Supporting information

Supplementary Figure S1. Synthetic scheme of ¹⁹F sensors compound 1 using phosphoramidite chemistry.

1-O-[(2-cyanoethoxy)-(*N*,*N*-diisopropylamino)phosphinyl]-3,5-bis(trifluoromethyl)benze ne (1)

The 3,5-bis(trifluoromethyl)benzyl alcohol (960 mg, 3.9 mmol) was was dried three times with 5 mL anhydrous acetonitrile. The dried residues was treated with dry *N*,*N*-diisopropyl ethylamine (1 mL, 7.4 mmol) and 2-cyanoethyl-*N*,*N*- diisopropylchlorophosphoramidite (1 mL, 4.3 mmol) in dry dichloromethane (5 mL) and stirred at room temperature for 2 h. The reaction was stopped by adding 5% NaHCO₃ aqueous solution (50 ml). After addition of dichloromethane (50 ml), the aqueous layer was extracted three times with dichloromethane (50 ml). The combined organic layers were dried over by Na₂SO₄ and the solvent was evaporated *in vacuum*. The residue was purified via recycling preparative HPLC to give the compound **1** (1.2 g, 2.7 mmol, 69%). ¹H-NMR (400 MHz, CDCl₃) δ 7.81 (s, 2H), 7.79 (s, 1H), 4.84 (m, 2H), 3.95-3.79 (m, 2H), 3.67 (m, 2H), 2.66 (t, *J* = 6.3 Hz, 2H), 1.21 (m, 12H). ¹³C-NMR (100 MHz, CDCl₃) δ 141.94, 141.87, 131.63 (q, *J* = 33 Hz), 126.79, 123.33 (q, *J* = 271 Hz), 121.29 117.45, 64.34, 64.15, 58.52, 58.33, 43.39, 43.27, 24.59 (t, *J* = 8 Hz), 20.44, 20.37. ³¹P-NMR (162 MHz, CDCl₃) δ –149.61. ESI-MS for C₁₈H₂₄O₂N₂F₆P [M+H]⁺: Calcd. 445.1474; Found. 445.1471.

Supplementary Figure S2. ¹H NMR spectrum of compound 1.

Supplementary Figure S3. ¹³C NMR spectrum of compound 1.

Supplementary Figure S4. ³¹P NMR spectrum of compound 1.

Supplementary Figure S5. ESI-MS spectrum of compound 1.

nat-22

PROCE Date_ Time INSTF PROBI PULPI TD SOLVI NS DS SWH FIDR AQ DW DE RG DW DE TE D1 D1 D1 D1 D19 TD0

NU0

=== NUC P0 P1 P27 PL1 PL1

NUC1 P0 P1 P27 PL1 PL18 PL18W SF01 DNA Na

8.68 0.52 400.1

BRUKE

Supplementary Figure S8. CD spectra of ¹⁹F labeled and natural ODN 1. 5 μM DNA in 100 mM KCl (red) or NaCl (blue) and 20 mM K-PO₄ or Na-PO₄ buffer (pH 7.0). The CD spectra of ¹⁹F labeled DNA is very similar to that of natural DNA, suggesting ¹⁹F sensor does not induce the conformation change of DNA G-quadruplex.

Supplementary Figure S9. H1-H1 imino proton region 2D-NOESY spectrum of ¹⁹F labeled ODN 1 in the presence of 200 mM NaCl and 10 mM Na-phosphate. A, B, C, and D peaks were similar with that observed in the reference paper (1) and suggested ¹⁹F modification does not change the structure of antiparallel G-quadruplex.

Supplementary Figure S10. CD spectra of ¹⁹F labeled ODN 1. Condition: 5 µM DNA, 100 mM KCl and 20 mM K-PO₄ (pH 7.0) in the presence or absence of 40% PEG 200.

Supplementary Figure S11. CD spectra of ¹⁹F labeled and natural ODN 2. 5 μ M DNA, 100 mM KCl 20 mM K-PO₄ (pH 7.0) in the absence (red) or presence (yellow) of 40% PEG 200. The CD spectra of ¹⁹F labeled DNA is very similar to that of natural DNA, suggesting ¹⁹F sensor does not induce the conformation change of DNA G-quadruplex.

Supplementary Figure S12. ¹H NMR spectra of ¹⁹F labeled and natural ODN 2. 0.5 mM DNA in 100 mM KCl and 20 mM K-PO₄ (pH 7.0). Eight imino peaks observed from ¹⁹F labeled ODN2 indicate the formation of a two-tetrad G-quadruplex.

Supplementary Figure S13. ¹⁹F NMR of ¹⁹F labeled ODN 2 in various conditions. For *in vitro* experiments condition: 0.1 mM DNA in 100 mM KCl and 20 mM K-PO₄ buffer (pH 7.0).

Supplementary Figure S14. Profiles of the relative peak areas of the ¹⁹F resonance signals versus temperature.

Supplementary Figure S15. Confocal microscopy images of SLO-treated HeLa cells with FAM-labeled DNA.

Supplementary Figure S16. FCM analysis of SLO-treated HeLa cells with FAM-labeled DNA and PI. FAM-positive and PI-negative populations as living cells were indicted.

Supplementary Figure S17. ¹⁹F NMR spectra of ¹⁹F labeled ODN 1 in Hela cell lysate with different length of time. Even incubated with Hela cell lysate for 6 h, the ¹⁹F NMR signals did not change, suggested that the ¹⁹F labeled DNA G-quadruplex is stable in a cellular environment during in-cell NMR measurement time scale (1h).

NUC1 PL1 PL1W SF01 SF WDW SSB LB GB PC

Supplementary Figure S18. Imino NMR spectra of ¹⁹F labeled ODN 1 in K⁺ solution and in Hela cell lysate. The ex-vivo NMR spectrum has lower resolution compared to sample in dilute solution due to the high viscosity of the cell extract and inherent sample inhomogeneity (2). The peaks positions and intensities in ex-vivo NMR may be similar to the NMR signal obtained from K⁺ solution. Thus, the ¹H NMR results can be used as useful evidence to support the interpretation in terms of what happens in living cells by ¹⁹F NMR, which also reported in other papers (3-5).

¹⁹F-5'-TAGGG(TTAGGG)₃TT-3'

Supplementary Figure S19. ¹⁹F NMR of ¹⁹F labeled ODN 3 at different temperatures in K⁺ solution. Condition: 0.1 mM DNA in 100 mM KCl and 20 mM K-PO₄ buffer (pH 7.0). The sample is kept for 10 min of each temperature for ¹⁹F NMR detection.

Supplementary Figure S20. ¹⁹F NMR of ¹⁹F labeled ODN 3 in the presence or absence of 40% PEG 200. Condition: 0.1 mM DNA in 100 mM KCl and 20 mM K-PO₄ buffer (pH 7.0).

Supplementary Figure S21. CD spectra of ¹⁹F labeled ODN 3. Condition: 5 μ M DNA, 100 mM KCl and 20 mM K-PO₄ (pH 7.0) in the presence or absence of 40% PEG 200.

Supplementary Figure S22. Comparison of ¹⁹F NMR spectra of ODN 3 in K⁺ solution, in Hela cell lysate, in HeLa cell, in supernatant and difference spectrum between HeLa cell and supernatant.

sequence	G-quadruplex conformation	<i>T_m</i> (°C)
¹⁹ F ODN1	antiparallel	48.2
	hybrid	58.2
	parallel	75.1
Natural ODN1	antiparallel	49.7
	hybrid	58.5
	parallel	76.1
¹⁹ F ODN2	two-tetrad antiparallel	62.8
	parallel	81.8
Natural ODN2	two-tetrad antiparallel	62.8
	parallel	81.9

Table S1. T_m values of ¹⁹F labeled and natural telomeric DNA determined by CD melting experiment

Reference:

- Wang, Y.; Patel, D. J. (1993) Solution Structure of the Human Telomeric Repeat d[AG₃(T₂AG₃)₃] G-Tetraplex. *Structure*. 1, 263-282.
- Hansel, R.; Foldynova-Trantirkova, S.; Lohr, F.; Buck, J.; Bongartz, E.; Bamberg, E.; Schwalbe, H.; Dotsch, V.; Trantirek, L. (2009) Evaluation of Parameters Critical for Observing Nucleic Acids inside Living Xenopus laevis Oocytes by In-Cell NMR Spectroscopy. J. Am. Chem. Soc., 131, 15761-15768.
- Hansel, R., Lohr, F., Trantirek, L. and Dotsch, V. (2013) High-resolution insight into G-overhang architecture. *J. Am. Chem. Soc.*, **135**, 2816-2824.
- Manna, S.; Sarkar, D.; Srivatsan, S. G. (2018) A Dual-App Nucleoside Probe Provides Structural Insights into the Human Telomeric Overhang in Live Cells. *J. Am. Chem.* Soc., 140, 12622-12633.
- Hansel, R.; Lohr, F.; Foldynova-Trantirkova, S.; Bamberg, E.; Trantirek, L.; Dotsch, V. (2011) The Parallel G-quadruplex Structure of Vertebrate Telomeric Repeat Sequences is Not the Preferred Folding Topology under Physiological Conditions. *Nucleic Acids Res.*, **39**, 5768-5775.