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Supplementary Figure S1. Synthetic scheme of 'F sensors compound 1 using
phosphoramidite chemistry.

1-0-[(2-cyanoethoxy)-(N,N-diisopropylamino)phosphinyl]-3,5-bis(trifluoromethyl)benze
ne (1)

The 3,5-bis(trifluoromethyl)benzyl alcohol (960 mg, 3.9 mmol) was was dried three times with
5 mL anhydrous acetonitrile. The dried residues was treated with dry N,N-diisopropyl
ethylamine (1 mL, 7.4 mmol) and 2-cyanoethyl-N,N- diisopropylchlorophosphoramidite (1 mL,
4.3 mmol) in dry dichloromethane (5 mL) and stirred at room temperature for 2 h. The reaction
was stopped by adding 5% NaHCOs aqueous solution (50 ml). After addition of
dichloromethane (50 ml), the aqueous layer was extracted three times with dichloromethane
(50 ml). The combined organic layers were dried over by Na:SOs and the solvent was
evaporated in vacuum. The residue was purified via recycling preparative HPLC to give the
compound 1 (1.2 g, 2.7 mmol, 69%). 'H-NMR (400 MHz, CDCls) & 7.81 (s, 2H), 7.79 (s, 1H),
4.84 (m, 2H), 3.95-3.79 (m, 2H), 3.67 (m, 2H), 2.66 (t, J = 6.3 Hz, 2H), 1.21 (m, 12H). *C-NMR
(100 MHz, CDCl3) & 141.94, 141.87, 131.63 (q, J = 33 Hz), 126.79, 123.33 (q, J = 271 Hz),
121.29 117.45, 64.34, 64.15, 58.52, 58.33, 43.39, 43.27, 24.59 (t, J = 8 Hz), 20.44, 20.37.
31P-NMR (162 MHz, CDClI3) & —149.61. ESI-MS for C1gH2402N2FsP [M+H]*: Calcd. 445.1474;
Found. 445.1471.
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Supplementary Figure S2. '"H NMR spectrum of compound 1.
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Supplementary Figure S3. '*C NMR spectrum of compound 1.
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Supplementary Figure S4. 3'P NMR spectrum of compound 1.
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Supplementary Figure S5. ESI-MS spectrum of compound 1.
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Supplementary Figure S6. MALDI-TOF MS of '°F labeled telomeric DNA sequences.
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Supplementary Figure S7. '"H NMR spectra of '°F labeled and natural ODN 1. 0.5 mM DNAin
300 mM NaCl and 20 mM Na-POs or 100 mM KCI and K-PO4 buffer (pH 7.0). The 'H NMR
spectra of '°F labeled DNA is very similar to that of natural DNA, suggesting '°F sensor does
not induce the conformation change of DNA G-quadruplex.
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Supplementary Figure S8. CD spectra of '°F labeled and natural ODN 1. 5 uM DNA in 100
mM KCI (red) or NaCl (blue) and 20 mM K-PO4 or Na-PQO4 buffer (pH 7.0). The CD spectra of
'F labeled DNA is very similar to that of natural DNA, suggesting '°F sensor does not induce
the conformation change of DNA G-quadruplex.
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Supplementary Figure S9. H1-H1 imino proton region 2D-NOESY spectrum of '°F labeled
ODN 1 in the presence of 200 mM NaCl and 10 mM Na-phosphate. A, B, C, and D peaks were
similar with that observed in the reference paper (1) and suggested '°F modification does not
change the structure of antiparallel G-quadruplex.
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Supplementary Figure $10. CD spectra of "°F labeled ODN 1. Condition: 5 uM DNA, 100 mM
KCIl and 20 mM K-POs4 (pH 7.0) in the presence or absence of 40% PEG 200.
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Supplementary Figure S11. CD spectra of '°F labeled and natural ODN 2. 5 uM DNA, 100
mM KCI 20 mM K-POs (pH 7.0) in the absence (red) or presence (yellow) of 40% PEG 200.
The CD spectra of '°F labeled DNA is very similar to that of natural DNA, suggesting '°F
sensor does not induce the conformation change of DNA G-quadruplex.
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Supplementary Figure S12. '"H NMR spectra of '°F labeled and natural ODN 2. 0.5 mM DNA
in 100 mM KCI and 20 mM K-POs (pH 7.0). Eight imino peaks observed from '°F labeled
ODN2 indicate the formation of a two-tetrad G-quadruplex.
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Supplementary Figure S13. '"°F NMR of '°F labeled ODN 2 in various conditions. For in vitro
experiments condition: 0.1 mM DNA in 100 mM KCI and 20 mM K-POg4 buffer (pH 7.0).
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Supplementary Figure S14. Profiles of the relative peak areas of the '°F resonance signals
versus temperature.



Supplementary Figure S15. Confocal microscopy images of SLO-treated Hela cells with
FAM-labeled DNA.
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Supplementary Figure $16. FCM analysis of SLO-treated HelLa cells with FAM-labeled DNA
and Pl. FAM-positive and Pl-negative populations as living cells were indicted.
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Supplementary Figure S17. 'F NMR spectra of '°F labeled ODN 1 in Hela cell lysate with
different length of time. Even incubated with Hela cell lysate for 6 h, the '°F NMR signals did
not change, suggested that the '°F labeled DNA G-quadruplex is stable in a cellular
environment during in-cell NMR measurement time scale (1h).
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Supplementary Figure S18. Imino NMR spectra of '°F labeled ODN 1 in K* solution and in
Hela cell lysate. The ex-vivo NMR spectrum has lower resolution compared to sample in dilute
solution due to the high viscosity of the cell extract and inherent sample inhomogeneity (2).
The peaks positions and intensities in ex-vivo NMR may be similar to the NMR signal obtained
from K* solution. Thus, the '"H NMR results can be used as useful evidence to support the
interpretation in terms of what happens in living cells by '°F NMR, which also reported in other
papers (3-5).
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Supplementary Figure $19. 'F NMR of '°F labeled ODN 3 at different temperatures in K*
solution. Condition: 0.1 mM DNA in 100 mM KCI and 20 mM K-POs buffer (pH 7.0). The
sample is kept for 10 min of each temperature for '°F NMR detection.
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Supplementary Figure S20. '°F NMR of '°F labeled ODN 3 in the presence or absence of 40%
PEG 200. Condition: 0.1 mM DNA in 100 mM KCI and 20 mM K-POs4 buffer (pH 7.0).
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Supplementary Figure S$21. CD spectra of "°F labeled ODN 3. Condition: 5 uM DNA, 100 mM
KCl and 20 mM K-POg4 (pH 7.0) in the presence or absence of 40% PEG 200.
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Supplementary Figure $22. Comparison of '°F NMR spectra of ODN 3 in K* solution, in Hela
cell lysate, in HelLa cell, in supernatant and difference spectrum between Hela cell and
supernatant.
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Table S1. T, values of '°F labeled and natural telomeric DNA determined by CD melting

experiment
sequence G-quadruplex conformation Tm (°C)
antiparallel 48.2
F ODN1 hybrid 58.2
parallel 75.1
antiparallel 49.7
Natural ODN1 hybrid 58.5
parallel 76.1
two-tetrad antiparallel 62.8
F ODN2
parallel 81.8
two-tetrad antiparallel 62.8
Natural ODN2
parallel 81.9
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