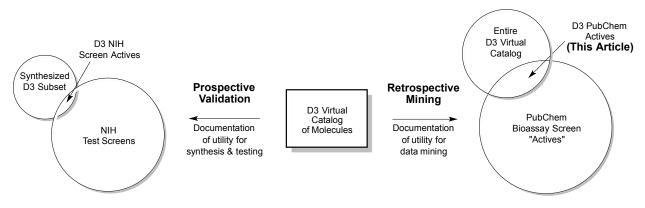
Supporting Information

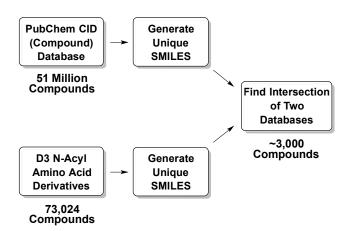
Documenting and Harnessing the Biological Potential of Molecules in Distributed Drug Discovery (D3) Virtual Catalogs

Milata M. Abraham¹ | Ryan E. Denton¹ | Richard W. Harper¹ | William L. Scott¹, | Martin J. O'Donnell^{1,*} | Jacob D. Durrant^{2,*}

¹Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, United States


²Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States

Correspondence: Jacob D. Durrant, durrantj@pitt.edu; Martin J. O'Donnell, modonnel@iupui.edu


Table of Contents

Title Page	SI-1
Table of Contents	SI-2
Workflow Diagrams Figures SI-1 and SI-2	SI-3
Stereochemical Issues in the Enumeration of N-Acyl α -Amino Acid Derivatives Figures SI-3 and SI-4	SI-4
Identifying Unique D3 Compounds Listed as Actives in PubChem Figures SI-5, SI-6, SI-7 and SI-8	SI-6
Table SI-1. 40 Approved drugs containing substructures of various D3-like α -amino acid and dipeptide derivatives	SI-12
Table SI-2. 32 protein drug targets with orthosteric pockets known to bind at least one α -amino acid derivative.	D3 SI-18
Table SI-3. 54 D3 Compounds identified as hits when only PubChem assays judged likely to detect binding to the orthosteric pockets of single-protein drug targets were considered	SI-20
References	SI-26

Workflow Diagrams

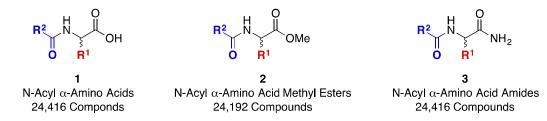
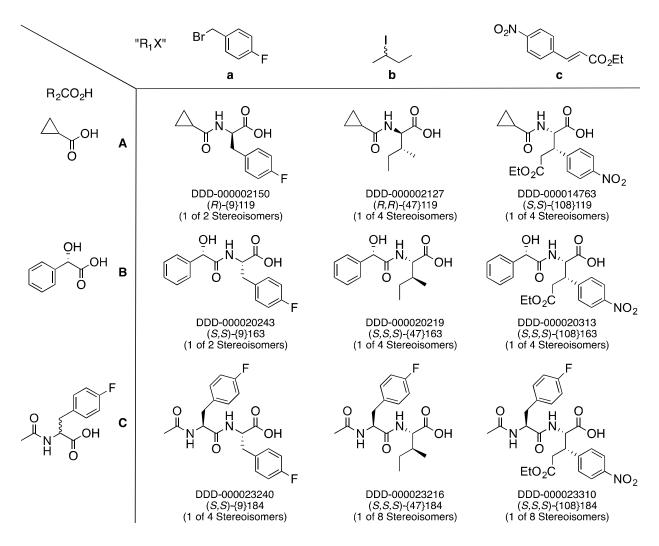

Figure SI-1. Two approaches for demonstrating the potential for biological activity of D3 virtual catalog members.

Figure SI-2. The chemoinformatics analysis. Common D3 virtual and bioactive PubChem compounds.

Stereochemical Issues in the Enumeration of N-Acyl α-Amino Acid Derivatives

Enumeration with the 100 electrophiles (alkyl halides and Michael acceptors) and 100 carboxylic acids gave 24,416 N-acyl amino acids **1** [1], 24,192 N-acyl amino acid methyl esters **2** [2], and 24,416 N-acyl amino acid amides **3** (presented here for the first time [3] (Figure SI-3). The reason these numbers exceed 10,000 (100 electrophiles x 100 carboxylic acids) is discussed below (taken in part from reference [1], Supporting Information, p. 4).


Figure SI-3 (Figure 1 from article). Generic structures of the 73,024 unnatural and natural N-acyl α -amino acid derivatives in the D3 virtual catalog

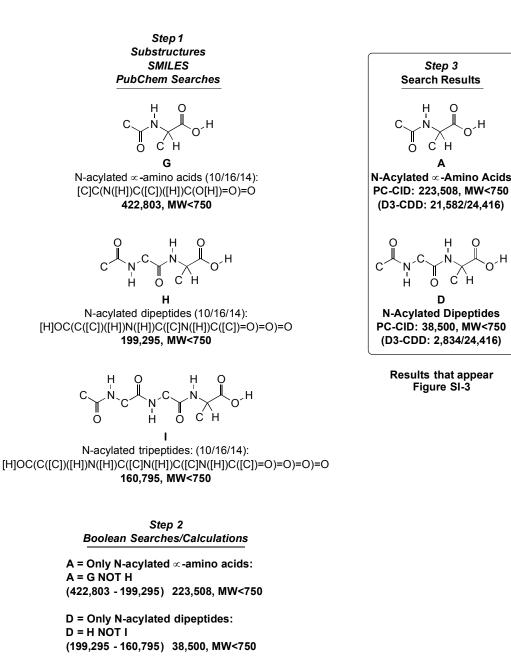
Issues of stereochemistry were addressed in this enumeration. Examples illustrating possible N-acylated amino acid products **1** are shown in Figure SI-4 The products are identified in three ways: row/column (e.g. **Aa**), Collaborative Drug Discovery (CDD) number (e.g. DDD-000002150), and the number used in our *J. Comb. Chem.* paper [e.g. (*R*)-{9}119] [1, 2]. The diversity elements (reactants R¹X and R²CO₂H) include achiral (**a** and **A**), optically pure (**B**), racemic (**b** and **C**), and prochiral (**c**) examples. Only one of the possible stereoisomers for each product is shown in this figure.

(1) When achiral or optically pure reactants ($R^{1}X$ and $R^{2}CO_{2}H$) were used, racemic products (2 stereoisomers) resulted. Examples: **Aa** and its enantiomer or **Ba** and its diastereomer at the α carbon. The database contains 15,308 unique molecules **1** (7,654 pairs) of this class.

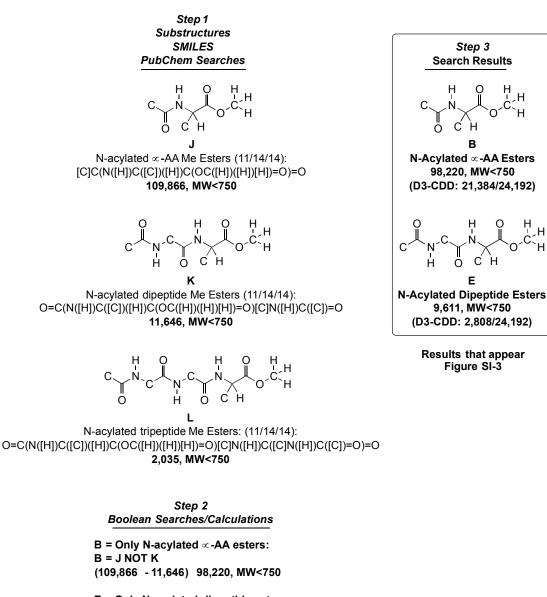
(2) When one of the reactants (R¹X and R²CO₂H) was racemic or, in the case of Michael acceptors, prochiral, 4 stereoisomers were obtained. Examples: **Ab** or **Ac** and their stereoisomers. Other cases yielding 4 stereoisomers: optically pure and racemic (**Bb**); optically pure and prochiral (**Bc**); or racemic and achiral (**Ca**). The database contains 8,068 such unique molecules **1** (2,017 sets of four stereoisomers) of this class.

(3) When both reactants (R¹X and R²CO₂H) were racemic or prochiral and racemic,
8 stereoisomers were formed. Examples: Cb or Cc and their stereoisomers. The database contains 1,040 such unique molecules 1 (130 sets of eight stereoisomers) of this class.

Figure SI-4. Sample enumerated compounds demonstrating different stereochemical issues.

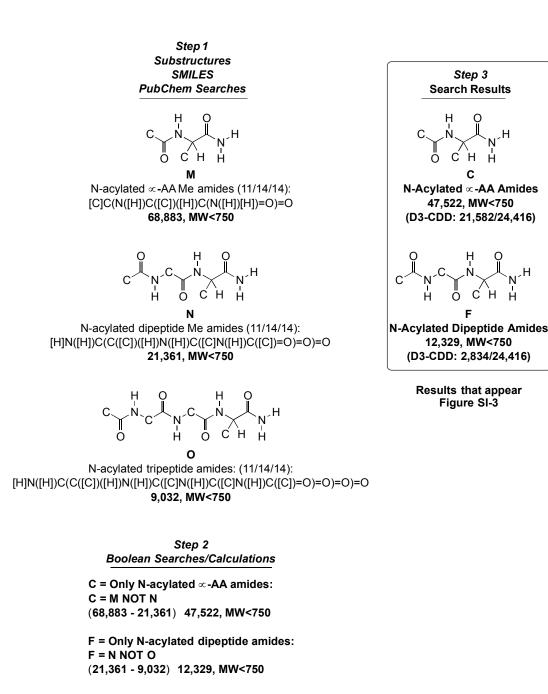

Identifying Unique D3 Compounds Listed as Actives in PubChem

A series of Boolean substructure searches was used to identify all D3-like N-acyl α amino acid derivatives (**A**, **B**, or **C**) and N-acyl dipeptide derivatives (**D**, **E**, or **F**) present in PubChem (i.e., "PC-CID" compounds in Supporting Information Figures SI-3, SI-4, SI-5, and SI-6). Current D3 catalog members do not contain glycine or α, α -disubstituted compounds, so the α -positions of substructures **A-F** were substituted with both an α -carbon and an α hydrogen. Since the maximum molecular weight of the D3 catalog compounds is 685 daltons, the PubChem searches were limited to compounds with molecular weights less than 750 daltons. Low-weight dipeptides were not explicitly excluded from this search because they are accessible through existing D3 chemistry, when α -amino acid derivatives are used as N-acylating agents (R²CO₂H).


Figure SI-5. PubChem and D3-catalog substructure searches refined by subsequent Boolean searches to identify *only* N-acyl α -amino acid derivatives **A-C** and N-acyl dipeptide derivatives **D-F**. PC-CID is the number of PubChem compounds that meet the search parameters. D3-CDD indicates the fraction of D3 compounds (out of the total number of D3 compounds with the specified substructure) in the Collaborative Drug Discovery/D3 dataset (see the following Figures SI-6, SI-7, and SI-8 for Boolean search strategies).

Substructure SMILES & Boolean Searches - Acids

Figure SI-6. Boolean substructure searches using SMILES strings identified all D3-like Nacyl α -amino acids **A** and N-acyl dipeptides **D** in PubChem (Figure SI-5). Current D3 catalog members do not contain glycine or α, α -disubstituted compounds, so the α -positions of substructures **A** and **D** were substituted with both an α -carbon and an α -hydrogen. Since the maximum molecular weight of the D3 catalog compounds is 685 daltons, the PubChem searches were limited to compounds with molecular weights less than 750 daltons.


Substructure SMILES & Boolean Searches - Esters

E = Only N-acylated dipeptide esters: E = K NOT L (11,646 - 2,035) 9,611, MW<750

Figure SI-7. Boolean substructure searches using SMILES strings were conducted to identify all D3-like N-acyl α -amino acids methyl esters **B** and N-acyl dipeptide methyl esters **E** in PubChem (Figure SI-5). Current D3 catalog members do not contain glycine or α, α -disubstituted compounds, so the α -positions of substructures **B** and **E** were substituted with both an α -carbon and an α -hydrogen. Since the maximum molecular weight of the D3 catalog compounds is 685 daltons, the PubChem searches were limited to compounds with molecular weights less than 750 daltons.

Substructure SMILES & Boolean Searches - Amides

Figure SI-8. Boolean substructure searches using SMILES strings were conducted to identify all D3-like N-acyl α -amino acid amides **C** and N-acyl dipeptide methyl amides **F** in PubChem (Figure SI-5). Current D3 catalog members do not contain glycine or α, α -disubstituted compounds, so the α -positions of substructures **C** and **F** were substituted with both an α -carbon and an α -hydrogen. Since the maximum molecular weight of the D3 catalog compounds is 685 daltons, the PubChem searches were limited to compounds with molecular weights less than 750 daltons.

This limited set of D3-like PubChem compounds was next searched for exact D3 matches. A list of all D3 compounds can be obtained from either the Collaborative Drug (CDD) or Durrant Lab websites (https://www.collaborativedrug.com [4, 5], accessed February 27, 2017; or http://durrantlab.com/liglib/iupui/d3_docking/, accessed February 27, 2017). Included in this comparison were the 2,834, 2,808, and 2,834 dipeptide derivatives present in the "D3-CDD" N-acyl dipeptide (**D**), D3 N-acyl dipeptide methyl ester (**E**), and D3 N-acyl dipeptide amide (**F**) sets, respectively.

As PubChem does not consistently report chirality, structural information related to the stereochemistry of both the PubChem and D3 compounds was ignored for the purpose of this comparison. Since epimeric pairs are always present in the D3 catalog, ignoring chirality did not impact the total number of compounds ultimately identified. By all these search criteria, and ignoring chirality, ~3,000 PubChem compounds were present in the D3 virtual catalog, excluding those that had been specifically uploaded by D3 or CDD (June 2014).

PubChem substructure searches were performed using the SMILES strings derived SI-3) "CC(N([H])CC(O[H])=O)=O" from substructures 1 -3 (Figure (1), "CC(N([H])CC(OC([H])([H])[H])=O)=O" (2), and "CC(N([H])CC(N([H])[H])=O)=O" (3). The SMILES strings of these compounds were downloaded from the PubChem servers. Structural information related to stereochemistry was removed by applying the regex expressions "s/@[@H]*]/]/g" and "s/@//g" to the SMILES strings. If appropriate, isotopic information and explicitly specified heavy hydrogen atoms were removed using the "s/\[[0-9]*/[/g", "s/\[H]//g", and "s/\[\(.\)]/\1/g" expressions. To ensure consistent charge assignments, nitrogen, carbon, oxygen, sulfur, and phosphorus atoms with nonneutral formal charges were converted to simple atoms with charge unspecified, using the "s/\[NH[0-9]?[+-]]/N/g", "s/\[N-]/N/g", "s/\[n-]/n/g", "s/\[CH[0-9]?[+-]]/C/g", "s/\[C-]/C/g", "s/\[C+]/C/g", "s/\[c+]/c/g", "s/\[c-]/c/g", "s/\[OH[0-9]?[+-]]/O/g", "s/\[0-]/O/g", "s/[S-]/S/g", "s/[S+]/S/g", "s/[SH[0-9]?[+-]]/S/g", and "s/[P+]/P/g" expressions.

As a given compound can have multiple valid SMILES representations, we used the Open Babel computer program [6] to convert each SMILES string into a unique canonical form. Open Babel was also used to remove hydrogen atoms, convert dative bonds (e.g. [N+]([0-])=0 to N(=0)=0), and discard all but the largest molecule associated with each

string. The N-acyl α -amino acids, esters, and amides of the D3 enumerated virtual catalog were subjected to the same protocol.

Since there is only one valid canonical SMILES string for a given compound, SMILES strings in this form serve as unique molecular identifiers and so can be used to identify compounds common to both the PubChem and D3 lists. We used the Unix command line for this purpose, but a similar protocol is possible with popular spreadsheet programs. For example, the unique SMILES strings in the PubChem and D3 lists could be identified using Microsoft Excel's advanced data filter ("Unique records only"). The lists of unique PubChem and D3 SMILES strings could then be combined into a single column, and the COUNTIF function could be used to identify any entries that appear more than once and must therefore be common to both lists. Computer programs such as MONA [7] and ChemCom [8] may also facilitate this type of molecular searching strategy.

Table SI-1. 40 approved drugs containing substructures of various D3-like α -amino acid and dipeptide derivatives. The drug name (with reference), structure, classification, and therapeutic indication (adapted from DrugBank [9]) are shown.

#	Compound	Structure	Classification	Indication
1	Alvimopan [10]		N-Acyl α-Amino Acid / Synthetic	Gastrointestinal recovery following bowel resection surgery with primary anastomosis
2	Atazanavir [11]		N-Acyl α-Amino Acid Amide / Synthetic	HIV-1
3	Bortezomib [12]		N-Acyl Dipeptide Boronic Acid / Synthetic	Multiple myeloma
4	Ceftaroline Fosamil [13]	N, O N, HN, O HN, O HN, O HO, O HO, O HO, O S, S HO, N HO, O S, N HN, N HN, O S, N HN, O N, N HN,	N-Acyl Dipeptide (beta-Lactam) / Synthetic	Bacterial infections
5	Clindamycin [14]		N,N-Dialkyl Amino Acid Amide / Synthetic	Anaerobic bacteria
6	Clopidogrel (Plavix) [15]	S C C	N,N-Dialkyl Amino Acid Ester / Synthetic	Atherosclerotic events

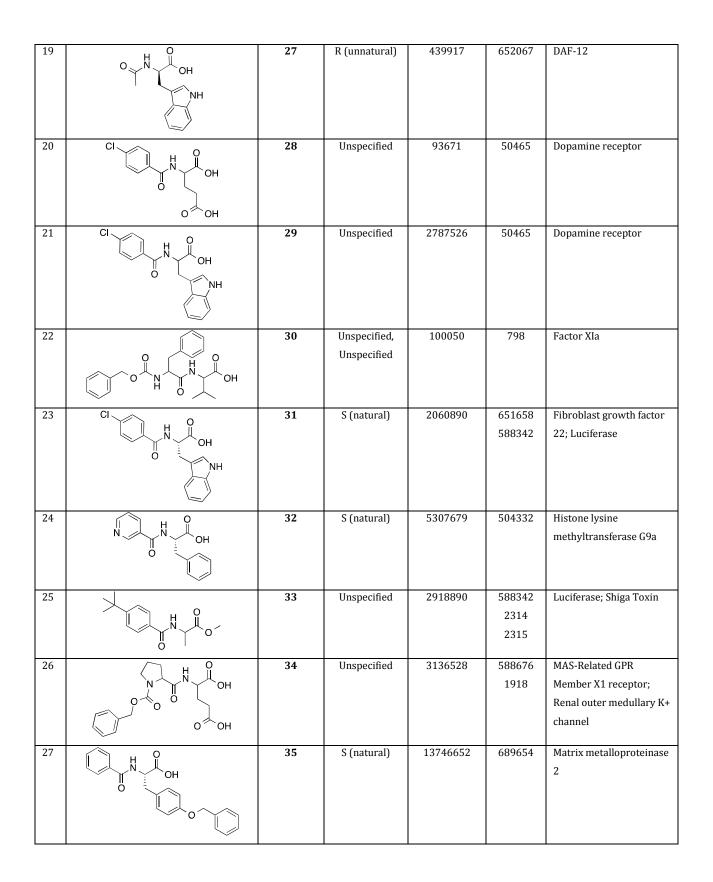
7	Cobicistat [16]	<u>,0</u>	N-Acyl α-Amino	HIV
	[]		Acid Amide /	
		Ň	Synthetic	
			by intire tie	
		s i s		
8	Diazepam (Valium)	Cl	Imino Acid Amide /	Anxiety disorders,
	[17]	\sim	Synthetic	insomnia,
				anticonvulsant,
				alcohol withdrawal
		✓ `0		syndrome
9	L-DOPA [18]	<u> </u>	α-Amino Acid /	Parkinsonism and
		H ₂ N OH	Natural Product	dopa-responsive
				dystonia
		но		5
		OH		
10	Doripenem [19]	0	N-Acyl α-Amino	Antibiotic
			Acid (beta-Lactam)	
		HO	/ Synthetic	
		S S		
		0 ⁻ \$ ⁻⁰		
		NH ₂		
11	Enalapril [20]	<mark>он</mark> он н	N-Alkyl Dipeptide,	Hypertension,
			N-Alkyl Amino Acid	congestive heart
			Ester / Synthetic	failure
12	Folic Acid [21]	H N N O	N-Acyl α-Amino	Vitamin B ₉
		H ₂ N N O	Acid / Natural	
		N N	Product	
		N N		
		HN		
		н		
		ОТОН		
13	Lacocamida [22]		N Agul & Amino	Enilongy
13	Lacosamide [22]		N-Acyl α -Amino	Epilepsy
		J H O	Acid Amide /	
			Synthetic	

14	Lenalidomide [23]	H ₂ N NH	N-Acyl α-Amino Acid Imide / Synthetic	Multiple myeloma, some forms of transfusion- dependent anemia
15	Levothyroxine [24]		α-Amino Acid / Natural Product	Hypothyroidism, goiter, chronic lymphocytic thyroiditis, myxedema coma, and stupor
16	Lidocaine [25]		N,N-Dialkyl α- Amino Acid / Synthetic	Anesthesia
17	Liothyronine [26]	H ₂ N OH	α-Amino Acid / Synthetic	Hypothyroidism
18	Lisdexamfetamine [27]	H ₂ N H ₂ N H	α-Amino Acid Amide / Synthetic	Attention Deficit/Hyperactivity Disorder
19	Lisinopril [28]	HO HO HN OH	N-Alkyl Dipeptide, N-Alkyl α-Amino Acid / Synthetic	Hypertension, congestive heart failure
20	Lopinavir [29]		N-Acyl-Type α- Amino Acid Amide / Synthetic	HIV

21	Lymecycline [30]	H ₂ N H ₂ N	α-Amino Acid /	Acne, some bacterial
		OH	Synthetic	infections
		ŃH		
		HOHO		
		o, i i i		
		НО		
22	Melphalan [31]	H ₂ N,	α-Amino Acid /	Multiple myeloma,
		CI	Synthetic	epithelial carcinoma of the ovary
				of the ovary
		CI		
23	Methotrexate [32]	H_2N N NH_2	N-Acyl α-Amino	Some cancers
		N N N	Acid / Synthetic	
		N A		
		нысон		
		ОСОН		
24	Mimosine [33]	H ₂ N OH	α-Amino Acid / Natural Product	Some cancers
		Ņ		
		OH		
25	Pemetrexed [34]	HN	N-Acyl α-Amino	Malignant pleural
			Acid / Synthetic	mesothelioma, non-
				small cell lung cancer
		ООН		
26	Penicillamine [35]	H ₂ N	α-Amino Acid /	Wilson's disease,
		ОН	Synthetic	cystinuria, rheumatoid arthritis
27	Penicillin V [36]	SH	N-Acyl Dipeptide	Bacterial infections
21	i emenini v [50]	<u> </u>	(beta-Lactam) /	Dacterial Intections
		HNOOH	Synthetic	
		5 - / -		

28	Pomalidomide [37]	NH ₂	N-Imido α-Amino	Multiple myeloma
			Acid Imide /	
		N NH	Synthetic	
		ő L		
29	Pralatrexate [38]		N-Acyl α-Amino	Peripheral T-cell
			Acid / Synthetic	lymphoma
		NH ₂		
30	Raltitrexed [39]	0	N-Acyl α-Amino	Malignant neoplasm
		N-K	Acid / Synthetic	of colon and rectum
		∕ S° ↑ → OH O ↓		
		оон		
31	Ranolazine [40]		N,N-Dialkyl α-	Chronic angina
			Amino Acid Amide /	
		ÓH NN	Synthetic	
32	Ritonavir [29]		α-Amino Acid	HIV
	[]		Amide / Synthetic	
33	Saxagliptin [41]	N	α-Amino Acid	Type 2 diabetes
		H ₂ N	Amide / Synthetic	mellitus
		HO		
34	Tacrolimus [42]	oʻ oʻ	N-Acyl α-Amino	Organ
			Acid Ester /	transplantation,
1		HO HO	Synthetic	immunosuppression
		о о // ОН		
		У ОН		
35	Tadalafil (Cialis) [43]		Cyclic Dipeptide /	Erectile dysfunction
		NH	Synthetic	

36	Thalidomide [44]		N-Imido α-Amino	Erythema nodosum
			Acid Imide /	leprosum
			Synthetic	
37	Tigecycline [45]	Ň Ň	N-Alkyl α-Amino	Bacterial infections
		H Q OH	Acid Amide /	
			Synthetic	
38	Valganciclovir [46]	° V	α -Amino Acid Ester	Cytomegalovirus
			/ Synthetic	infections
		OH NH ₂		
39	Valsartan [47]	N-N	N-Acyl α-Amino	Hypertension, left
		N N	Acid / Synthetic	ventricular
				hypertrophy, diabetic
		o o		nephropathy, other
		~NОн		cardiac problems
		Ö –		
40	Ximelagatran [48]	NH ₂	N-Alkyl Dipeptide	Deep vein thrombosis
		Р н Р → NH → N−OH	Amide / Synthetic	


Table SI-2. 32 protein drug targets with orthosteric pockets known to bind at least one D3 α -amino acid derivative.

#	Target	Relevant Medical Conditions	Known Ligand(s)
1	Histone deacetylase	Psychiatric and neurological conditions [49]; cancer [50]	α-Amino acid (acetylated lysine residues [51])
2	Histone lysine methyltransferase G9a	Cancer [52]	α -Amino acid (histone tail lysine residues [53])
3	Methionine sulfoxide reductase A	Aging [54]	α-Amino acid (methionine [55])
4	Dopamine receptor	Parkinson's disease; dopa- responsive dystonia; psychiatric conditions	α-Amino acid metabolite (dopamine)
5	Luciferase	None	α-Amino acid metabolite (luciferin, from cysteine [56])
6	Thioredoxin glutathione reductase	Schistosomiasis [57]	Peptide (glutathione) and protein (thioredoxin) [58]
7	Oxytocin receptor	Labor induction [59]	Peptide (oxytocin) [60]
8	GLP-1 receptor	Diabetes mellitus type 2 [61]	Peptide (peptide hormone glucagon-like peptide-1, exendin-4, etc. [62])
9	NK1 receptor	Chemotherapy-induced nausea [63]	Peptide [64]
10	Polo-like kinase 1 - polo- box domain	Cancer [65]	Peptides [66]
11	Ribosomal peptidyl transferase center	Bacterial infections	Peptides [67]
12	MAS-related GPR member X1 receptor	Chronic pain [68]	Peptides [69]
13	Mitogen-activated protein kinase kinase kinase 3 isoform 1	Cancer [70]	Protein [71]
14	Peptidylprolyl cis/trans isomerase, NIMA- interacting 1	Cancer [72]	Protein residues [72]
15	Protein arginine deiminase 4	Rheumatoid arthritis [73]	Proteins (arginines) [74]
16	Ras-converting enzyme	Cancer [75]	Proteins [76]
17	Factor XIa	Hemophilia C [77]	Proteins and peptides [78]
18	Matrix metalloproteinase 2	Cancer [79]	Proteins and peptides [51]
19	Calpain	Alzheimer's disease, stroke, amyotrophy, muscular dystrophy, motor	Proteins and peptides [80- 82]

20	Cathepsin Cancer [83], neurodegenerative disorders, rheumatoid arthritis [84] Platelet-activating factor Atherosclerosis [85]		Proteins and peptides [83]
21	Platelet-activating factor acetylhydrolase 1b, catalytic subunit 2	Atherosclerosis [85]	1-O-alkyl-2-acetyl-sn- glycero-3-phosphocholine (PAF or platelet-activating factor [86])
22	Calcium-activated chloride channels (TMEM16A)	Diarrhea [87]	Cations (Calcium)
23	Renal outer medullary K+ channel	Bartter syndrome [88]	Cations (Potassium)
24	Apoptotic protease activating factor 1	Cancer [89]	Nucleic acid (ATP) and various protein partners [90]
25	Heat shock factor-1	Cancer [91]	Nucleic acid (DNA, though the α-amino acid glutamine may increase HSF1 transcription) [92]
26	Shiga toxin	Dysentery [93]	Nucleic acids [94]
27	1,4-dihydroxy-2- naphthoyl-CoA synthase (MenB)	Bacterial infections [95]	O-succinylbenzoyl-CoA [96]
28	Vitamin D receptor	Rickets [97]	Secosteroid [98]
29	DAF-12	Parasitic helminthes [99]	Steroidal ligand [100]
30	Fibroblast growth factor 22	Epilepsy [101]	Uncertain
31	Dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1	X-linked adrenal hypoplasia congenital [102]	Uncertain
32	CD81 receptor	Hepatitis C [103]	Various protein partners

1	F C H N OH	9	Unspecified	2787610	540299	1,4-dihydroxy-2- naphthoyl-CoA synthase (MenB)
2	С Н ОН	10	Unspecified	3153153	540299	1,4-dihydroxy-2- naphthoyl-CoA synthase (MenB)
3		11	Unspecified	2787609	489031	Apoptotic protease activating factor 1
4		12	S (natural)	2304949	588511	Calcium-activated chloride channels (TMEM16A)
5		13	S (natural)	44350733	46724	Calpain
6		14	S (natural), S (natural)	7299379	262308 262309	Calpain
7		15	S (natural), S (natural)	114619	46713 50461 51388	Calpain; Cathepsin
8		16	S (natural), S (natural)	15017709	51388 46714 50461	Calpain; Cathepsin

0	~	17	C (matanal)	1000(70)	74(500	Catherentia
9		17	S (natural),	13386706	746599	Cathepsin
	0 0		S (natural)			
10		18	S (natural),	152128	50461	Cathepsin
			S (natural)		51388	
			5 (natural)		51500	
	О И И ОН					
	Н В					
11	~	10	C (matamal)	40522013	74(500	Cathanata
11		19	S (natural),	40522013	746599	Cathepsin
	0 0		S (natural)			
12		20	S (natural),	7020268	746599	Cathepsin
			S (natural)			
	O ∫ Ĥ O		5 (liatul al)			
	Н Ю					
10	·	0.4	C (and D)	7070000	F1000	Cathanain
13		21	S (natural),	7272330	51388	Cathepsin
	o /> o		S (natural)		50461	
	ОСИСНОСН					
14		22	S (natural)	10990457	37849	CD81 receptor
						-
	0 -					
15		23	S (natural)	510498	42940	CD81 receptor
15	/<́ ≻ н °	25	5 (natural)	510170	12,710	0201100000
	√N ↓ ОН					
) T					
16		24	S (natural)	510499	42940	CD81 receptor
	V_/~~~° °					
	ни Мон					
	\rightarrow					
		_				
17	V n o	25	S (natural)	7116346	42940	CD81 receptor
	$\langle - / - / - \rangle$					
18		26	Unspecified	294891	652126	DAF-12
10		20	Unspecified	294091	052120	DAF-12
	М СОН					
	Ö					
	NH					
L		1	I	1	1	

28	0	36	S (natural)	71452972	689654	Matrix metalloproteinase
	√ ^N √ [⊥] o∕		- (maturary	101/16	007001	2
						-
	0					
29		37	Unspecified	2002	602163	Methionine sulfoxide
	Ŭ [™] [™] [™] [™] [™] [™]				652067	reductase A; DAF-12;
	O NH				504408	Heat Shock Factor-1; Ras-
					2563	converting enzyme;
					504766	Dosage-sensitive sex
						reversal, adrenal
						hypoplasia critical region,
						on chromosome X, gene 1
30		38	Unspecified	466382	1529	Mitogen-activated
	X X X V				720706	protein kinase kinase
						kinase 3 isoform 1;
						Ribosomal peptidyl
	~					transferase center
31		39	S (natural),	11100291	462888	NK1 receptor
	0		S (natural)			
	ŢĴ					
32	~ ^ ^	40	Unspecified	44142844	2445	Oxytocin receptor
32		40	onspecifieu	44142044	2440	oxytochi receptor
	Т ́он					
33	H O	41	R (unnatural)	14186396	474989	Peptidylprolyl cis/trans
	Т N С ОН					isomerase, NIMA-
	0 V					interacting 1
34	н	42	R (unnatural)	45100499	474989	Peptidylprolyl cis/trans
	Н С ОН					isomerase, NIMA-
	ö L					interacting 1
35		43	R (unnatural)	45114305	474989	Peptidylprolyl cis/trans
	Н Н ОН	-0			761669	isomerase, NIMA-
	UH O V F					interacting 1
						interacting 1
26	~~~~~	4.4	D (unn straight)	46004010	474000	Dentidalanak di sis turun
36		44	R (unnatural)	46884012	474989	Peptidylprolyl cis/trans
	ОН					isomerase, NIMA-
	0					interacting 1

	<u> </u>		I			1
37		45	R (unnatural)	46884046	474989	Peptidylprolyl cis/trans isomerase, NIMA- interacting 1
20			P.(46004040	474989	
38		46	R (unnatural)	46884048	474989	Peptidylprolyl cis/trans
	OH F					isomerase, NIMA-
	C F					interacting 1
39	н О	47	R (unnatural)	46884050	474989	Peptidylprolyl cis/trans
	^N СН					isomerase, NIMA-
	Ö					interacting 1
40	н О	48	R (unnatural)	46884146	474989	Peptidylprolyl cis/trans
	^К М М ОН					isomerase, NIMA-
	Ö					interacting 1
	L N					
41	н о	49	R (unnatural)	46884147	474989	Peptidylprolyl cis/trans
	^N ОН					isomerase, NIMA-
	Ö F F					interacting 1
42		50	R (unnatural)	46884149	474989	Peptidylprolyl cis/trans
	КАЛАН					isomerase, NIMA-
	ő V					interacting 1
43	н О	51	Unspecified	16327462	493034	Platelet-activating factor
	ОН				492953	acetylhydrolase 1b,
	F NH					catalytic subunit 2
44		52	Unspecified	2999992	492953	Platelet-activating factor
	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓					acetylhydrolase 1b,
						catalytic subunit 2
45	Н	53	Unspecified	41410	492953	Platelet-activating factor
	П Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н				493034	acetylhydrolase 1b,
						catalytic subunit 2
	CI					
46	\land \land \land $\stackrel{H}{N}$	54	Unspecified	44601509	492953	Platelet-activating factor
	Г Y Y Y Y OH				493034	acetylhydrolase 1b,
						catalytic subunit 2

47	ц Ö	55	Unspecified	44601510	493034	Platelet-activating factor
	Каранан Карана Каранан Каранан				492953	acetylhydrolase 1b,
						catalytic subunit 2
	ĺ					
10					100050	
48	КУно	56	S (natural)	16066615	492953	Platelet-activating factor
	Й ОН					acetylhydrolase 1b,
						catalytic subunit 2
10				14044500	500504	
49		57	S (natural)	16066508	720504	Polo-like kinase 1 - polo-
					624417	box domain; GLP-1
	ОН				720706	receptor; Ribosomal
						peptidyl transferase
						center
50		58	Unspecified	2770855	485272	Protein arginine
	Ц́№он					deiminase 4
	ő 🔶					
51		59	Unspecified,	646621	2314	Shiga toxin; Dopamine
	о н о		Unspecified		652051	receptor
			-		652048	-
	H Ö					
52	ц Ч Ч Ч Ч Ч	60	S (natural)	9439964	2315	Shiga toxin; Luciferase
	N N N O				588342	
	0					
53	H II	61	Unspecified	564251	485364	Thioredoxin glutathione
	М П ОН					reductase
	U U U					
54	ц ц Q	62	Unspecified	299354	504847	Vitamin D receptor
	N H OH					
	0 0					