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A. G0W0 calculations using LSDA+U as the starting point 

In our G0W0 calculations, we will treat on the same footing the Hubbard potential (𝑉"#$) and the LSDA 

exchange-correlation potential 𝑉%&'()*. That is, the self-energy correction is given by 1-4, 

𝛥𝛴 = 𝛴 − 𝑉%& − 𝑉"#$, (1) 

where 𝛴 is the conventional self-energy operator in the GW approximation. In this way, the Hubbard 

potential, together with the LSDA exchange-correlation potential, have been subtracted from the 

quasiparticle energies corrections to avoid the double-counting issue. As shown in Supplementary Figure 

1 and 2, the GW (at the G0W0 level) band structure and GW-BSE absorption spectrum exhibit only a weak 

dependence on U and J in a physically reasonable range of values 2-4. 

 



 
 

Supplementary Figure 1 | Dependence of the G0W0 band structure on parameters of U and J within the 

LSDA+U scheme. We consider the following sets of parameters: (a) U = 0 eV, J = 0 eV (b) U = 0.5 eV, 

J = 0.0 eV, (c) U = 1.0 eV, J = 0.0 eV, (d) U = 2.0 eV, J = 0.0 eV, (e) U = 1.5 eV, J = 0.5 eV, and (f) U = 

2.0 eV, J = 1.0 eV. 

 



 
Supplementary Figure 2 | Dependence of the linear absorption spectrum at normal incidence on 

parameters of U and J within the LSDA+U scheme, with (GW-BSE, solid red line) and without (GW-RPA, 

dashed blue line) electron-hole interaction. We consider the following sets of parameters: (a) U = 0 eV, J 

= 0 eV (b) U = 0.5 eV, J = 0.0 eV, (c) U = 1.0 eV, J = 0.0 eV, (d) U = 2.0 eV, J = 0.0 eV, (e) U = 1.5 eV, 

J = 0.5 eV, and (f) U = 2.0 eV, J = 1.0 eV. 

 



B. Density of states (DOS) of ferromagnetic monolayer CrI3 

The partial DOS (PDOS) based on the G0W0 band structure are shown in Supplementary Figure 3. We use 

spinor Wannier functions to interpolate the band structure as implemented in Wanner90 5. According to 

the calculated PDOS in Supplementary Figure 3, the first manifold of quasi-particle conduction bands (2.5 

eV ~ 3.1 eV) consist of nearly equal contributions from Cr major-spin 3d and I major-spin 5p states, while 

the upper conduction bands (> 3.1 eV) are dominated by minor-spin Cr 3d states; and the top of valence 

bands host a decent amount of Cr major-spin 3d states, as well as the dominant I major-spin 5p states. In 

this way, the carrier energy distribution and the spatial localization of the dark state (Fig. 3a&e in the main 

text) origin from intra-atomic d-d transitions with spin flip. The contributions from occupied I 5s orbitals 

are around -12 eV below the highest occupied state, and those from occupied Cr 3s, 3p and 4s orbitals are 

below -40 eV. 

 

It is obvious that, compared to LSDA, LSDA+U pushes the major-spin d states downwards in energy and 

significantly change the hybridization between the major-spin d states and the valence p states. However, 

LSDA+U has relatively small effects on the conduction states. 

 
Supplementary Figure 3 | Partial DOS of a ferromagnetic monolayer CrI3 for (a) U = 0 eV, J = 0 eV and 

(b) U = 1.5 eV, J = 0.5 eV. The DOS is decomposed into contributions from Cr major-spin 3d orbitals 



(solid red curve), Cr minor-spin 3d orbitals (dashed blue curve), I major-spin 5p orbitals (green dotted 

curve) and I minor-spin 5p orbitals (black solid curve). The energy of the VBM is set to zero. 

 

C. Numerical evaluation of exciton radius 

We use the exciton wave functions shown in Fig. 2 and Fig. 3 in the main text to evaluate the arithmetic 

mean radius ⟨|𝐫|⟩ and the root mean square radius 4⟨𝑟6⟩ as shown in Supplementary Table 1. Our first-

principles results agree with the intuition that a large binding energy indicates a small exciton radius, as 

inspired by a 2D hydrogenic model. 

Exciton states A B+ B- C 

𝛀𝑺 (eV) 1.50 1.82 1.92 2.31 

Eb (eV) 1.09 0.77 0.67 0.28 

⟨|𝐫|⟩ (Å) 2.33 3.55 5.36 6.99 

4⟨𝒓𝟐⟩ (Å) 3.06 4.37 6.70 7.93 

Supplementary Table 1 | The arithmetic mean radius ⟨|𝐫|⟩ and root mean square radius 4⟨𝑟6⟩ of selected 

bright exciton states. The excitation energy Ω= and binding energy 𝐸?  are also included for reference. 

 

D. Spin-decomposed exciton probability amplitudes 

Since the two-component spinor wave functions are used in our calculations, it is possible for us to choose 

certain spinor components of wave functions and calculate the spin configuration of constituent carriers 

for each exciton state. To be specific, an exciton wave function in the spinor formalism can be written as, 

𝚿(𝐫B, 𝐫C) = E𝐴GH𝐤= 𝝍H𝐤(𝐫B)𝝍G𝐤
∗ (𝐫C)

GH𝐤

≔E𝐴GH𝐤= |𝑐⟩⟨𝑣|
GH𝐤

=E𝐴GH𝐤= O|𝑐 ↑
⟩⟨𝑣 ↑| |𝑐 ↑⟩⟨𝑣 ↓|

|𝑐 ↓⟩⟨𝑣 ↑| |𝑐 ↓⟩⟨𝑣 ↓|R
GH𝐤

. 
(2) 

The fractions for each spin configuration are listed in Supplementary Table 2. 

TE𝑨𝒗𝒄𝐤𝑺 |𝒄〉〈𝒗|
𝒗𝒄𝐤

T
𝟐

 |𝒄 ↑〉〈𝒗 ↑ | |𝒄 ↑〉〈𝒗 ↓ | |𝒄 ↓〉〈𝒗 ↑ | |𝒄 ↓〉〈𝒗 ↓ | 

WS=0.89 eV 0.4% 0.0% 99.5% 0.1% 

WS=1.50 eV 98.7% 0.1% 1.2% 0.0% 



WS=1.82 eV 98.6% 0.3% 1.1% 0.0% 

WS=1.92 eV 97.8% 1.2% 1.0% 0.0% 

WS=2.31 eV 96.4% 1.1% 2.5% 0.0% 

 

Supplementary Table 2 | Decomposition of carrier spin configurations for selected exciton states. 

 

E. Computational details for Si and SiO2 

The GW (at G0W0 level) and GW-BSE calculations of bulk Si are performed with the BerkeleyGW code 
6. The experimental lattice constant of a = 5.43 Å at 300 K is adopted in the calculations. The resulting 

frequency-dependent dielectric function of Si is shown in Supplementary Figure 4. Note that 𝜀[\ = 0 for 

bulk silicon and we could use a scalar dielectric function 𝜀 = 𝜀[[ = 𝜀\\ = 𝜀^^ for cubic crystals such as 

Si and SiO2.  

 
Supplementary Figure 4 | Dielectric function 𝜀[[ of bulk Si from GW-BSE calculations. An 80 meV 

Gaussian broadening is employed. 

 

The reflective index for bulk Si is calculated as, 

𝑛(𝜔) = 4𝜀(𝜔), (3) 

where the static value Re[𝜀(𝜔 → 0)] = 11.1 is in excellent agreement with experimental value of 11.68 

or 11.4 7, 8. 



 

For bulk SiO2, because the band gap (8.9 eV) is much larger than the energy range of interest in this 

problem (< 3.5 eV), we will only consider a static reflective index (with experimental value) with a very 

small imaginary part (~0.01i) to account for other dissipation channels 9, 

𝑛6 = 𝜀(𝜔 → 0) = 3.9. (4) 

F. Normal Modes 

In the P-MOKE configuration with at least C3 rotational symmetry along the magnetization direction (𝐁 =

𝐵𝐞l^), the dielectric tensor takes the following form,  

𝜺(𝜔,𝐁) = n
𝜀[[(𝜔,𝐁) 𝜀[\(𝜔, 𝐁) 0
−𝜀[\(𝜔, 𝐁) 𝜀[[(𝜔, 𝐁) 0

0 0 𝜀^^(𝜔, 𝐁)
o. (5) 

The Fresnel equation is given by, 

[𝑛6𝕝 − 𝛆 − 𝐧:𝐧] ⋅ 𝐄 = 0,	 (6) 

where n is the complex refractory index, 

𝐧 =
𝑐𝐤
𝜔 .	

(7) 

After solving the Fresnel equations with the dielectric function in Supplementary Eq. 5 with 𝐤 ∥ 𝐞l^, we 

get the normal modes as the 𝜎y	and 𝜎z circularly polarized plane waves, with distinct refractive indices,  

𝑛±6 (𝜔, 𝐵𝐞l^) = 𝜀[[(𝜔,𝐵𝐞l^) ± 𝑖𝜀[\(𝜔, 𝐵𝐞l^), (8) 

where the +(−) in 𝑛± denotes the circularly polarized light with the complex electric field amplitude 

along the direction of the spherical basis:  

𝐞l± =
∓
√6
(𝐞l[ ± 𝑖𝐞l\). (9) 

 

G. Kerr signals and Faraday signals 

Following the convention in previous works 10, we get the ratio of complex amplitude of 𝜎± circularly 

polarized reflection light through the ratio of the corresponding complex reflectivity 𝑟̃(±) as, 

𝐸�(z)�
𝐸�(y)�

=
𝑟̃(z)

𝑟̃(y). 
(10) 

Suppose that an incident linearly polarized light is along the x-axis, the relative complex amplitudes of 

the reflection light 𝐄�� (at fixed 𝑧 and t) along x- and y-axis are then given by, 



𝐸��[
𝐸��\

=
1 + 𝑟̃(z)/𝑟̃(y)

𝑖(1 − 𝑟̃(z)/𝑟̃(y))
, (11) 

which defines an ellipse oriented slightly away from the x-axis as shown in Supplementary Figure 5b. 

 
Supplementary Figure 5 | (a) Configuration of the polar MO effects. The red arrows denote the 

magnetization of the sample, which is pointing along the +z direction. (b) The polarization plane of the 

reflection light. The polarization ellipse is oriented at a Kerr angle 𝜃� with respect to the x-axis. The Kerr 

ellipticity is defined through the ellipticity angle 𝜒�  as shown. (c) The polarization plane of the 

transmission light. The polarization ellipse is oriented at a Faraday angle 𝜃� with respect to the x-axis. The 

ellipticity is defined through the Faraday ellipticity angle 𝜒�. 

 

We can calculate the Kerr angle 𝜃� and Kerr ellipticity 𝜒� as 11, 

tan 2𝜃� =
2𝐸�[𝐸�\ cos 𝛿
𝐸�[6 − 𝐸�\6

, −
𝜋
2 < 𝜃� ≤

𝜋
2	 (12) 

and 

sin 2𝜒� =
2𝐸�[𝐸�\ sin 𝛿
𝐸�[6 + 𝐸�\6

	, −
𝜋
4 < 𝜒� ≤

𝜋
4 (13) 

where 𝛿 = 𝑎𝑛𝑔𝑙𝑒�𝐸��\/𝐸��[�, 𝐸�[ = |𝐸��[| and 𝐸�\ = |𝐸��\|, and angle(Z) is a function that returns the 

phase angle of a complex number Z. A sign convention enters the expression of Kerr angle 𝜃�: 𝜃� is 

chosen to be positive if the rotation vector of the polarization plane is parallel to the magnetization vector. 

 

The Faraday angle 𝜃� and Faraday ellipticity 𝜒� are defined in a similar way for the transmission light, as 

shown in Supplementary Figure 5c. 

 



H. Multi-interface P-MOKE Setup 

Here we model the multi-interface P-MOKE setup in a systematic way 12, 13. The goal is to calculate the 

complex reflection coefficients for 𝜎± circularly polarized light, 𝑟̃(±) = 𝐸��
(±)/ 𝐸��

(±) at the interface. The 

resulting complex reflection coefficients (at the topmost interface) for the three-interface model (shown 

in Fig. 4a in the main text) are given by, 

𝑟̃(±) =
𝑒6���

(±)
 𝑟̃¡6

(±) + 𝑒6��¢𝑟̃6£¤ + 𝑒6��¢𝑟̃�¡
(±)𝑟̃¡6

(±)𝑟̃6£ + 𝑟̃�¡
(±)

1 + 𝑒6�(��
(±)y�¢)𝑟̃�¡

(±)𝑟̃6£ + 𝑒6���
(±)
𝑟̃�¡
(±)𝑟̃¡6

(±) + 𝑒6��¢𝑟̃¡6
(±)𝑟̃6£

. (14) 

where the one-interface complex reflection coefficient between the i-th layer and the j-th layer is defined 

by 𝑟̃�¥ = (𝑛¦� − 𝑛¦¥)/(𝑛¦� + 𝑛¦¥), and the light path within the i-th layer is defined as 𝛿� = 𝜔𝑛¦�𝑑�/𝑐.	The two-

interface model can be achieved by taking 𝑒��¢ → 0. The one-interface model can be achieved by taking 

𝑒��� → 0 and 𝑒��¢ → 0. 

 

I. Effects of substrate thickness on MO signals 

Here we investigate the influence of substrate thickness on MO signals. As described in the main text, we 

construct a three-interface P-MOKE setup with the order of vacuum-CrI3-SiO2-Si. We vary the thickness 

of the SiO2 layer (𝑑(¨©¢) and assume a semi-infinitely thick Si layer. We find that the interference of light 

reflected on each interface will be very sensitive to 𝑑(¨©¢. To be explicit, the amplitudes of the MOKE 

signals present a sensitive dependence on the substrate (Supplementary Figure 6), and it will be strongly 

modulated in the energy range of interest (1.0 ~ 3.5 eV) with increasing thickness of 𝑑(¨©¢, as shown in 

Supplementary Figure 6. 



 
Supplementary Figure 6 | Kerr angles 𝜃� (left, solid blue curve) and Kerr ellipticity 𝜒� (right, dashed 

red curve) for different P-MOKE setups with (a) vacuum-CrI3-Si, (b) vacuum-CrI3-SiO2(100 nm)-Si, (c) 

vacuum-CrI3-SiO2(285 nm)-Si, (d) vacuum-CrI3-SiO2(500 nm)-Si, (e) vacuum-CrI3-SiO2(1000 nm)-Si 

and (f) vacuum-CrI3-SiO2 interfaces. All the CrI3 layers in (a-f) refer to ferromagnetic monolayer CrI3. 

 



J. In-plane ferromagnetic monolayer CrI3 

Our LSDA+U and G0W0 calculations have reproduced the reported magneto band structure effect where 

relevant bands are degenerate at the Γ point for the case of an in-plane ferromagnetic monolayer CrI3 14. 

We have obtained an indirect bandgap of 2.64 eV at the G0W0 level in the in-plane polarized structure, 

which is only slightly smaller than the direct bandgap at the Γ point (2.69 eV). The rotated magnetization 

has a strong impact on the polar MO signals, which can be understood from the symmetry. The dielectric 

function tensor 𝜺 is an axial tensor, which is in analogue to a dyad of two vectors. The broken C3 rotational 

symmetry in an in-plane polarized structure leads to diminished amplitudes of 𝜀[\ and 𝜀\[, because the x- 

and y-components are no longer correlated. We therefore expect small polar MO signals in an in-plane 

polarized structure. Our first-principles GW-BSE calculations have confirmed the above analysis as shown 

in Supplementary Figure 7f regarding to the polar MO Faraday effect. Moreover, we find that there are 

still strong excitonic effects in the in-plane case. In fact, we could still identify the three excitonic peaks 

(A, B and C) below the quasi-particle bandgap (Supplementary Figure 7d), with the exciton A having a 

binding energy of 1.29 eV, even larger than that in the out-of-plane case. This is probably because the 

high band degeneracy in the in-plane case increases the joint density-of-states around the Γ point, further 

enhancing the excitonic effects. 

 



 
Supplementary Figure 7 | (a) Crystal structure and magnetization direction (red arrows) of an in-plane 

ferromagnetic monolayer CrI3. (b) G0W0 (red solid) and LSDA+U (blue dashed) band structure of the in-

plane ferromagnetic monolayer CrI3, where a Hubbard onsite potential with U = 1.5 eV & J = 0.5 eV is 

adopted. (c) Exciton levels of in-plane ferromagnetic monolayer CrI3 from GW-BSE calculations. Bright 

excitons are colored in red while dark ones in blue. The continuum starts from 2.69 eV. (d) Linearly 

polarized absorption spectrum at normal incidence with (GW-BSE, solid red) and without (GW-RPA, 

dashed blue) electron-hole interactions. An 80 meV energy broadening is adopted in (d) and the following 

plots in (e) and (f). (e) Calculated real part (solid lines) and imaginary part (dashed lines) of 𝜀[[ (red), 𝜀\\  

(green), 𝜀[\  (blue) and 𝜀\[  (yellow) dielectric functions of in-plane ferromagnetic monolayer CrI3. (f) 

Comparison between Faraday angle 𝜃� of an out-of-plane ferromagnetic monolayer CrI3 and an in-plane 

ferromagnetic monolayer CrI3 with the same P-FE configuration as in Fig. 4e in the main text. 



K. Optical and MO properties of ferromagnetic bulk CrI3 

 
Supplementary Figure 8 | (a) G0W0 (red solid) and LSDA+U (blue dashed) band structure of 

ferromagnetic bulk CrI3, where a Hubbard onsite potential with U = 1.5 eV and J = 0.5 eV is adopted. 

Each layer of bulk CrI3 has the same out-of-plane direction as in monolayer CrI3. The magnetization is 

along the out-of-plane direction. (b) Exciton levels of ferromagnetic bulk CrI3 from GW-BSE calculations. 

Bright excitons are colored in red while dark ones in blue. The continuum starts from 2.0 eV. (c) Imaginary 

part of dielectric function exx of ferromagnetic bulk CrI3 with (solid red) and without (dashed blue) 

electron-hole interactions. An 80 meV energy broadening is adopted in (c) and following plots. (d) 

Thickness and frequency dependence of Faraday angle 𝜃� for a vacuum-CrI3-vacuum device, where 𝑑 

refers to the thickness of the CrI3 layer. (e) Thickness dependence of the amplitude of 𝜃� at 𝜔 = 1.28 eV 

excitation, and the dashed lines are linear fits with slope: (blue) 1.6× 10£, (red) 1.3× 10£ and (green) 

1.0× 10­ mrad×cm-1. 

 

L. Crystal structure and structure relaxation 

We use the experimental structure for both ferromagnetic bulk and monolayer CrI3. Bulk CrI3 belongs to 

the space group R	3® (148) 15. Both bulk and monolayer CrI3 belong to the point group S6. In fact, we have 



checked the validity of the employed pseudopotentials with first-principles structure relaxation. During 

the relaxation, we used a kinetic energy cutoff of 120 Ry. The van der Waals interaction is included in 

two ways: the rVV10 nonlocal density functional 16 and the semiempirical Grimme’s DFT-D3 method 17, 

both of which have been implemented in the Quantum ESPRESSO package 18. The structures have been 

fully relaxed until the force on each atom is less than 0.02 eV/Å. The spin-orbit coupling effects are not 

considered in the relaxation. We find that there is little deviation between the relaxed bulk structure and 

the experimental bulk structure. In addition, the lattice constants and internal coordinates barely change 

from bulk to monolayer structures, indicating much stronger intralayer bondings than interlayer bondings. 

For these reasons, we use the experimental structure for both bulk and monolayer calculations. The 

detailed structure parameters are listed in Supplementary Table 3. 

 Parameters (Å) a c Cr-I distance Interlayer 

distance 

Intralayer 

thickness 

Bulk Exp. 30 6.87 19.81 2.73 3.47 3.13 

rVV10 6.99 19.70 2.78 3.38 3.19 

DFT-D3 6.96 20.07 2.76 3.53 3.16 

Monolayer rVV10 6.98 N/A 2.78 N/A 3.21 

DFT-D3 6.96 N/A 2.76 N/A 3.18 

 

Supplementary Table 3 | Structure parameters for ferromagnetic bulk and monolayer CrI3. The lattice 

constants a and c refer to the conventional hexagonal cell. 

 

The Quantum ESPRESSO structure input for bulk CrI3 (with fractional coordinates) is listed below: 

CELL_PARAMETERS angstrom 

 3.9648952386328364   0.000000000000000  6.602333333333333 

-1.9824476193164182   3.433700000000000  6.602333333333333 

-1.9824476193164182  -3.433700000000000  6.602333333333333 

ATOMIC_POSITIONS crystal 

Cr   0.666330330  0.666330330  0.666330330 

Cr   0.333669670  0.333669670  0.333669670 

I   0.729082000  0.430059000  0.077768000 

I   0.270918000  0.569941000  0.922232000 



I   0.077768000  0.729082000  0.430059000 

I   0.922232000  0.270918000  0.569941000 

I   0.430059000  0.077768000  0.729082000 

I   0.569941000  0.922232000  0.270918000 

 

The Quantum ESPRESSO structure input for monolayer CrI3 (with fractional coordinates) is listed below: 

CELL_PARAMETERS angstrom 

        6.8670000000         0.0000000000         0.0000000000 

       -3.4335000000         5.9469964478         0.0000000000 

        0.0000000000         0.0000000000        18.0000000000 

ATOMIC_POSITIONS crystal 

Cr   0.333333333  0.666666667  0.000377778 

Cr   0.666666667  0.333333333  0.999622226  

I   0.349896669  0.998803318  0.913106084 

I   0.001196661  0.351093352  0.913106084 

I   0.648906648  0.650103331  0.913106084 

I   0.650103331  0.001196663  0.086893886 

I   0.998803318  0.648906648  0.086893886 

I   0.351093352  0.349896699  0.086893886 

 

M. Dielectric function for quasi-2D materials 

As an extensive physical quantity, the dielectric function is ill-defined for quasi-2D materials. In this work, 

we rescale the calculated dielectric function in a slab model by the thickness of a monolayer CrI3 

(d=cbulk/3=6.6 Å), 

𝜀[[ = 1 +
𝑙
𝑑
(𝜀[̃[ − 1), (15) 

and  

𝜀[\ =
𝑙
𝑑 𝜀[̃\, 

(16) 

where  𝜀[̃[ and  𝜀[̃\ are calculated dielectric functions from the slab model (monolayer CrI3 with vacuum) 

with thickness 𝑙  along the out-of-plane direction, and 𝜀[[  and 𝜀[\  are rescaled dielectric function for 

monolayer CrI3 with monolayer thickness 𝑑. 



 

To check the validity of our slab model calculations, we have performed calculations with different unit 

cell thickness 𝑙 , and checked the scaling of the dielectric functions. As expected, we find a linear 

dependence of (𝜀[[ − 1) and 𝜀[\ on 𝑙, which justifies our rescaling scheme. Also, it should be noted that, 

according to Eqn. (5-14) the calculated MO signals do not depend on the choice of d, because the final 

expression of MO signals depends only on 𝑑𝜀[\, which is invariant with different choice of d. We have 

checked the validity of our slab model calculations in Supplementary Figure 9 and Supplementary Figure 

10. 

 



 
Supplementary Figure 9 | Calculated dielectric functions  𝜀̃ of ferromagnetic monolayer CrI3 in a slab 

model at GW-BSE level for (a) 𝑙 = 15	Å, (d) 𝑙 = 18	Å and (g) 𝑙 = 23	Å. Rescaled dielectric function 𝜀 

with 𝑑 = 6.6	Å for (b) 𝑙 = 15	Å, (e) 𝑙 = 18	Å and (h) 𝑙 = 23	Å. Kerr angles 𝜃� (left, solid blue curve) 

and Kerr ellipticity 𝜒� (right, dashed red curve) for the P-MOKE setup of vacuum-CrI3-SiO2(285 nm)-Si 

for (c) 𝑙 = 15	Å, (f) 𝑙 = 18	Å and (i) 𝑙 = 23	Å. An 80 meV energy broadening is adopted. 



 
Supplementary Figure 10 | Rescaled dielectric functions 𝜀 of ferromagnetic monolayer CrI3 in a slab 

model with 𝑙 = 18	Å at GW-BSE level for (a) 𝑑 = 3	Å, (d) 𝑑 = 6.6	Å and (g) 𝑑 = 18	Å. Kerr angles 𝜃� 

(left, solid blue curve) and Kerr ellipticity 𝜒� (right, dashed red curve) for the P-MOKE setup of vacuum-

CrI3-SiO2 for (b) 𝑑 = 3	Å, (e) 𝑑 = 6.6	Å and (h) 𝑑 = 18	Å. Kerr angles 𝜃� (left, solid blue curve) and 

Kerr ellipticity 𝜒� (right, dashed red curve) for the P-MOKE setup of vacuum-CrI3-SiO2(285 nm)-Si for 

(c) 𝑑 = 3	Å, (f) 𝑑 = 6.6	Å and (i) 𝑑 = 18	Å. An 80 meV energy broadening is applied. 

 



N. Effect of a hexagonal boron nitride (hBN) substrate on exciton energies 

To study the effects of an insulating substrate, we perform GW-BSE calculations of a ferromagnetic 

monolayer CrI3 on top of a monolayer hBN with an interlayer distance of 3.42 Å. The interlayer distance 

was determined with the van der Waals interaction through the DFT-D3 method 17. It is expected that 

the substrate-induced exciton excitation energy redshift, albeit small, will quickly saturate with 

increasing thickness and additional layers of substrate will introduce negligible deviations 19-21. Since 

hBN has a dielectric constant very similar to that of SiO2 (both around 4), hBN and fused silica 

substrates of the same thickness should have similar screening effects on the exciton energies, as 

confirmed in previous work on transition metal dichalcogenides 19, as shown in Supplementary Figure 

11. 

 
Supplementary Figure 11 | (a) Schematic of a ferromagnetic monolayer CrI3 on top of a monolayer 

hexagonal BN substrate, with an interlayer distance of 3.42 Å. A Hubbard onsite potential with U = 1.5 

eV & J = 0.5 eV is adopted. (b) Exciton levels of ferromagnetic monolayer CrI3 with a monolayer hBN 

substrate from GW-BSE calculations. Bright excitons are colored in red while dark ones in blue. The 

continuum starts from 2.41 eV. (c) Linearly polarized absorption spectrum at normal incidence with 

(GW-BSE, solid red) and without (GW-RPA, dashed blue) electron-hole interactions. An 80 meV energy 

broadening is adopted. 

 

O. Effects of U on single-particle energies 

There is an interesting behavior of LSDA+U band energies with increasing U. As shown in the PDOS 

plots in Supplementary Figure 12, in contrast to the common impression of effects of +U, the bandgap 



and the first conduction peak (both of which contain substantial I p orbital character) slightly decrease 

upon increasing U. Other Cr d states, on the other hand, show expected behaviors by going away from the 

Fermi level with increasing U. 

 
Supplementary Figure 12 | PDOS plots of ferromagnetic monolayer CrI3 at the LSDA+U level with 

different U values from (a) U = 0 eV to (e) U = 2.0 eV. J is set to be zero in all cases for this illustrative 

investigation. The DOS is projected into contributions from Cr d (red) and I p (blue) orbitals. The green 

dots show the trends of band energies with increasing U. The single-particle energies have been aligned 

with the vacuum level in all the plots. The dashed black line indicates the VBM energy. 

 

The effects of U could be understood in terms of the Janak theorem: the eigenvalue is the derivative of 

the total energy with respect to the occupation of a state i, 𝜖� =
²³´µ´
²¶·

, where 𝑖 also includes the spin index 

22. In the case of LSDA+U, the total energy is given by 𝐸¸¹¸ = 𝐸'()* + 𝐸º − 𝐸»& 1, and therefore the 

Bloch state eigenvalue can be expressed as, 

𝜖¶𝐤 =
𝜕𝐸'()*
𝜕𝑛¶𝐤

+
𝜕(𝐸º − 𝐸»&)

𝜕𝑛¶𝐤
. (17) 

To simplify our following discussions, we now assume J = 0. The energy correction from +U can be 

estimated as, 



Δ𝜖¶𝐤yº = E 𝑈O
1
2 − 𝑛¿ÀR

ÁÂ,¿À

|	⟨𝑚𝜎|𝜓¶𝐤⟩	|6, (18) 

where 𝑛¿À is the occupation number for the diagonalized and spin-polarized local basis |𝑚𝜎⟩, and the 

Bloch states |𝜓¶𝐤⟩ are assumed to be fixed before and after +U. To get 𝑛¿À and |𝑚𝜎⟩, we first use atomic 

wave functions (five spin-up d orbitals and five spin-down d orbitals for each Cr atom) as projectors to 

build the local orbital-resolved spin density 𝑛ÅÅÆ
À  by summing over all the contributions from occupied 

Bloch states, with the quantization axis chosen along the z-axis. Here 𝑙, 𝑙′ = 1, … ,5 labels the d orbitals 

and 𝜎 =↑, ↓ labels the spin polarization. We then diagonalize this spin density and get the eigenvalues 𝑛¿À  

and eigenvectors |𝑚𝜎⟩ as a linear combination of the five d orbitals with spin polarization 𝜎. In this way, 

the eigenvalue correction should incorporate an extra factor to quantify how much the projection of the 

Bloch state is onto the localized basis. This is in contrast to the atomic limit, Δ𝜖�yº = 𝑈(¡
6
− 𝑛�), which 

indicates that the occupied and unoccupied states at the LSDA level are further split by U. But there is 

strong p-d hybridization in the CrI3 systems, especially for eg states which form 𝜎 bonds between Cr d 

orbitals and I p orbitals. In this way, the major-spin eg states become delocalized, which means the overlap 

between the first set of conduction Bloch states and the localized atomic orbital |𝑚𝜎⟩ used in LSDA+U is 

small. To be explicit, Δ𝜖¶𝐤yº should be smaller for the eg states than for the t2g states, which has also been 

verified in our calculations. Moreover, the strong p-d hybridization makes the local occupation 𝑛¿À 

deviate from the atomic limit: that is, 3 major-spin d orbitals are completely occupied, while all the 

remaining d orbitals are empty. Here we used U = 2.0 eV in a case study. As listed in Supplementary 

Table 4, the spin density has a more uniform distribution than that in the atomic limit. 

 
U = 2 eV & J = 0 eV Minor spin Major spin 𝚫𝝐y𝑼 (eV) 

𝑛¿À 0.118 0.121 0.129 0.397 0.400 0.708 0.713 0.993 0.993 0.993 Janak LSDA+U 

ÌÍ𝑛¿À│𝑣¡@ΓÐÌ
6
 1.1E-5 2.4E-5 8.3E-5 1.1E-5 1.3E-4 1.6E-9 3.0E-5 6.1E-3 1.6E-5 1.2E-2 -0.04 -0.01 

ÌÍ𝑛¿À│𝑐¡@ΓÐÌ
6
 7.4E-5 2.0E-6 6.6E-4 1.5E-6 1.2E-4 3.1E-7 2.2E-4 6.7E-2 1.6E-4 8.6E-2 -0.30 -0.16 

ÌÍ𝑛¿À│𝑐Ñ@ΓÐÌ
6
 1.6E-1 1.6E-1 5.4E-2 6.5E-3 2.4E-2 6.4E-4 1.0E-5 1.0E-5 1.2E-6 1.2E-6 0.58 0.63 

ÌÍ𝑛¿À│𝑐¡­@ΓÐÌ
6
 1.9E-2 7.0E-3 3.6E-2 3.2E-6 2.0E-1 5.9E-6 2.4E-6 2.1E-5 9.1E-7 2.1E-5 0.17 0.27 

 

Supplementary Table 4 | Occupation of diagonal basis on each Cr atom of a ferromagnetic monolayer 

CrI3 from LSDA+U calculations with U = 2.0 eV & J = 0 eV. The local orbital-resolved spin density 

matrix 𝑛ÅÅÆ
À  is diagonalized with eigenvalues 𝑛¿À as shown in the second row. The projections of the 1st 



valence state and the 1st, 5th, 14th conduction states at the Γ point to these localized diagonal orbitals are 

calculated in the following rows. The Janak analysis and the LSDA+U results on the change in the band 

energy due to +U are listed in the last two columns. 

 

Also note that the local spin density is completely determined from the occupied Bloch states, while the 

overlap between unoccupied Bloch states and occupied diagonal local basis (𝑛ÅÀ > 0.5) is not necessarily 

zero. Indeed, our numerical results agree with our intuition that the eg states will be more delocalized and 

have smaller overlap with localized diagonal orbitals. Also, the empty major-spin eg states have small but 

noticeable overlap between the occupied major-spin diagonal orbitals, giving rise to the negative shift of 

CBM energy with increasing U, as confirmed from both our Janak analysis and DFT calculations (last 

two columns in Supplementary Table 4). Moreover, the p-dominant VBM state (v1) at the Γ point has little 

overlap with those d-like localized diagonal orbitals, leading to negligible energy shift upon +U. For these 

reasons, the bandgap slightly decreases with increasing U. 
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