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Online Data Supplement

RNA Preparation and Microarray Data Collection:

Total RNA was prepared using the standard Trizol (Invitrogen) extraction with a Polytron 

homogenizer followed by chloroform phase separation, i-propanol precipitation, and column 

purification (RNEasy Mini-prep, Qiagen). Total RNA (>200 nucleotides) was quality controlled by 

UV ratios and BioAnalyzer RIN values (Agilent, RINs>5.0). RNA labeling and microarray data 

collection was done by the University of Colorado Denver genomics core using Affymetrix 

products and workflow, specifically the human HuGene1.0-ST microarrays. Microarray CEL files 

and associated data are available at NCBI GEO as GSE117261.

Partek Genomics Suite Analysis:

Affymetrix human HuGene1.0-ST microarrays were run and processed using their standard 

workflow at the University of Colorado Genomics Core. The resulting CEL files were imported 

into a Partek Genomics Suite 6.6 project along with the associated sample annotation and 

clinical/pathology data. The microarray data was collected in 3 different batches over a 4 year 

period as Pulmonary Hypertension Breakthrough Initiative study participants were enrolled. 

Each batch was composed of a mixture of Failed Donors (FD, controls) and Pulmonary Arterial 

Hypertension (PAH, all subtypes) patients. Principal Component Analysis (PCA) plots 

demonstrated a strong batch effect driven by the runs of the 3 groups of samples 

(Supplemental Figure E1) and the sex distribution (Male:Female) in the FD and PAH groups 

were highly skewed. After importing the CEL files into Partek using GC-RMA quantile 

normalization (1-3), batch and sex variable contributions were removed using an ANOVA model 
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(after “batch-remove” function). To evaluate of the “batch-remove” effects, an ANOVA model 

was run after correcting for just batch, generating 3,219 TranscriptIDs significantly associated 

with sex (p-value <0.05). After adding correcting for both batch and sex, there were zero 

TranscriptIDs associated with sex (p-value<0.05). A less restrictive p-value (rather than 

corrected q-value) was used to capture the highest number of potential sex-associated 

transcriptional changes. Finally, when our corrected dataset was queried using a human lung 

sex-based classifier (4), expression of sex-based genes did not significantly differ by sex, 

suggesting appropriate removal of lung sex-biased DE genes.

False Discovery Rate (FDR) calculated q-values were determined based on PAH versus FD gene 

expression differences (5, 6) and a q-value <0.001 was used. Large, high-quality microarray 

datasets can identify thousands of DE genes at a q-value <0.05, especially when comparing a 

tissue diseased state to a normal control. For the PHBI dataset, there were 5,308 TranscriptIDs 

that were DE at a q-value <0.05. In order to produce a more robust genelist, we chose to reduce 

the FDR to q-value <0.001 (Supplemental Figure E2). This cut-off should help eliminate false-

positive DE genes at the expense of missing potentially interesting genes (false negatives). An 

alternative approach is to use a relaxed FDR q-value cut-off but impose a secondary criteria like 

fold-change threshold and/or overlap with additional datasets which we describe below (see (7) 

for a recent example using lung squamous cell carcinoma).

Independent Validation Methods:
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We used 2 different approaches to validate the PAH classifier (Supplemental Figures E3 and E4). 

First, we used our PAH classifier to provide supervised analysis of an independent gene 

expression PAH versus control lung dataset ((8), Supplemental Figure E3). Second, we used a 

literature-derived PAH gene network (9) to provide supervised analysis of our PAH versus FD 

gene expression dataset (Supplemental Figure E4).

Supplemental Figure E3: The PAH classifier was used to supervise an independent PAH lung 

transcriptome microarray experiment (GSE15197 (8)) which used independently collected and 

process human lung tissue analyzed on a different microarray platform (Agilent). For this 

comparison, the Rajkumar et al. dataset included control (n = 13) and PAH only (n = 18) lung 

samples that were imported into Partek from GEO. The gene symbols from the PHBI classifier (n 

= 1,060 out of n = 1,140 TranscriptIDs) were used to overlap the full gene symbol list in 

GSE15197 (n = 893 matched). This subset genelist was then used for supervised clustering of 

GSE15197 (Supplemental Figure E3). The controls were grouped into 2 main branches 

separated from the main branch of PAH samples, while 2 PAH samples were misclassified as 

controls.

Supplemental Figure E4:  A literature derived PAH  gene network (341 human PAH-related 

genes made up of 293 protein-coding and 48 non-coding genes (9)) was used to supervise our 

PHBI microarray dataset. For this analysis, gene symbols were used to align the literature-

derived network with our PHBI dataset (n = 112 gene symbols both overlapped and had q-

value<0.05 in our dataset). As shown in supplemental Figure E4, the PHBI dataset was divided 

into 2 branches (PAH or FD) with only 1 sample misclassified.
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Quantitative Real-Time Polymerase Chain Reaction:

Validation of differentially expressed (DE) mRNA levels predicted from the microarrays was done 

using gene specific primer/probes from Applied Biosystems (ABI). Briefly, 4g of total lung RNA 

was reverse transcribed (High Capacity cDNA Archive Kit, ABI) and diluted to 10ng/l based on 

the total RNA input. Two microliters of each cDNA was measured in duplicate (FastStart Universal 

Master Mix, Roche) across all the samples analyzed by microarrays (25 Failed Donors (FD) and 58 

PAH lung samples). Ct values of 3 “housekeepers” (GAPDH, ACTB, B2M) were averaged and used 

to normalize the expression levels by Ct, which were converted into fold-change. The specific 

primer/probes used for each gene were indicated as optimum coverage.

We chose 5 phosphodiesterase (PDE) family members (PDE5A is a therapeutic target, (10)), two 

BMPs (BMP5 and BMP6, involved in BMPR signaling, (11)), and two prostaglandin D synthase 

enzymes (PTGDS and HPDGS, eicosanoid pathway enzymes, related to a treatment target (12)). 

Up-regulation of a number PDE family members was interesting for potentially identifying new 

drug targets, as PDE antagonist development is an active area of cancer research (13). BMPs are 

activating ligands for a number of membrane receptors, beyond BMPR2 which is often mutated 

in HPAH and IPAH. BMP5 and BMP6 up-regulation has important implications in discerning 

potential down-stream pathway activation. Consideration of prostaglandin D synthases 

antagonists for treatment of PAH is another potential avenue for therapeutic development. For 

these genes, the microarray dataset predicted up-regulation in PAH lung tissue compared to FD. 

Correspondingly, the qRT-PCR revealed up-regulation of these genes in the PAH lung, and their 

expression was significantly different from FD lung.
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EDDY Analysis:

Considering complex molecular mechanisms underlying diseases such as cancer and PAH, the 

discovery of disease-specific therapeutic vulnerabilities will benefit significantly from the analysis 

of network-driven activities of a gene set rather than individual genes. A novel, network-based 

computational statistical approach, Evaluation of Differential DependencY (EDDY), combines 

pathway-guided and differential dependency analyses into a probabilistic framework (14, 15). It 

interrogates gene sets in related gene network catalogs and databases (e.g. REACTOME (16)) to 

test if inter-gene dependencies are significantly rewired between conditions. Probabilistic and 

gene-set assisted approaches together contribute to significantly higher sensitivity and specificity 

of EDDY, compared to other methods, such as GSEA and Gene Set Co-expression Analysis (GSCA) 

(14).  EDDY’s high sensitivity and specificity allow identification of network dependencies not 

evident with other tools (14), and was successfully applied to cancer studies (14, 15, 17). EDDY 

has uncovered biological network dependencies in glioblastoma (14) and adrenocortical 

carcinoma (18). Further application of EDDY could allow for analysis of topological characteristics 

of gene differential dependency networks and thus identify genes that play important, and 

hidden, roles in a specific condition. The algorithm website is publicly available 

(http://biocomputing.tgen.org/software/EDDY/).  In recent analysis of datasets of >800 cancer 

cell lines exposed to 368 chemotherapies derived from the Cancer Cell Line Encyclopedia (CCLE) 

and the Cancer Therapeutics Response Portal (CTRP) (18-20), we identified pathways enriched 

with differential dependency among sensitive and non-sensitive cancer cell lines for each drug 

(21).
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EDDY is a statistical approach that combines pathway-guided analysis and differential 

dependency analyses into a probabilistic framework (14, 15). It interrogates gene sets (pathways) 

in databases, such as REACTOME (16) or other resource that catalogs related gene networks, to 

test if gene dependencies are significantly rewired between conditions using a statistical test. In 

evaluating differential dependency, EDDY uses network likelihood distribution over multiple 

networks constructed via resampling and compares the distributions between the conditions, 

instead of just using the single, most probable network from each condition. The statistical 

significance of the divergence is then estimated using a permutation test. Probabilistic and gene-

set assisted approaches together contribute to significantly higher sensitivity and specificity of 

EDDY, compared to other methods, such as Gene Set Co-expression Analysis (14). The method 

has been further improved by incorporating known gene interactions as prior knowledge. Further 

development of EDDY to allow for analysis of topological characteristics of gene differential 

dependency networks could identify genes that play important roles in biological signaling in a 

specific condition – hence, defining promising targets customized to a specific condition.

After statistically significant pathways and corresponding DDNs were identified by EDDY 

analysis, the role of each node was statistically evaluated based on its DDN topology. 

Specifically, the betweenness-centrality metric assesses a node’s essentiality within a network 

(22) and is visualized in the condition-specific network through the node size. In each DDN, high 

essentiality mediators were identified as those with the largest betweenness-centrality 

difference between the two condition-specific networks and the size of the nodes in DDN 
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represents betweenness-centrality difference. The condition-specific rewiring metric identifies 

genes with a significant proportion of condition-specific edges assessed against the binomial 

distribution of these edges across the entire graph. In each DDN, these specificity mediators 

were identified, highlighting particularly highly altered roles between conditions. Both 

essentiality and condition-specific mediators are indicated by square nodes.

The mRNA expression values were log2 transformed and quantized to values -1 (under-

expressed), 0 (intermediate), and 1 (over-expressed). For each gene, median average deviation 

(MAD) was computed and used to determine under-expression (MAD < -1), over-expression 

(MAD > 1), and intermediate. Quantized expression array data from the samples were separated 

into groups of 25 failed donors (FD) and 58 PAH. EDDY then iterated over the full set of 

REACTOME pathways (16). Prior knowledge was mined from Pathway Commons (23). The recent 

porting of EDDY to graphical processing unit (GPU) accelerated this analysis.

Results identified 16 REACTOME pathways with statistically significant (p-value < 0.05) rewiring 

of gene dependencies representing a range of biological function – some known to be important 

in PAH and others not previously described.  Longer teal colored bars indicate larger proportion 

of dependencies inferred for each gene network that has not been previously reported. For each 

significantly rewired pathway, differential dependency networks (DDNs) were generated, 

displaying the gene dependencies found in PAH (edges in red), in failed donor control (edges in 

blue), or found in both (edges in gray). In these DDNs, known functional interactions are denoted 

by solid lines, while statistical dependencies as calculated by EDDY analysis are displayed by 
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dashed lines. Qualitative RNA expression (up- or down-regulation) in PAH or failed donor control 

lungs was also determined and represented by color coding. 

E9



Supplemental Materials References

1. Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high
density oligonucleotide array data based on variance and bias. Bioinformatics 2003; 19: 185-193.

2. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip
probe level data. Nucleic Acids Res 2003; 31: e15.

3. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration,
normalization, and summaries of high density oligonucleotide array probe level data. 
Biostatistics 2003; 4: 249-264.

4. Dugo M, Cotroneo CE, Lavoie-Charland E, Incarbone M, Santambrogio L, Rosso L, van den Berge M,
Nickle D, Pare PD, Bosse Y, Dragani TA, Colombo F. Human Lung Tissue Transcriptome: Influence 
of Sex and Age. PLoS One 2016; 11: e0167460.

5. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 2003;
100: 9440-9445.

6. Storey JD, Tibshirani R. Statistical methods for identifying differentially expressed genes in DNA
microarrays. Methods Mol Biol 2003; 224: 149-157.

7. Li Y, Gu J, Xu F, Zhu Q, Ge D, Lu C. Transcriptomic and functional network features of lung squamous
cell carcinoma through integrative analysis of GEO and TCGA data. Sci Rep 2018; 8: 15834.

8. Rajkumar R, Konishi K, Richards TJ, Ishizawar DC, Wiechert AC, Kaminski N, Ahmad F. Genomewide
RNA expression profiling in lung identifies distinct signatures in idiopathic pulmonary arterial 
hypertension and secondary pulmonary hypertension. Am J Physiol Heart Circ Physiol 2010; 298: 
H1235-1248.

9. Zhao M, Austin ED, Hemnes AR, Loyd JE, Zhao Z. An evidence-based knowledgebase of pulmonary
arterial hypertension to identify genes and pathways relevant to pathogenesis. Mol Biosyst 
2014; 10: 732-740.

10. Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic
nucleotide phosphodiesterases. Nat Rev Drug Discov 2014; 13: 290-314.

11. Goumans MJ, Zwijsen A, Ten Dijke P, Bailly S. Bone Morphogenetic Proteins in Vascular Homeostasis
and Disease. Cold Spring Harb Perspect Biol 2018; 10.

12. Feldman J, Habib N, Radosevich J, Dutt M. Oral treprostinil in the treatment of pulmonary arterial
hypertension. Expert Opin Pharmacother 2017; 18: 1661-1667.

13. Peng T, Gong J, Jin Y, Zhou Y, Tong R, Wei X, Bai L, Shi J. Inhibitors of phosphodiesterase as cancer
therapeutics. Eur J Med Chem 2018; 150: 742-756.

14. Jung S, Kim S. EDDY: a novel statistical gene set test method to detect differential genetic
dependencies. Nucleic Acids Res 2014; 42: e60.

15. Speyer G, Kiefer J, Dhruv H, Berens M, Kim S. Knowledge-Assisted Approach to Identify Pathways
with Differential Dependencies. Pac Symp Biocomput 2016; 21: 33-44.

16. Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, Jassal B, Jupe S, Korninger F,
McKay S, Matthews L, May B, Milacic M, Rothfels K, Shamovsky V, Webber M, Weiser J, Williams 
M, Wu G, Stein L, Hermjakob H, D'Eustachio P. The Reactome pathway Knowledgebase. Nucleic 
Acids Res 2016; 44: D481-487.

17. Zheng S, Cherniack AD, Dewal N, Moffitt RA, Danilova L, Murray BA, Lerario AM, Else T, Knijnenburg
TA, Ciriello G, Kim S, Assie G, Morozova O, Akbani R, Shih J, Hoadley KA, Choueiri TK, Waldmann 
J, Mete O, Robertson AG, Wu HT, Raphael BJ, Shao L, Meyerson M, Demeure MJ, Beuschlein F, 
Gill AJ, Sidhu SB, Almeida MQ, Fragoso M, Cope LM, Kebebew E, Habra MA, Whitsett TG, Bussey 
KJ, Rainey WE, Asa SL, Bertherat J, Fassnacht M, Wheeler DA, Cancer Genome Atlas Research N, 

E10



Hammer GD, Giordano TJ, Verhaak RGW. Comprehensive Pan-Genomic Characterization of 
Adrenocortical Carcinoma. Cancer Cell 2016; 29: 723-736.

18. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov
GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, 
Jane-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu 
GK, Yu J, Aspesi P, Jr., de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta 
S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li N, Mesirov 
JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, 
Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA. The 
Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 
2012; 483: 603-607.

19. Rees MG, Seashore-Ludlow B, Cheah JH, Adams DJ, Price EV, Gill S, Javaid S, Coletti ME, Jones VL,
Bodycombe NE, Soule CK, Alexander B, Li A, Montgomery P, Kotz JD, Hon CS, Munoz B, Liefeld T, 
Dancik V, Haber DA, Clish CB, Bittker JA, Palmer M, Wagner BK, Clemons PA, Shamji AF, 
Schreiber SL. Correlating chemical sensitivity and basal gene expression reveals mechanism of 
action. Nat Chem Biol 2016; 12: 109-116.

20. Seashore-Ludlow B, Rees MG, Cheah JH, Cokol M, Price EV, Coletti ME, Jones V, Bodycombe NE,
Soule CK, Gould J, Alexander B, Li A, Montgomery P, Wawer MJ, Kuru N, Kotz JD, Hon CS, Munoz 
B, Liefeld T, Dancik V, Bittker JA, Palmer M, Bradner JE, Shamji AF, Clemons PA, Schreiber SL. 
Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. Cancer Discov 2015; 
5: 1210-1223.

21. Speyer G, Mahendra D, Tran HJ, Kiefer J, Schreiber SL, Clemons PA, Dhruv H, Berens M, Kim S.
Differential Pathway Dependency Discovery Associated with Drug Response across Cancer Cell 
Lines. Pac Symp Biocomput 2017; 22: 497-508.

22. Freeman LC. A Set of Measures of Centrality Based on Betweenness. Sociometry 1977; 40: 35-41.
23. Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, Anwar N, Schultz N, Bader GD, Sander C.

Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res 2011; 39: 
D685-690.

E11



Supplemental Figure Legends

Supplemental Figure E1. Principal component analysis (PCA) of the PHBI discovery cohort.

Affymetrix HuGene ST1.0 microarrays from batch 1-3 were imported into Partek Genome 

Studio and visualized by PCA plots. Supplemental Figure E1A shows the separation of batch 3 

from batches 1 and 2 prior to adjustment. Supplemental Figure E1B shows the overlapping of 

all 3 batches after adjustment for Batch and Sex as co-variables in the ANOVA modeling used by 

Partek Genome Studio.

Supplemental Figure E2. Volcano plot highlighting PHBI classifier in relation to all TranscriptIDs 

measured.

All expression transcriptIDs are plotted as log2(Fold-change as PAH/FD) versus log10(q-value) in 

a volcano plot. The PHBI classifier (Affymetrix TranscriptIDs n = 1,140 q-value < 0.001) is 

highlighted in red circles while purple triangles include those that also have Fold-change >|1.5|.

Supplemental Figure E3. Supervised validation of the PHBI classifier on microarray datasets.

The PHBI classifier (Affymetrix TranscriptIDs n = 1,140 q-value < 0.001) was used for supervised 

hierarchical clustering to provide visualization of the validation datasets. A smaller PAH lung 

Agilent microarray dataset previously published (Rajkumar et al. 2010) was downloaded from 

GEO (GSE15197; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15197), imported 

into Partek, and the Agilent IDs were matched to their respective gene symbols. Of these, 13 

were their lung controls (equivalent to FD) and 18 were PAH only. The remainder of their 

analysis were from PAH+IPF patient lungs, and were excluded from this analysis. The gene 
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symbols that overlapped with the PHBI classifier (n = 893 out of n = 1,140 total) were analyzed 

by Partek Genomic Suite ANOVA model and all results (regardless of p-value) were used for 

hierarchical clustering (Supplemental Figure E3).

Supplemental Figure E4. Supervised validation of the PHBI classifier using literature-derived 

PAH pathways.

Additional validation was completed using a literature-derived (key word searches along with 

PAH knowledge-based inquiry) genelist which was used to develop networks of potential 

pathways important to PAH disease. The gene symbols were used to select out the expression 

data from the full PHBI dataset (Zhao et al. 2014, n = 112 genes Supplemental Figure E4). The 

expression data in this subset was analyzed by Partek Genomic Suite ANOVA model and 

hierarchical clustering visualized the PHBI PAH and FD samples.

Supplemental Figure E5. qRT-PCR validation of selected predicted up-regulated genes in PAH.

Nine genes were tested by qRT-PCR including 5 PDEs, 2 genes involved in PGD2 synthesis, and 2 

BMPs. All were in the PHBI classifier (q-value < 0.001) and predicted to be up-regulated in PAH 

lung tissue. All 9 genes were found up-regulated by qRT-PCR using Student’s t-test for 

significance.

Supplemental Figure E6. Tumor Necrosis Factor is a potential master upstream regulator in 

PAH.
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The PHBI classier, including fold-change expression and q-values, was imported into Ingenuity 

Pathway Analysis. Tumor Necrosis Factor (shown as alias TNFA) was identified as the top ranked 

upstream regulator (IPA pathway enrichment, p-value 1.24E-14; see also Table 3 and 

Supplemental Table 4) with 147 connected genes. Connected genes are displayed alphabetically 

from ABCG2 (roughly 9 o’clock) to WISP2 in a clockwise direction.
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Supplemental Figure E1
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Validation: Performance of PHBI Classifier on the Rajkumar Dataset 
(n=893)

Supplemental Figure E3
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Validation : Performance of Zhao  PAH Gene Network (n=112; q‐value<0.05)

Supplemental Figure E4
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Gene Fold Change PAH/FD ttest (p‐value)

PDE1A 1.67 3.305E‐03

PDE2A 1.43 3.951E‐02

PDE3A 1.90 1.170E‐04

PDE4D 1.47 1.181E‐02

PDE5A 1.56 1.135E‐02

PTGDS 2.40 7.288E‐06

HPGDS 1.47 9.388E‐03

BMP5 1.55 1.843E‐03

BMP6 2.12 1.200E‐04

Supplemental Figure E5
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Supplemental Figure  E6
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