Supporting Information

H₂O₂ induces nuclear transport of the receptor tyrosine kinase c-MET in breast cancer cells via a membrane-bounded retrograde trafficking mechanism

Mei-Kuang Chen, Yi Du, Linlin Sun, Jennifer L. Hsu, Yu-Han Wang, Yuan Gao, Jiaxing Huang and Mien-Chie Hung

Supporting information includes the following:

Figure S1. Nuclear accumulation of full-length c-MET in breast cancer cells after different chemotherapy drug treatments.

Figure S2. Prolonged HGF stimulate full-length c-MET nuclear accumulation in breast cancer cells.

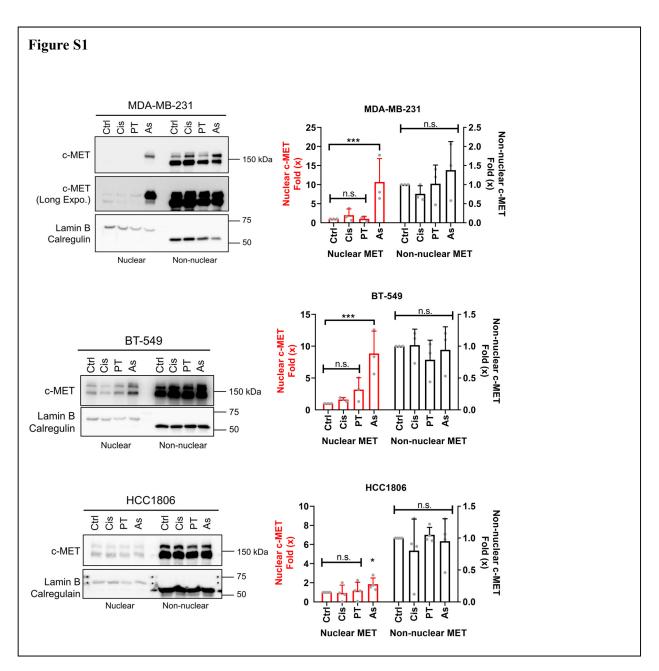
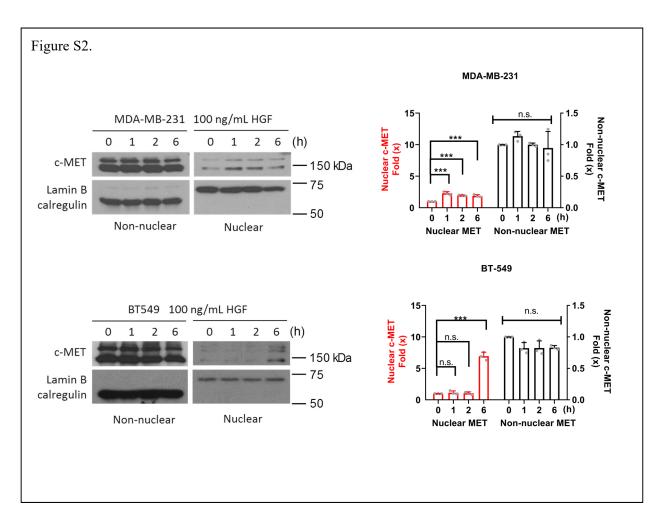



Fig S1. Nuclear accumulation of full-length c-MET in breast cancer cells after different chemotherapy drug treatments. Cells were treated overnight with either DMSO (Ctrl), 10 μ M cisplatin (Cis), 1 μ M paclitaxel (PT), or 10 μ M sodium arsenite (As) overnight before harvested and subjected to cellular fractionation. Lamin B and calregulin were used as markers for nuclear and non-nuclear fractions. Fold change (x) of three independent experiments for MDA-MB-231 and BT-549 are indicated in histogram with mean \pm S.D. Individual values are shown in dots. Fold change (x) of four independent HCC1806 experiments are indicated in histogram with mean \pm S.D.

Fig. S2 Prolonged HGF stimulate full-length c-MET nuclear accumulation in breast cancer cells. MDA-MB-231 and BT-549 cells were treated with 100 ng/ml HGF for times indicated. Lamin B and calregulin were used as markers for nuclear and non-nuclear fractions. Statistical analysis of prolonged treatment and full-length c-MET nuclear accumulations in both cell lines. Fold change (x) of three independent experiments are indicated in histogram with mean \pm S.D.