1.5(6)
C(14)-C(15)-C(20)-C(19)-179.2(4)
C(18)-C(19)-C(20)-C(15) 0.0(7)
N(2)-C(14)-C(24)-O(3) -65.8(3)
C(15)-C(14)-C(24)-O(3) 170.5(3)
```

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(3)-H(3O)O(1S)	0.84(2)	1.81(2)	2.656(4)	176(4)	
N(2)-H(2N)O(3)#1	0.88(2)	2.03(2)	2.903(4)	170(4)	
O(1S)-H(1SO)O(2)#1	0.85(3)	1.84(3)	2.669(4)	168(6)	
N(2)-H(2N)O(3)#1 O(1S)-H(1SO)O(2)#1	0.88(2) 0.85(3)	2.03(2) 1.84(3)	2.903(4) 2.669(4)	170(4) 168(6)	

 $\label{eq:constraint} \mbox{Table SI-23.} \quad \mbox{Hydrogen bonds for $C_{24}H_{32}N_2O_3(CH_3OH)$ [Å and °].}$

Symmetry transformations used to generate equivalent atoms: #1 x+1/2,-y+1/2,-z+1

10. Coordinates after optimization with M06-L/DF-def2-SVP $_{DCM(IEFPCM)}$

33

iminium / electronic energy: -635.485731273 a.u. / lowest freq: 54.97 cm-1

Η	-4.280944	1.246655	0.144279
С	-3.936282	0.286217	0.551150
Н	-4.644887	-0.009994	1.331258
С	-3.817817	-0.741253	-0.576945
С	-2.39465	-0.676214	-0.937741
С	-2.518176	0.421206	1.079821
N	-1.687524	-0.037129	-0.064347
Н	-4.033748	-1.776626	-0.254397
Η	-4.471043	-0.567655	-1.442443
Η	-2.220158	1.434407	1.371343
Н	-2.285955	-0.247939	1.923645
Н	-1.918058	-1.115709	-1.817480
С	-0.116865	-2.456168	0.150192
С	0.508419	-1.099676	0.049178
Н	2.50226	-1.875579	0.176402
С	1.899822	-0.972303	0.075781
С	-0.25796	0.074055	-0.061805
С	2.50452	0.287028	-0.015302
С	0.322465	1.357096	-0.146140
0	3.832047	0.486809	-0.002259
С	1.709365	1.437142	-0.129458
С	-0.501033	2.600405	-0.271456
Н	2.205077	2.405919	-0.214159
Н	-1.443575	2.436229	-0.810627
Н	-0.756687	3.018090	0.714470
Н	0.052465	3.382988	-0.803177
Η	0.574579	-3.170649	0.610551
Η	-1.03719	-2.456995	0.750503
Η	-0.375695	-2.865215	-0.838029
С	4.684045	-0.635915	0.104437

Н	5.708394	-0.252915	0.093834
Н	4.515737	-1.182990	1.044393
Н	4.550604	-1.326319	-0.742135

72

Z_enolate / electronic energy: -1993.66785348 a.u. / lowest freq: -21.17 cm-1

С	2.465444	2.799716	0.429421
Н	4.100355	4.049430	1.105293
С	3.069137	4.016079	0.753885
Ν	1.205699	2.738916	0.000517
С	2.30642	5.176581	0.613810
С	0.473495	3.842852	-0.134966
Η	2.743964	6.145398	0.858359
С	0.985546	5.105100	0.165763
Η	0.370091	5.997618	0.053741
0	-1.788514	4.479719	-0.747922
С	-3.025451	3.804817	-1.108844
С	-0.883238	3.527329	-0.614800
N	-1.212853	2.316945	-0.903987
С	-2.600509	2.343122	-1.376798
Η	-3.715091	3.907611	-0.259053
Η	-3.4494	4.317880	-1.978140
Η	-4.344773	0.609018	-2.550152
С	-4.307249	0.486124	-1.464145
Н	-5.772983	-1.096701	-1.444425
С	-5.107509	-0.472789	-0.843284
С	-3.451635	1.293380	-0.708155
С	-5.050755	-0.639071	0.540482
С	-3.396546	1.117093	0.679739
Η	-5.672993	-1.394068	1.027909
С	-4.189548	0.154812	1.300178
Н	-2.714436	1.725667	1.279743
Η	-4.132378	0.021436	2.383275
Н	-2.588725	2.140411	-2.461320

Н	5.333278	-0.278219	0.222744
Н	4.382203	-2.188735	-3.773866
Н	3.282762	-4.401987	-3.462429
С	3.886016	-2.425528	-2.830029
С	3.267971	-3.665285	-2.656228
Н	4.351806	-0.515408	-1.947113
С	3.870997	-1.487618	-1.800018
0	4.256727	1.279920	1.062850
С	4.527951	-0.145635	0.959965
С	2.631005	-3.959584	-1.451265
Н	2.148237	-4.929701	-1.310925
С	3.059154	1.456385	0.526042
С	3.238702	-1.777975	-0.584835
С	2.613812	-3.018016	-0.421861
Н	4.881525	-0.492753	1.936403
Ν	2.398443	0.422606	0.140647
С	3.182953	-0.757032	0.521433
Н	2.103064	-3.234962	0.522640
Н	2.659966	-1.216146	1.380400
Mg	0.284551	0.784349	-0.395727
С	0.957721	-1.146926	3.666367
С	0.249752	-1.897714	2.592832
С	-0.327284	-1.278108	1.526456
0	-0.324849	-0.009333	1.280021
Н	-3.601927	-2.893763	-0.316092
С	-2.62023	-3.352507	-0.515758
Н	-2.766754	-4.338781	-0.970736
0	-1.920686	-2.520560	-1.450322
С	-1.101551	-1.720043	-0.762366
С	-1.732148	-3.382844	0.733566
Ν	-1.033606	-2.079268	0.535013
0	-0.505965	-0.804381	-1.345061
С	-2.570376	-3.422222	1.995330
С	-0.752807	-4.548939	0.646362
----	-----------	-----------	-----------
Н	-3.200146	-2.526624	2.079284
Н	-3.229382	-4.301141	1.964803
Н	-1.957074	-3.498435	2.900374
Н	-0.211642	-4.533671	-0.310051
Н	-0.014667	-4.540974	1.457190
Н	-1.300673	-5.499351	0.706088
Н	0.408215	-1.132330	4.624473
Н	1.943851	-1.582705	3.898423
Н	1.120434	-0.099664	3.374699
Н	0.175759	-2.981181	2.685641
72			

 $E_enolate$ / electronic energy: -1993.65747922 a.u. / lowest freq: 20.48 cm-1

С	-3.312798	2.056740	-0.529501
Н	-5.284118	2.867472	-0.910040
С	-4.246638	3.085904	-0.657174
N	-2.040896	2.300879	-0.218219
С	-3.804034	4.392712	-0.444523
С	-1.618476	3.542999	0.006600
Н	-4.503607	5.224328	-0.538149
С	-2.473782	4.640222	-0.100353
Н	-2.108872	5.650237	0.085436
0	0.371298	4.699983	0.760889
С	1.757112	4.367927	1.044332
С	-0.203219	3.562285	0.412566
N	0.478888	2.472663	0.489009
С	1.771649	2.824154	1.082952
Н	2.369278	4.781920	0.230057
Н	2.037632	4.849976	1.986455
Н	4.17131	2.278005	2.198175
С	4.151464	2.034149	1.131933
Η	6.217607	1.418643	1.086080
С	5.300469	1.550971	0.507729

С	2.96852	2.212885	0.404141	
С	5.27495	1.230297	-0.850375	
С	2.948033	1.886575	-0.955508	
Η	6.172898	0.847118	-1.340715	
С	4.095579	1.394762	-1.577453	
Η	2.026088	2.008724	-1.528171	
Η	4.066727	1.138915	-2.639339	
Η	1.75249	2.470592	2.129984	
Н	-5.275157	-1.644300	-0.055809	
Η	-2.950414	-2.705760	3.805470	
Η	-1.618612	-4.760189	3.349164	
С	-2.693387	-2.974206	2.778380	
С	-1.946701	-4.126322	2.522340	
Η	-3.678355	-1.252297	1.934975	
С	-3.106425	-2.161953	1.725037	
0	-4.769111	0.156054	-0.941228	
С	-4.666425	-1.294768	-0.901452	
С	-1.625696	25696 -4.466482 1.1		
Η	-1.045725	-5.369239	1.000706	
С	-3.558503	0.612164	-0.672843	
С	-2.777581	-2.491027	0.404369	
С	-2.041502	-3.651416	0.155653	
Н	-5.090762	-1.687444	-1.831497	
Ν	-2.598751	-0.230437	-0.519698	
С	-3.156293	-1.571626	-0.729239	
Н	-1.785335	-3.909436	-0.874649	
Н	-2.71861	-1.972080	-1.659998	
Mg	-0.614129	0.631407	-0.099188	
С	0.482175	-3.920167	-2.325515	
С	0.329502	-2.440023	-2.355999	
С	0.704748	-1.513723	-1.435743	
0	0.430927	-0.244177	-1.490555	
Н	4.02575	-0.907668	0.588706	

С	3.463201	-1.789868	0.935932
Н	4.107436	-2.400149	1.578441
0	2.352287	-1.325407	1.717626
С	1.298784	-1.231021	0.902677
С	2.83318	-2.572255	-0.223203
Ν	1.498272	-1.886543	-0.259656
0	0.299743	-0.587785	1.246019
С	3.597915	-2.380812	-1.515294
С	2.716751	-4.040830	0.168912
Η	3.640389	-1.319844	-1.796411
Н	4.628088	-2.743769	-1.393674
Н	3.142099	-2.940237	-2.341611
Н	2.099013	-4.163301	1.070005
Н	2.29559	-4.659894	-0.628083
Н	3.717622	-4.435127	0.393115
Н	-0.341334	-4.401573	-2.874424
Н	1.407028	-4.301351	-2.798052
Н	0.454831	-4.326934	-1.304641
Η	-0.180595	-2.006970	-3.222121
105			

ts_IX' / electronic energy: -2629.17482358 a.u. / lowest freq: -268.09 cm-1

Η	3.012617	5.144450	-1.340197
Η	-1.358056	5.710499	-2.612245
Η	-1.52763	5.927383	-0.852536
0	0.263329	5.102259	-1.485753
С	-1.175437	5.246202	-1.636614
С	3.049742	4.055704	-1.307709
С	4.262707	3.363916	-1.298858
С	0.494273	3.810149	-1.369921
С	1.874986	3.303264	-1.289400
Н	-1.653593	4.779959	1.053285
С	-1.725811	3.807319	-1.524035
Н	-2.207411	3.506476	-2.468264

С	-2.52564	4.147442	0.859700
Ν	-0.505956	2.996970	-1.374010
С	-2.70632	3.563542	-0.400239
Ν	1.898109	1.972273	-1.243999
С	-3.459911	3.945873	1.873781
С	3.052091	1.307622	-1.238182
С	-3.817319	2.740387	-0.612022
Н	-3.96427	2.276607	-1.592615
С	-4.57828	3.143145	1.645184
С	-4.748389	2.529028	0.405009
Mg	0.018787	0.885577	-1.196936
Н	-5.313129	2.989539	2.438585
С	2.831109	-0.146948	-1.204365
Н	-5.619386	1.895673	0.221577
0	-1.140874	0.338903	0.292869
Ν	1.640077	-0.635861	-1.148558
0	-1.258747	-0.225754	-2.300052
С	-2.035203	-0.524510	0.497325
Н	1.509036	-1.550173	-3.756942
С	-2.06492	-1.057690	-1.894593
С	3.297463	-2.312507	-1.270890
С	1.77656	-2.095850	-1.091726
Н	3.560216	-2.764802	-2.237154
Н	-5.016893	-0.719873	-1.260371
Ν	-2.441061	-1.339714	-0.600248
С	0.931303	-2.427381	-3.449135
Н	-4.977841	-0.962879	0.500315
0	-2.726691	-1.808041	-2.758692
С	0.932074	-2.823802	-2.106043
С	-4.917993	-1.475124	-0.467560
Н	0.197768	-2.816344	-5.437787
С	0.197215	-3.138715	-4.394428
С	-3.627111	-2.267887	-0.624597

С	-3.489326	-2.792727	-2.058681
Н	-5.777283	-2.154582	-0.541844
Н	-4.453562	-2.911489	-2.565224
С	0.189459	-3.946385	-1.727480
Н	-3.872791	-3.213611	1.348958
Н	0.189507	-4.268430	-0.681226
С	-3.528118	-3.442900	0.335235
С	-0.533887	-4.264838	-4.011033
Н	-2.937381	-3.742562	-2.108254
Н	-2.504764	-3.839993	0.383067
С	-0.533535	-4.670154	-2.677239
Н	-1.103575	-4.826574	-4.754436
Н	-4.176342	-4.250299	-0.032515
Н	-1.099026	-5.553721	-2.371177
Η	-3.314356	4.419021	2.847387
Н	5.201897	3.917874	-1.320427
С	4.28048	1.968319	-1.275561
Н	5.214302	1.407453	-1.283647
0	3.859561	-0.974952	-1.247189
Н	3.765744	-2.893040	-0.466656
Η	1.461235	-2.417684	-0.084578
С	-2.564608	0.413380	2.741690
С	-2.575212	-0.728879	1.778699
Н	-1.670257	0.438019	3.382330
Н	-2.578611	1.381283	2.221298
Н	-3.438888	0.377783	3.404986
Н	-3.382096	-1.449844	1.883141
Η	-2.256492	-1.315356	4.874574
С	-1.401567	-2.000933	4.796254
Η	-1.394024	-2.608387	5.708594
С	-1.508215	-2.837718	3.524048
С	-0.80048	-1.993483	2.514298
С	-0.106269	-1.226480	4.610636

Ν	0.075343	-1.190294	3.142445
Н	-0.939308	-3.781174	3.619931
Н	-2.53082	-3.122438	3.253243
Н	-0.121916	-0.210723	5.031225
Н	0.765521	-1.740355	5.052044
Н	-0.538149	-2.347543	1.514111
С	2.056593	-3.191382	2.645251
С	2.327157	-1.738383	2.399025
Н	4.366247	-2.108245	1.829878
С	3.5998	-1.344326	1.969166
С	1.335527	-0.757682	2.604338
С	3.891231	0.006700	1.761021
С	1.624644	0.613386	2.428612
0	5.0858	0.470381	1.340935
С	2.899177	0.968103	1.989352
С	0.624811	1.690269	2.698453
Н	3.152178	2.021383	1.842885
Н	0.232304	1.642166	3.724756
Н	1.075551	2.682455	2.569736
Н	-0.240413	1.613240	2.025500
Н	2.985898	-3.772604	2.642963
Н	1.562002	-3.365801	3.611114
Н	1.401736	-3.638304	1.880017
С	6.1401	-0.452851	1.153613
Н	7.012897	0.129307	0.842402
Н	6.380253	-0.985088	2.086359
Н	5.901596	-1.186898	0.368447
105			
ts_X	/ electronic e	nergy: -2629.1	6434168 a.u. / lowest freq: -334.36 cm-1
С	3.434359	1.225466	-1.323674
Η	5.594297	1.338844	-1.364001
С	4.65842	1.894172	-1.303235
Ν	2.275243	1.878243	-1.246726

S-258

С	4.636574	3.284675	-1.191081
С	2.250028	3.205875	-1.138380
Н	5.57312	3.842988	-1.167229
С	3.420106	3.964837	-1.104424
Н	3.376504	5.049805	-1.010191
0	0.634924	5.008722	-1.098767
С	-0.806786	5.159119	-0.997180
С	0.869733	3.710984	-1.069205
N	-0.130354	2.898757	-1.028102
С	-1.350417	3.721348	-1.120650
Н	-1.023159	5.630253	-0.028198
Н	-1.132473	5.831537	-1.797171
Н	-3.805308	2.652942	-1.588040
С	-3.610003	2.775627	-0.517947
Н	-5.531237	1.992167	0.087588
С	-4.573708	2.401332	0.419601
С	-2.395894	3.334974	-0.104390
С	-4.326239	2.565555	1.782217
С	-2.169754	3.522878	1.264555
Н	-5.079022	2.268316	2.515895
С	-3.121513	3.130142	2.203424
Н	-1.234694	3.977348	1.604944
Н	-2.924884	3.273161	3.268755
Н	-1.772523	3.552705	-2.125906
Н	3.793982	-2.715448	-2.617551
Η	-0.677961	-2.645364	-4.956673
Н	-1.464883	-4.885075	-4.198812
С	-0.289193	-3.079473	-4.032536
С	-0.727702	-4.334810	-3.609856
Η	0.995149	-1.394950	-3.617299
С	0.64972	-2.376112	-3.278916
0	4.234115	-1.076242	-1.427506
С	3.629338	-2.393714	-1.578797

С	-0.221808	-4.882978	-2.431015
Н	-0.559719	-5.865557	-2.093749
С	3.219545	-0.228532	-1.385423
С	1.150236	-2.911980	-2.087126
С	0.709653	-4.173744	-1.674363
Н	4.14213	-3.083490	-0.899855
Ν	2.025029	-0.702992	-1.357587
С	2.143619	-2.155298	-1.246326
Н	1.092944	-4.599482	-0.742255
Н	1.95315	-2.405490	-0.183896
Mg	0.360208	0.740604	-1.231396
С	-0.965441	-3.209999	1.264986
С	-1.977174	-2.176809	0.910809
С	-1.688817	-1.209387	-0.070874
0	-0.561585	-0.653985	-0.154870
Н	-5.20592	0.439613	-1.698787
С	-4.636183	-0.382930	-2.156928
Н	-5.263909	-0.870667	-2.910593
0	-3.494247	0.179036	-2.808073
С	-2.430412	0.046827	-2.026595
С	-4.079802	-1.357930	-1.112941
Ν	-2.714864	-0.747383	-0.940708
Ο	-1.374729	0.589674	-2.334515
С	-4.959416	-1.305105	0.128669
С	-3.952914	-2.760770	-1.690993
Н	-4.773968	-0.396240	0.717504
Н	-6.012204	-1.288603	-0.186429
Н	-4.84992	-2.178231	0.780646
Н	-3.431359	-2.748071	-2.658189
Н	-3.405016	-3.432060	-1.017314
Н	-4.952025	-3.187476	-1.850258
Н	-1.073919	-3.539275	2.309237
Н	-1.084038	-4.115392	0.646406

Η	0.058457	-2.840259	1.119972
Н	-3.010278	-2.512090	0.984797
Н	-1.879284	-0.139193	5.435576
С	-2.016049	-1.122960	4.962153
Н	-2.580307	-1.749949	5.662744
С	-2.695589	-0.966363	3.603387
С	-1.544908	-0.753693	2.665200
С	-0.665226	-1.712847	4.601331
N	-0.396307	-1.108867	3.276417
Н	-3.249104	-1.879820	3.334698
Η	-3.419595	-0.141586	3.551959
Η	0.145557	-1.444647	5.291254
Η	-0.700966	-2.812021	4.538693
Η	-1.505268	0.049748	1.933265
С	1.744584	-3.158442	3.392946
С	1.938525	-1.780613	2.840087
Η	3.983155	-2.227191	2.362790
С	3.212827	-1.454363	2.352386
С	0.924836	-0.797716	2.826726
С	3.499996	-0.171250	1.886662
С	1.231071	0.527422	2.427253
0	4.697008	0.214386	1.390706
С	2.507087	0.811752	1.949963
С	0.264243	1.658807	2.555991
Η	2.768348	1.836217	1.672709
Η	-0.417046	1.733091	1.694943
Η	-0.374211	1.571437	3.447163
Η	0.797358	2.616452	2.617477
Η	1.779315	-3.156140	4.493019
Н	0.787612	-3.608180	3.109620
Η	2.543466	-3.829750	3.056177
С	5.773308	-0.698686	1.450399
Н	6.642019	-0.188213	1.022803

Н	5.999189	-0.983795	2.489292	
Н	5.573684	-1.608906	0.865031	
105				
ts_IX	/ electronic e	nergy: -2629.1	6102555 a.u. / lowest freq: -270.98 cm-	1
Н	4.596338	-4.722589	-2.281451	
Н	4.433831	-4.581214	2.318413	
Н	2.845729	-5.305109	1.954665	
0	3.825532	-4.443927	0.346972	
С	3.499016	-4.443860	1.763982	
С	4.23251	-3.722777	-2.517525	
С	4.392236	-3.166157	-3.787981	
С	3.383433	-3.298860	-0.131976	
С	3.596885	-2.948598	-1.546590	
Н	0.704165	-4.648905	1.255787	
С	2.821608	-3.075971	2.007999	
Н	3.454372	-2.440070	2.648671	
С	0.474138	-4.015080	2.118291	
Ν	2.805651	-2.470631	0.668189	
С	1.443924	-3.138159	2.621164	
Ν	3.14404	-1.724773	-1.813393	
С	-0.78043	-4.099264	2.716808	
С	3.314758	-1.179882	-3.016373	
С	1.122999	-2.322606	3.710159	
Н	1.875565	-1.632805	4.104037	
С	-1.084329	-3.298365	3.819472	
С	-0.134966	-2.402304	4.308761	
Mg	2.144998	-0.588735	-0.233675	
Н	-2.065477	-3.370908	4.293932	
С	2.808947	0.202304	-3.054622	
Н	-0.368889	-1.772261	5.170042	
0	0.300196	-0.250976	0.394094	
Ν	2.249345	0.731789	-2.020742	
0	2.639702	0.662975	1.263643	

С	-0.271624	0.502418	1.234501
Н	4.09302	2.142714	-0.819370
С	1.904075	1.409722	1.902166
С	2.50183	2.267947	-3.791280
С	1.855112	2.093337	-2.398478
Н	3.387461	2.918469	-3.777863
Н	0.643639	0.929020	4.573250
N	0.53044	1.484881	1.900076
С	3.451355	3.014045	-0.664581
Н	-1.066919	0.846803	4.094795
0	2.432389	2.270088	2.758250
С	2.256332	3.134107	-1.383012
С	-0.225479	1.528415	4.267944
Η	4.748095	3.869701	0.828585
С	3.82061	3.985555	0.263779
С	0.098962	2.371524	3.041809
С	1.408941	3.137979	3.246603
Η	-0.490682	2.184903	5.107124
Η	1.614253	3.366544	4.297996
С	1.449157	4.258210	-1.170378
Н	-1.99504	2.939037	2.650823
Η	0.522316	4.375332	-1.739028
С	-0.989204	3.370539	2.699454
С	3.004627	5.096647	0.477733
Н	1.446521	4.067857	2.657876
Н	-0.767918	3.890328	1.757662
С	1.819323	5.233984	-0.245558
Н	3.293594	5.857147	1.206732
Н	-1.016856	4.132907	3.490300
Н	1.178492	6.105076	-0.090204
Н	-1.52522	-4.794140	2.322708
Н	4.884252	-3.740396	-4.573861
С	3.941442	-1.871667	-4.053170

Η	4.07575	-1.408515	-5.030554
0	2.950242	0.931309	-4.144454
Н	1.814327	2.613208	-4.570061
Н	0.755029	2.107309	-2.492084
С	-2.334774	-0.889924	1.251468
С	-1.6561	0.430990	1.451761
Η	-3.425875	-0.796413	1.307031
Н	-2.088409	-1.352853	0.283605
Η	-2.037024	-1.616325	2.024646
Η	-2.094291	1.083770	2.205311
Н	-2.678207	3.812520	0.630169
С	-2.677361	3.604283	-0.448598
Н	-2.573425	4.565653	-0.965477
С	-1.577294	2.607193	-0.798714
С	-2.237627	1.287086	-0.602241
С	-3.946861	2.865545	-0.827585
N	-3.560048	1.448307	-0.715791
Н	-1.316808	2.682751	-1.871088
Н	-0.639242	2.727207	-0.239485
Н	-4.809587	3.093355	-0.188055
Η	-4.25781	3.049553	-1.870781
Η	-1.78271	0.345479	-0.918555
С	-3.415273	-0.186501	-3.108479
С	-4.474991	-0.377168	-2.068139
Η	-5.41107	-1.979728	-3.147561
С	-5.446275	-1.370077	-2.243669
С	-4.524219	0.414202	-0.907599
С	-6.449411	-1.563573	-1.288419
С	-5.531625	0.236284	0.064665
0	-7.419669	-2.494266	-1.387521
С	-6.48093	-0.758783	-0.141476
С	-5.576742	1.067864	1.309198
Η	-7.265429	-0.935783	0.597240

Η	-6.227324	1.948100	1.188046
Η	-5.985728	0.495963	2.151585
Н	-4.584376	1.439239	1.601557
Н	-3.740701	-0.577853	-4.079676
Н	-3.147236	0.870415	-3.247348
Н	-2.486792	-0.720714	-2.850428
С	-7.43661	-3.326421	-2.526452
Н	-8.290299	-4.000844	-2.410842
Η	-7.564551	-2.745626	-3.453216
Η	-6.516538	-3.926209	-2.606706
105			

ts_X / electronic energy: -2629.16030608 a.u. / lowest freq: -275.30 cm-1

С	-3.364947	-2.783626	-2.062207
Н	-4.068522	-4.512164	-3.159769
С	-4.119922	-3.429888	-3.041333
N	-3.417693	-1.463102	-1.894112
С	-4.944019	-2.643239	-3.848501
С	-4.219183	-0.711625	-2.646081
Н	-5.548507	-3.111711	-4.626045
С	-5.010584	-1.262293	-3.654755
Н	-5.660739	-0.629873	-4.259086
0	-5.048237	1.563674	-2.714741
С	-4.758183	2.830307	-2.062360
С	-4.19157	0.695334	-2.211981
N	-3.396629	1.079637	-1.273704
С	-3.791428	2.454066	-0.923482
Н	-4.312742	3.496249	-2.815165
Н	-5.705955	3.261219	-1.725014
Н	-3.003462	3.606080	1.397538
С	-2.377096	3.917996	0.555763
Н	-1.17886	5.264268	1.746680
С	-1.355922	4.849089	0.751580
С	-2.636328	3.401426	-0.719256

С	-0.584442	5.275665	-0.328685
С	-1.837452	3.815494	-1.792952
Н	0.201401	6.020001	-0.181005
С	-0.823455	4.751748	-1.600159
Н	-2.017798	3.415869	-2.795584
Н	-0.217126	5.077182	-2.448853
Н	-4.338081	2.383408	0.033184
Н	-2.086175	-5.473937	0.845902
Н	-3.081257	-2.192467	4.506972
Н	-1.113222	-2.818438	5.902343
С	-2.188448	-2.614011	4.039105
С	-1.087404	-2.965011	4.820246
Н	-3.02967	-2.541175	2.054230
С	-2.156933	-2.805431	2.657852
0	-2.266171	-4.712273	-1.070117
С	-1.445931	-4.976094	0.103702
С	0.049237	-3.499569	4.212783
Н	0.916148	-3.775055	4.817392
С	-2.461758	-3.407226	-1.080538
С	-1.018702	-3.335042	2.039623
С	0.084585	-3.677780	2.830807
Н	-0.639652	-5.655288	-0.190406
Ν	-1.84778	-2.683296	-0.211194
С	-0.974601	-3.574995	0.552021
Н	0.979336	-4.094763	2.358984
Н	0.059859	-3.395620	0.206275
Mg	-2.191379	-0.508522	-0.311282
С	2.323875	-1.261135	0.675198
С	1.748723	-0.006730	1.260914
С	0.368045	0.213731	1.150382
0	-0.286824	-0.195813	0.148775
Н	-1.060243	3.320220	3.600450
С	-1.03451	2.264948	3.910999

Η	-1.158597	2.210825	4.997892
0	-2.134017	1.592799	3.293108
С	-1.708507	0.949918	2.214582
С	0.218564	1.538056	3.410010
N	-0.337831	0.986094	2.124662
0	-2.522958	0.405313	1.475194
С	1.326087	2.557411	3.224821
С	0.591571	0.404001	4.355792
Н	1.047957	3.307510	2.472046
Η	1.471942	3.087414	4.176235
Н	2.294735	2.121073	2.957380
Н	-0.272156	-0.247438	4.550399
Н	1.401414	-0.221548	3.962362
Н	0.924949	0.819450	5.315878
Н	3.418284	-1.218250	0.612265
Н	2.079454	-2.141629	1.293744
Н	1.941067	-1.471394	-0.334965
Η	2.261691	0.377269	2.141347
Н	2.554037	4.604752	-0.331730
С	2.681013	3.573212	0.017784
Η	2.728783	3.608302	1.114964
С	1.562811	2.642274	-0.442698
С	2.237087	1.319293	-0.553794
С	3.938114	2.923151	-0.532907
N	3.551578	1.511772	-0.697294
Η	0.662987	2.645788	0.188937
Η	1.21655	2.911579	-1.457456
Η	4.226156	3.312327	-1.524808
Η	4.816799	3.019977	0.118631
Η	1.763082	0.466574	-1.043234
С	5.678349	0.701058	1.077721
С	5.541799	0.150607	-0.307852
Н	7.268503	-1.108408	-0.101124

С	6.463118	-0.796832	-0.767751
С	4.491532	0.539967	-1.155906
С	6.342666	-1.342545	-2.049852
С	4.359923	0.008460	-2.457476
0	7.184918	-2.260769	-2.564548
С	5.291755	-0.933816	-2.881966
С	3.253218	0.430251	-3.372737
Н	5.225386	-1.362813	-3.884005
Н	2.317599	-0.112388	-3.164043
Η	3.025205	1.501922	-3.287790
Н	3.507494	0.224590	-4.419096
Н	6.337648	1.583021	1.102022
Н	4.713632	1.008793	1.504019
Η	6.126206	-0.037528	1.754365
С	8.264495	-2.698958	-1.768901
Н	8.821158	-3.426714	-2.366871
Η	8.935978	-1.868384	-1.501249
Η	7.917228	-3.187308	-0.844956
105			

ts_XI / electronic energy: -2629.16825040 a.u. / lowest freq: -275.91 cm-1

С	-3.038962	-2.690639	-1.295570
Н	-3.211177	-4.437890	-2.562970
С	-3.594733	-3.444762	-2.329470
N	-3.493622	-1.476558	-0.990053
С	-4.649986	-2.879273	-3.048357
С	-4.502124	-0.934761	-1.669583
Н	-5.109632	-3.436112	-3.865718
С	-5.119009	-1.604279	-2.727326
Н	-5.939536	-1.141835	-3.275716
0	-5.728222	1.158717	-1.762747
С	-5.725506	2.433087	-1.059765
С	-4.836744	0.402600	-1.151658
Ν	-4.252614	0.861900	-0.100480

С	-4.797896	2.201880	0.152995
Η	-5.354147	3.193812	-1.760205
Н	-6.760233	2.671296	-0.792816
Η	-4.237091	3.669526	2.375468
С	-3.53013	3.864292	1.564277
Н	-2.373913	5.279409	2.712025
С	-2.482759	4.766109	1.754102
С	-3.687481	3.205392	0.341414
С	-1.583808	5.015739	0.718411
С	-2.772262	3.452144	-0.689764
Н	-0.769576	5.730719	0.861982
С	-1.728003	4.354291	-0.503756
Н	-2.866683	2.922377	-1.643231
Н	-1.022252	4.544631	-1.316703
Н	-5.385931	2.155195	1.084301
Η	-0.575326	-5.089016	1.136989
Н	-2.124116	-3.930920	5.246129
Н	-0.414983	-2.587108	6.459268
С	-1.342163	-3.409848	4.689683
С	-0.384039	-2.655862	5.369881
Н	-2.065094	-4.086904	2.776000
С	-1.305022	-3.499036	3.299723
0	-1.289306	-4.225269	-0.604122
С	-0.277558	-4.294381	0.438649
С	0.611675	-1.991341	4.655194
Н	1.363142	-1.398123	5.180608
С	-1.905207	-3.067999	-0.435644
С	-0.307825	-2.835685	2.575094
С	0.646545	-2.083618	3.264628
Н	0.673674	-4.573356	-0.029241
N	-1.469175	-2.261368	0.468965
С	-0.284074	-2.887235	1.069748
Н	1.420467	-1.556203	2.698438

Н	0.594042	-2.308039	0.727103
Mg	-2.492617	-0.294180	0.566492
С	0.358375	1.489334	-2.875101
С	0.863733	1.355895	-1.478211
С	-0.045086	1.187163	-0.423079
0	-1.188452	0.678075	-0.587004
Н	0.632747	3.669631	2.760608
С	1.107725	2.676875	2.749020
Η	1.907181	2.651806	3.497302
0	0.116071	1.710136	3.109002
С	-0.384079	1.169369	2.008909
С	1.581489	2.276631	1.348171
Ν	0.35481	1.515978	0.906380
0	-1.376877	0.449923	2.078353
С	1.895641	3.532601	0.549651
С	2.777914	1.340388	1.423465
Н	0.984106	4.038329	0.208370
Η	2.438908	4.228949	1.203653
Η	2.546858	3.350227	-0.312870
Η	2.584028	0.483246	2.084494
Η	3.062258	0.963398	0.432410
Н	3.648193	1.879045	1.823156
Η	1.135263	1.256234	-3.617461
Η	-0.507214	0.840196	-3.067201
Η	0.031582	2.520566	-3.091858
Η	1.811476	1.843044	-1.255727
Η	1.017601	-2.621703	-4.047030
С	1.230203	-1.659189	-3.567587
Η	0.782038	-0.886608	-4.204574
С	0.664116	-1.577838	-2.146127
С	1.688611	-0.789826	-1.404321
С	2.727887	-1.422633	-3.405072
Ν	2.848061	-0.817791	-2.070745

Н	-0.345065	-1.144848	-2.078372
Н	0.608856	-2.581484	-1.685793
Н	3.317384	-2.355085	-3.411568
Н	3.158337	-0.766937	-4.176007
Н	1.735328	-0.733894	-0.312811
С	4.318405	1.502154	-3.023292
С	4.812295	0.640823	-1.904763
Н	6.562291	1.846189	-1.600625
С	6.017905	0.960765	-1.269483
С	4.102743	-0.492676	-1.473346
С	6.511806	0.162404	-0.232921
С	4.594634	-1.320298	-0.438073
0	7.660843	0.405095	0.426870
С	5.796643	-0.974207	0.170066
С	3.850995	-2.537882	0.018644
Н	6.210775	-1.592550	0.969213
Н	3.302143	-3.031023	-0.795545
Н	4.534177	-3.275522	0.456159
Н	3.114365	-2.300059	0.803804
Н	4.6407	2.543441	-2.898865
Н	4.717264	1.165320	-3.993144
Н	3.224853	1.493434	-3.110058
С	8.427477	1.528117	0.048286
Н	9.311849	1.536421	0.692136
Н	8.750909	1.464017	-1.002128
Н	7.871741	2.467674	0.192977
105			
ts_XI	I / electronic	energy: -2629.	16634263 a.u. / lowest freq: -291.86 cm-1
С	3.544859	-0.818209	-2.390199
Н	3.943194	-0.966856	-4.515512
С	3.790717	-1.505516	-3.580265
Ν	3.355777	-1.461660	-1.242128

C 3.828093 -2.900310 -3.525531

С	3.371887	-2.790576	-1.184792
Н	4.020408	-3.472852	-4.433800
С	3.610785	-3.568618	-2.318286
Н	3.622127	-4.656763	-2.257368
0	2.961916	-4.552824	0.433632
С	2.655687	-4.662595	1.851365
С	3.075958	-3.263730	0.179121
N	2.882214	-2.425130	1.139112
С	2.505129	-3.203964	2.329712
Н	1.747662	-5.269638	1.951666
Н	3.488148	-5.193149	2.327686
Н	1.885027	-1.570227	4.406084
С	0.993045	-1.897533	3.864430
Н	-0.356006	-0.753353	5.099101
С	-0.264895	-1.435302	4.250336
С	1.128827	-2.776451	2.785314
С	-1.402716	-1.854972	3.561029
С	-0.016281	-3.181885	2.090141
Н	-2.391553	-1.509624	3.874296
С	-1.275387	-2.730823	2.480923
Н	0.072597	-3.860422	1.235200
Н	-2.165091	-3.079590	1.950329
Н	3.224493	-2.983338	3.133087
Н	4.189694	3.369865	-2.950163
Н	7.265457	3.764815	0.343521
Н	6.334259	5.269772	2.096739
С	6.184768	3.888134	0.441854
С	5.662536	4.731045	1.425001
Н	5.744578	2.541791	-1.182690
С	5.327864	3.203182	-0.416155
0	3.484495	1.448035	-3.251728
С	3.282034	2.790480	-2.734791
С	4.282235	4.883250	1.546036

Н	3.868082	5.541690	2.312525
С	3.408812	0.637551	-2.212014
С	3.939623	3.352419	-0.302825
С	3.425509	4.194665	0.686454
Н	2.440891	3.234505	-3.278779
Ν	3.1701	1.140623	-1.050555
С	3.018838	2.590725	-1.224295
Н	2.342839	4.315100	0.782225
Н	1.975364	2.849650	-0.969393
Mg	2.705549	-0.343061	0.516041
С	-0.573821	0.252536	-2.531824
С	-1.055261	0.541018	-1.146548
С	-0.150347	0.367757	-0.088763
О	0.827919	-0.423092	-0.167909
Н	-1.608349	1.405386	3.654467
С	-1.087116	2.144722	3.027543
Н	-1.278897	3.149531	3.418712
Ο	0.318292	1.886302	3.108411
С	0.690752	1.171810	2.057282
С	-1.43513	1.996935	1.543720
Ν	-0.342364	1.034360	1.162038
Ο	1.849512	0.772248	1.971245
С	-2.847138	1.460392	1.414088
С	-1.244915	3.318862	0.810482
Н	-2.950362	0.468994	1.876357
Н	-3.523996	2.136030	1.955535
Н	-3.212304	1.419710	0.381502
Н	-0.250714	3.740711	1.008565
Н	-1.35831	3.212039	-0.274943
Н	-1.992231	4.045270	1.155359
Н	-1.402766	0.065266	-3.229712
Н	-0.007365	1.103080	-2.951608
Н	0.098942	-0.616691	-2.560407

Η	-1.818544	1.313913	-1.049796
Н	-1.487724	-2.213815	-3.350080
С	-2.142393	-2.680142	-2.602960
Н	-2.186506	-3.747605	-2.848822
С	-1.614233	-2.428086	-1.187321
С	-2.412778	-1.264666	-0.714513
С	-3.52525	-2.036960	-2.623356
N	-3.51433	-1.132982	-1.462306
Η	-1.836332	-3.278169	-0.517273
Н	-0.528147	-2.264329	-1.116729
Η	-3.744908	-1.488327	-3.550607
Η	-4.342911	-2.763465	-2.478963
Н	-2.46617	-0.973722	0.335218
С	-4.343168	1.144666	-3.068308
С	-5.053481	0.744993	-1.814590
Н	-6.447408	2.370198	-1.959384
С	-6.149329	1.497667	-1.376369
С	-4.654729	-0.373123	-1.061512
С	-6.843116	1.140229	-0.216125
С	-5.360069	-0.761924	0.100349
0	-7.902759	1.815140	0.270770
С	-6.444197	0.008628	0.507783
С	-4.972232	-1.969936	0.895347
Н	-7.014705	-0.267656	1.396978
Н	-4.566389	-2.775816	0.268579
Н	-4.209178	-1.735966	1.655077
Н	-5.833001	-2.372895	1.442025
Н	-3.270822	0.915787	-3.031233
Н	-4.750968	0.619298	-3.946304
Η	-4.454704	2.217431	-3.266932
С	-8.35599	2.950533	-0.434332
Н	-9.21665	3.340395	0.117129
Н	-7.582376	3.732376	-0.487397

Н -8.673648 2.694184 -1.456894