
Supplemental File 1: The NGLess Language and Standard
Library

Luis Pedro Coelho
Renato Alves

Paulo Monteiro
Jaime Huerta-Cepas
Ana Teresa Freitas

Peer Bork
March 21, 2019

NGLess Language

This document describes the NGLess language. Please see http://ngless.embl.de for
an up-to-date version.

Tokenization

Tokenization follows the standard C-family rules. A word is anything that matches
[A-Za-z_][A-Za-z_0-9]*. The language is case-sensitive. All files are assumed to
be in UTF-8.

Both LF and CRLF are accepted as line endings (Unix-style LF is preferred).

A semicolon (;) can be used as an alternative to a new line. Any spaces (and only
space characters) following a semicolon are ignored. This feature is intended for
inline scripts at the command line (passed with the -e option), its use for scripts is
heavily discouraged and may trigger an error in the future.

Script-style (# to EOL), C-style (/* to */) and C++-style (// to EOL) comments are all
recognised. Comments are effectively removed prior to any further parsing as are
empty lines.

Strings are denoted with single or double quotes and standard backslashed escapes
apply (\n for newline, ...).

A symbol is denoted as a token surrounded by curly braces (e.g., {symbol} or
{gene}).

Integers are specified as decimals [0-9]+ or as hexadecimals 0x[0-9a-fA-F]+.

Version declaration

The first line (ignoring comments and empty lines) of an NGLess file MUST be a
version declaration:

http://ngless.embl.de/

ngless "1.0"

Module Import Statements

Following the version statement, optional import statements are allowed, using the
syntax import "<MODULE>" version "<VERSION>". For example:

import "batch" version "1.0"

This statement indicates that the batch module, version 1.0 should be used in this
script. Module versions are independent of NGLess versions.

Only a predefined set of modules can be imported (these are shipped with NGLess).
To import user-written modules, the user MUST use the local import statement, e.g.:

local import "batch" version "1.0"

Import statements MUST immediately follow the version declaration

Blocks

Blocks are defined by indentation in multiples of 4 spaces. To avoid confusion, TAB
characters are not allowed.

Blocks are used for conditionals and using statements.

Data types

NGless supports the following basic types:

• String
• Integer
• Double
• Bool
• Symbol
• Filename
• Shortread
• Shortreadset
• Mappedread
• Mappedreadset

In addition, it supports the composite type List of X where X is a basic type. Lists are
built with square brackets (e.g., [1,2,3]). All elements of a list must have the same
data type.

String

A string can start with either a quote (U+0022, ") or a single quote (U+0027,')
or and end with the same character. They can contain any number of characters.

Special sequences start with \. Standard backslashed escapes can be used as LF and
CR (\n and \r respectively), quotation marks (\') or slash (\\).

Integer

Integers are specified as decimals [0-9]+ or as hexadecimals 0x[0-9a-fA-F]+.
The prefix - denotes a negative number.

Double

Doubles are specified as decimals [0-9]+ with the decimal point serving as a
separator. The prefix - denotes a negative number.

Doubles and Integers are considered numeric types.

Boolean

The two boolean constants are True and False (which can also be written true or
false).

Symbol

A symbol is denoted as a token surrounded by curly braces (e.g., {symbol} or
{drop}). Symbols are used as function arguments to indicate that there is only a
limited set of allowed values for that argument. Additionally, unlike Strings, no
operations can be performed with Symbols.

Variables

NGless is a statically typed language and variables are typed. Types are
automatically inferred from context.

Assignment is performed with = operator:

variable = value

A variable that is all uppercase is a constant and can only be assigned to once.

Operators

Unary

The operator (-) returns the symmetric of its numeric argument.

The operator len returns the length of a ShortRead.

The operator not negates its boolean argument

Binary

All operators can only be applied to numeric types. Mixing integers and doubles
returns a double. The following binary operators are used for arithmetic:

+ - < > >= <= == !=

The + operator can also perform concatenation of String objects.

The </> operator is used to concatenate two Strings while also adding a '/'
character between them. This is useful for concatenating file paths.

Indexing

Can be used to access only one element or a range of elements in a ShortRead. To
access one element, is required an identifier followed by an expression between
brackets. (e.g, x[10]).

To obtain a range, is required an identifier and two expressions separated by a ':'
and between brackets. Example:

• x[:] - from position 0 until length of variable x
• x[10:] - from position 10 until length of variable x
• x[:10] - from position 0 until 10

Conditionals

Conditionals work as in Python. For example:

if 5 > 10:
 val = 10
else:
 val = 20

Functions

Functions are called with parentheses:

result = f(arg, arg1=2)

Functions have a single positional parameter, all other must be given by name:

unique(reads, max_copies=2)

The exception is constructs which take a block: they take a single positional
parameter and a block. The block is passed using the using keyword:

reads = preprocess(reads) using |read|:
 block
 ...

The |read| syntax defines an unnamed (lambda) function, which takes a variable
called read. The function body is the following block.

There is no possibility of defining new functions within the language. Only built-in
functions or those added by modules can be used.

Methods

Methods are called using the syntax object . methodName (<ARGS>). As with
functions, one argument may be unnamed, all others must be passed by name.

Grammar

This is the extended Backus-Naur form grammar for the NGLess language (using the
ISO 14977 conventions). Briefly, the comma (,) is used for concatenation, [x]
denotes optional, and {x} denotes zero or more of x.

string = ? a quoted string, produced by the tokenizer ? ;
word = ? a word produced by the tokenizer ? ;

eol =
 ';'
 | '\n' {'\n'}
 ;

ngless = [header], body;

header = {eol}, ngless_version, {eol}, {import}, {eol}

ngless_version = "ngless", string, eol ;

import = ["local"], "import", string, "version", string, eol ;

body = {expression, eol} ;

expression =
 conditional
 | "discard"
 | "continue"
 | assignment
 | innerexpression
 ;

innerexpression = left_expression, binop, innerexpression
 | left_expression
 ;

left_expression = uoperator

https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form

 | method_call
 | indexexpr
 | base_expression
 ;

base_expression = pexpression
 | funccall
 | listexpr
 | constant
 | variable
 ;

pexpression = '(', innerexpression, ')' ;

constant =
 "true"
 | "True"
 | "false"
 | "False"
 | double
 | integer
 | symbol
 ;

double = integer, '.', integer ;
integer = digit, {digit} ;
digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
;
symbol = '{', word, '}' ;

indentation = ' ', {' '} ;
binop = '+' | '-' | '*' | "!=" | "==" | "</>" | "<=" | "<" | ">="
| ">" | "+" | "-" ;

uoperator =
 lenop
 | unary_minus
 | not_expr
 ;

lenop = "len", '(', expression, ')'
unary_minus = '-', base_expression ;
not_expr = "not", innerexpression ;

funccall = paired
 | word, '(', innerexpression, kwargs, ')', [funcblock]
 ;

(* paired is a special-case function with two arguments *)
paired = "paired", '(', innerexpression, ',', innerexpression,
kwargs ;

funcblock = "using", '|', [variablelist], '|', ':', block ;

kwargs = {',', variable, '=', innerexpression} ;

assignment = variable, '=', expression ;

method_call = base_expression, '.', word, '(', [method_args],
')';
method_args =
 innerexpression, kwargs
 | variable, '=', innerexpression, kwargs
 ; (* note that kwargs is defined as starting with a comma
*)

indexexpr = base_expression, '[', [indexing], ']' ;

indexing = [innerexpression], ':', [innerexpression] ;

listexpr = '[', [list_contents] , ']' ;
list_contents = innerexpression, {',', innerexpression } ;

conditional = "if", innerexpression, ':', block,
[elseblock] ;
elseblock = "else", ':', block ;
block = eol, indentation, expression, eol, {indentation,
expression, eol} ;

variablelist = variable, {',', variable} ;
variable = word ;

NGLess Builtin Functions

fastq

Function to load a FastQ file:

in = fastq('input.fq')

Argument:

String

Return:

ReadSet

Arguments by value:
Name Type Required Default Value
encoding Symbol ({auto}, {33},

{64}, {sanger}, {solexa})
no {auto}

Possible values for encoding are:

• {sanger} or {33} assumes that the file is encoded using sanger format. This is
appropriate for newer Illumina outputs.

• {solexa} or {64} assumes that the file is encoded with a 64 offset. This is
used for older Illumina/Solexa machines.

• {auto}: use auto detection. This is the default.

When loading a data set, quality control is carried out and statistics can be
visualised in a graphical user interface (GUI). Statistics calculated are:

• percentage of guanine and cytosine (%GC)
• number of sequences
• minimum/maximum sequence length
• mean, median, lower quartile and upper quality quartile for each sequence

position

If not specified, the encoding is guessed from the file.

Gzip and bzip2 compressed files are transparently supported (determined by file
extension, .gz and .bz2 for gzip and bzip2 respectively).

paired

Function to load a paired-end sample, from two FastQ files:

in = paired('input.1.fq', 'input.2.fq', singles='input.3.fq')

paired() is an exceptional function which takes two unnamed arguments,
specifying the two read files (first mate and second mate) and an optional singles
file (which contains unpaired reads).

Argument:

String, String

Return:

ReadSet

Arguments by value:
Name Type Required Default Value
encoding Symbol ({auto}, {33},

{64}, {sanger}, {solexa})
no {auto}

singles String no

The encoding argument has the same meaning as for the fastq() function:

• {sanger} or {33} assumes that the file is encoded using sanger format. This is
appropriate for newer Illumina outputs.

• {solexa} or {64} assumes that the file is encoded with a 64 offset. This is
used for older Illumina/Solexa machines.

• {auto}: use auto detection. This is the default.

samfile

Loads a SAM file:

s = samfile('input.sam')

This function takes no keyword arguments. BAM files are also supported
(determined by the filename), as are sam.gz files.

Returns

MappedReadSet

Arguments by value:
Name Type Required Default Value
name String no

header String no

Note: The header argument was added in version 0.7

• The name argument names the group (for count(), for example).
• The headers argument can be used if the SAM headers are kept in a separate

file.

qcstats

Note: This functionality was not available prior to 0.6

Returns the auto-computed statistics:

write(qcstats({fastq}), ofile='fqstats.txt')

Returns

CountsTable

Argument

{fastq}: FastQ statistics {mapping}: Mapping statistics

countfile

Loads a TSV file:

c = countfile('table.tsv')

This function takes no keyword arguments. If the filename ends with ".gz", it is
assumed to be a gzipped file.

Returns

CountTable

as_reads

Converts from a MappedReadSet to a ReadSet:

reads = as_reads(samfile('input.sam'))

unique

Function that given a set of reads, returns another which only retains a set number
of copies of each read (if there are any duplicates). An example:

input = unique(input, max_copies=3)

Argument:

ReadSet

Return:

ReadSet

Arguments by value:
Name Type Required Default Value
max_copies Integer no 2

The optional argument max_copies allows to define the number of tolerated copies
(default: 2).

Two short reads with the same nucleotide sequence are considered copies,
independently of quality and identifiers.

This function is currently limited to single-end samples.

preprocess

This function executes the given block for each read in the ReadSet. Unless the read
is discarded, it is transferred (after transformations) to the output. For example:

inputs = preprocess(inputs) using |read|:
 read = read[3:]

Argument:

ReadSet

Return:

ReadSet

Arguments by value:
Name Type Required Default Value
keep_singles bool no true

When a paired-end input is being preprocessed in single-mode (i.e., each mate is
preprocessed independently, it can happen that on eof the mates is discarded, while
the other is kept). The default is to collect these into the singles pile. If
keep_singles if false, however, they are discarded.

This function also performs quality control on its output.

map

The function map, maps a ReadSet to reference. For example:

mapped = map(input, reference='sacCer3')
mapped = map(input, fafile='ref.fa')

Argument:

ReadSet

Return:

MappedReadSet

Arguments by value:
Name Type Required Default Value

reference String no

fafile String no

block_size_megabases Integer no

mode_all Bool no

The user must provide either a path to a FASTA file in the fafile argument or the
name of a builtin reference using the reference argument. The fafile argument
supports search path expansion.

A list of datasets provided by NGLess can be found at Organisms.

To use any of these, pass in the name as the reference value:

mapped_hg19 = map(input, reference='hg19')

NGLess does not ship with any of these datasets, but they are downloaded lazily: i.e.,
the first time you use them, NGLess will download and cache them. NGLess will also
index any database used the first time it is used.

The option block_size_megabases turns on low memory mode (see the
corresponding section in the mapping documentation)

The option mode_all=True can be passed to include all alignments of both single
and paired-end reads in the output SAM/BAM.

mapstats

Computes some basic statistics from a set of mapped reads (number of reads,
number mapped, number uniquely mapped).

Argument

MappedReadSet

Return

CountTable

select

select filters a MappedReadSet. For example:

mapped = select(mapped, keep_if=[{mapped}])

Argument:

MappedReadSet

file:///home/luispedro/work/ngless.paper/mapping.html
file:///home/luispedro/work/ngless.paper/searchpath.html

Return:

MappedReadSet

Arguments by value:
Name Type Required Default Value
keep_if [Symbol] no

drop_if [Symbol] no

paired Bool no true

At least one of keep_if or drop_if should be passed, but not both. They accept the
following symbols:

• {mapped}: the read mapped
• {unmapped}: the read did not map
• {unique}: the read mapped to a unique location

If keep_if is used, then reads are kept if they pass all the conditions. If drop_if
they are discarded if they fail to any condition.

By default, select operates on a paired-end read as a whole. If paired=False is
passed, however, then link between the two mates is not considered and each read
is processed independently.

count

Given a file with aligned sequencing reads (ReadSet), count() will produce a counts
table depending on the arguments passed. For example:

counts = count(mapped, min=2, mode={union}, multiple={dist1})

Argument:

MappedReadSet

Return:

CountTable

Arguments by value:
Name Type Required Default value
gff_file String no*

functional_map String no*

features [String] no 'gene'

subfeatures [String] no

mode Symbol no {union}

multiple Symbol no {dist1}

strand Bool no false

normalization Symbol no {raw}

include_minus1 Bool no true

min Integer no 0

discard_zeros Bool no false

reference String no ""

If the features to count are ['seqname'], then each read will be assigned to the
name of reference it matched and only an input set of mapped reads is necessary.
For other features, you will need extra information. This can be passed using the
gff_file or functional_map arguments. If you had previously used a reference
argument for the map() function, then you can also leave this argument empty and
NGLess will use the corresponding annotation file.

The gff_file and functional_map arguments support search path expansion.

features: which features to count. If a GFF file is used, this refers to the "features"
field.

subfeatures: this is useful in GFF-mode as the same feature can encode multiple
attributes (or, in NGLess parlance, "subfeatures"). By default, NGLess will look for
the "ID" or "gene_id" attributes.

mode indicates how to handle reads that (partially) overlap one or more features.
Possible values for mode are {union}, {intersection_non_empty} and
{intersection_strict} (default: {union}). For every position of a mapped
read, collect all features into a set. These sets of features are then handled in
different modes.

• {union} the union of all the sets. A read is counted for every feature it
overlaps.

• {intersection_non_empty} the intersection of all non-empty sets. A read is
only counted for features it exclusively overlaps, even if partially.

• {intersection_strict} the intersection of all the sets. A read is only
counted if the entire read overlaps the same feature(s).

Consider the following illustration of the effect of different mode options:

file:///home/luispedro/work/ngless.paper/searchpath.html

 Reference *************************
 Feature A =======
 Feature B ===========
 Feature C ========
 Read_1 -----
 Read_2 -----
 Read_3 -----
 Position 12345 12345 12345

 Read position 1 2 3 4 5
 Read_1 feature sets - - A A A
 Read_2 feature sets A A A,B B B
 Read_3 feature sets B,C B,C B,C B,C B,C

 union intersection_non_empty intersection_strict
 Read_1 A A -
 Read_2 A & B - -
 Read_3 B & C B & C B & C

How to handle multiple mappers (inserts which have more than one "hit" in the
reference) is defined by the multiple argument:

• {unique_only}: only use uniquely mapped inserts
• {all1}: count all hits separately. An insert mapping to 4 locations adds 1 to

each location
• {1overN}: fractionally distribute multiple mappers. An insert mapping to 4

locations adds 0.25 to each location
• {dist1}: distribute multiple reads based on uniquely mapped reads. An insert

mapping to 4 locations adds to these in proportion to how uniquely mapped
inserts are distributed among these 4 locations.

Argument strand represents whether the data are from a strand-specific (default is
false). When the data is not strand-specific, a read is always overlapping with a
feature independently of whether maps to the same or the opposite strand. For
strand-specific data, the read has to be mapped to the same strand as the feature.

min defines the minimum amount of overlaps a given feature must have, at least, to
be kept (default: 0, i.e., keep all counts). If you just want to discard features that are
exactly zero, you should set the discard_zeros argument to True.

normalization specifies if and how to normalize to take into account feature size:

• {raw} (default) is no normalization
• {normed} is the result of the {raw} mode divided by the size of the feature
• {scaled} is the result of the {normed} mode scaled up so that the total

number of counts is identical to the {raw} (within rounding error)

Unmapped inserts are included in the output if {include_minus1} is true (default:
False).

Note: Before version 0.6, the default was to not include the -1 fraction.

substrim

Given a read finds the longest substring, such that all bases are of at least the given
quality. The name is a constraction of "substring trim". For example:

read = substrim(read, min_quality=25)

Argument:

ShortRead

Return:

ShortRead

Arguments
Name Type Required Default Value
min_quality Integer yes

min_quality parameter defines the minimum quality accepted for the sub-
sequence.

endstrim

Given a read, trim from both ends (5' and 3') all bases below a minimal quality. For
example:

read = endstrim(read, min_quality=25)

Argument:

ShortRead

Return:

ShortRead

Arguments
Name Type Required Default Value
min_quality Integer yes

min_quality parameter defines the minimum quality value.

smoothtrim

This trims with the same algorithm as substrim but uses a sliding window to
average base qualities. For example:

read = smoothtrim(read, min_quality=15, window=4)

Quality values of bases at the edges of each read are repeated to allow averaging
with quality centered on each base. For instance a read:

Sequence A T C G with a window A A T C G G
Quality 28 25 14 12 of size 3 becomes 28 28 25 14 12 12

and is smoothed:

Seq A A T C G G smoothed quality A T C G
Qual 28 28 25 14 12 12 ---> 27 22 17 13
Windows |-----| (28 + 28 + 25) / 3 = 27 ^
 ... |-----| (28 + 25 + 14) / 3 = 22 |
 |-----| (25 + 14 + 12) / 3 = 17 !
 |-----| (14 + 12 + 12) / 3 = 13 ----+

at which point substrim is applied for trimming.

Quality scores are returned to their original value after trimming.

Argument

ShortRead

Return

ShortRead

Arguments
Name Type Required Default Value
min_quality Integer yes

window Integer yes

min_quality parameter defines the minimum quality value, whilst window defines
the size of the window over which to smooth the qualities.

write

Writes an object to disk.

ReadSet

Argument:

Any

Return:

Void

Arguments by value:

Name Type Required Default Value
ofile String yes

format String no

The argument ofile is where to write the content.

The output format is typically determined from the ofile extension, but the
format argument overrides this. Supported formats:

• CountsTable: {tsv} (default) or {csv}: use TAB or COMMA as a delimiter
• MappedReadSet: {sam} (default) or {bam}
• ReadSet: FastQ format, optionally compressed (depending on the extension).

print

Print function allows to print a NGLessObject to IO.

Argument:

NGLessObject

Return:

Void

Arguments by value:

none

readlines

Reads a text file and returns a list with all the strings in the file

Argumment

string: the filename

Example

readlines is useful in combination with the parallel module, where you can then
use the lock1 function to process a large set of inputs:

sample = lock1(readlines('samplelist.txt'))

assemble

assemble

Implementation

assemble() uses the MEGAHIT assembler.

Arguments

ReadSet

Returns

string : generated file

orf_find

orf_find finds open reading frames (ORFs) in a sequence set:

contigs = assemble(input)
orfs = select(contigs, is_metagenome=True)

Argument:

SequenceSet

Return:

SequenceSet

Arguments by value:
Name Type Required Default Value
is_metagenome Bool yes

coords_out FilePath no

prots_out FilePath no

Implementation

NGLess uses Prodigal as the underlying gene finder.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848648/
https://academic.oup.com/bioinformatics/article/31/10/1674/177884
file:///home/luispedro/work/ngless.paper/stdlib.html%23parallel-module

Methods

Methods are invoked using an object-oriented syntax. For example:

mapped = select(mapped) using |mr|:
 mr = mr.pe_filter()

They can also take arguments

mapped = select(mapped) using |mr|:
 mr = mr.filter(min_match_size=30)

Short reads

Short reads have the following methods:

• avg_quality(): the average quality (as a double)
• fraction_at_least(q): the fraction of bases of quality greater or equal to q
• n_to_zero_quality(): transform the quality scores so that any N (or n)

bases in the sequence get a quality of zero.

Mapped reads

Mapped reads contain several methods. None of these methods changes its argument,
they return new values. The typical approach is to reassign the result to the same
variable as before (see examples above).

• pe_filter: only matches where both mates match are kept.
• flag: Takes one of {mapped} or {unmapped} and returns true if the reads

were mapped (in a paired-end setting, a read is considered mapped if at least
one of the mates mapped).

• some_match: Takes a reference name and returns True if the read mapped to
that reference name.

• allbest: eliminates matches that are not as good as the best. For NGLess, the
number of errors (given by the NM field) divided by the length of the longest
match is the fractional distance of a match. Thus, a match with 3 errors over
100 bp is considered better than a match with 0 errors over 90bps.

filter

filter takes a mapped read and returns a mapped read according to several
criteria:

• min_match_size: minimum match size
• min_identity_pc: minimum percent identity (considered over the matching

location, trimming on the left and right are excluded).
• max_trim: maximum number of bases trimmed off the ends. Use 0 to specify

only global matches.

If more than one test is specified, then they are combined with the AND operation
(i.e., all conditions have to be fulfilled for the test to be true).

The default is to discard mappings that do not pass the test, but it can be changed
with the action argument, which must be one of {drop} (default: the read is
excluded from the output), or {unmatch} (the read is changed so that it no longer
reports matching).

You can pass the flag reverse (i.e., reverse=True) to reverse the sign of the test.

NGLess Constants

In NGLess, any variable written in uppercase is a constant, i.e., can only be assigned
to once. In addition, there are builtin constants defined by NGLess.

Built in constants
• ARGV

This is string array which contains the arguments passed to the script

• STDIN

Use in place of a filename to read from standard input

• STDOUT

Use in place of a filename to write to standard output

For example:

ngless '1.0'

input = samfile(STDIN)
input = select(input) using |mr|:
 if mr.flag({mapped}):
 discard
write(input, ofile=STDOUT, format={bam})

This file reads a sam stream from stdin, filters it (using the select call) and writes
to standard output in bam format.

Standard library

Parallel module

This module allows you to run several parallel computations. It provides two
functions: lock1 and collect.

lock1 :: [string] -> string takes a list of strings and returns a single
element. It uses the filesystem to obtain a lock file so that if multiple processes are
running at once, each one will return a different element. NGLess also marks results
as finished once you have run a script to completion.

The intended usage is that you simply run as many processes as inputs that you
have and NGLess will figure everything out.

For example

ngless "0.6"
import "parallel" version "0.6"

samples = ['Sample1', 'Sample2', 'Sample3']
current = lock1(samples)

Now, current will be one of 'Sample1', 'Sample2', or 'Sample3'. You can use this
to find your input data:

input = paired("data/" + current + ".1.fq.gz", "data/" + current
+ ".2.fq.gz")

Often, it's a good idea to combine lock1 with readlines (a function which returns
the contents of all the non-empty lines in a file as a list of strings):

samples = readlines('samples.txt')
current = lock1(samples)
input = paired("data/" + current + ".1.fq.gz", "data/" + current
+ ".2.fq.gz")

You now use input as in any other NGLess script:

mapped = map(input, reference='hg19')
write(input, ofile='outputs/'+current+ '.bam')
counts = count(mapped)
write(counts, ofile='outputs/'+current+ '.txt')

This will result in both BAM files and counts being written to the outputs/
directory. The module also adds the collect function which can paste all the
counts together into a single table, for convenience:

collect(
 counts,
 current=current,
 allneeded=samples,
 ofile='outputs/counts.txt.gz')

Now, only when all the samples in the allneeded argument have been processed,
does NGLess collect all the results into a single table.

Full "parallel" example
ngless "0.8"
import "parallel" version "0.6"

sample = lock1(readlines('input.txt'))
input = fastq(sample)
mapped = map(input, reference='hg19')
collect(count(mapped, features=['seqname']),
 current=sample,
 allneeded=readlines('input.txt'),
 ofile='output.tsv')

Now, you can run multiple ngless jobs in parallel and each will work on a different
line of input.txt.

Parallel internals

Normally this should be invisible to you, but if you are curious or want to debug an
issue, here are the gory details:

The function lock1() will create a lock file in a sub-directory of ngless-locks.
This directory will be named by the hash value of the script. Thus, any change to the
script will force all data to be recomputed. This can lead to over-computation but it
ensures that you will always have the most up to date results (NGLess' first priority
is correctness, performance is important, but not at the risk of correctness).
Similarly, collect() will use hashed values which encode both the script and the
position within the script (so that if you have more than one collect() call, they
will not clash).

Lock files have their modification times updated once every 10 minutes while
NGLess is running. This allows the programme to easily identify stale files. The
software is very conservative, but any lock file with a modification time older than
one hour is considered stale and removed. Note that because NGLess will write
always create its outputs atomically, the worse that can happen from mis-
identifying a stale lock (for example, you had a compute node which lost network
connectivity, but it comes back online after an hour and resumes processing) is that
extra computation is wasted, the processes will never interfere in a way that you
get erroneous results.

Samtools module

This module exposes the samtools sorting functionality through the
samtools_sort function.

ngless '0.0'
import "samtools" version "0.0"
to_sort = samfile('input.bam')
sorted = samtools_sort(to_sort)
write(sorted, ofile='input.sorted.bam')

samtools_sort :: mappedreadset -> mappedreadset returns a sorted
version of the dataset.

Internally, this function calls NGLess' version of samtools while respecting your
settings for the use of threads and temporary disk space. When combined with other
functionality, NGLess can also often stream data into/from samtools instead of
relying on intermediate files (these optimizations should not change the visible
behaviour, only make the computation faster).

Mocat module
import "mocat" version "0.6"

This is a MOCAT compatibility layer to make it easier to adapt projects from MOCAT
to NGLess.

Functions

load_mocat_sample :: string -> readset this function takes a directory
name and returns a set of reads by scanning the directory for (compressed) FastQ
files. This is slightly more flexible than MOCAT2 as it also accepts files with the
extension fastq or fastq.gz as well as _1 and _2 to indicate the two mate files.

coord_file_to_gtf :: string -> string this function takes a MOCAT-style
.coord, converts it internally to a GTF file and returns it.

Example usage:

ngless "0.6"
import "mocat" version "0.6"

sample = load_mocat_sample('Sample1')
mapped = map(sampled, fafile='data/catalog.padded.fna')
write(count(mapped,
gff_file=coord_file_to_gtf('data/catalog.padded.coord')),
 ofile='counts.txt')

This module can be combined with the parallel module (see above) to obtain a very
smooth upgrade from MOCAT to NGLess.

Available Reference Genomes

NGLess provides builtin support for the most widely used model organisms (human,
mouse, yeast, C. elegans, ...; see the full table below). This makes it easier to use the
tool when using these organisms as some knowledge is already built in.

http://vm-lux.embl.de/~kultima/MOCAT

Genome references available

NGLess provides archives containing data sets of organisms. Is also provided gene
annotations that provide information about protein-coding and non-coding genes,
splice variants, cDNA and protein sequences, non-coding RNAs.

The following table lists the genomes provided by default:

Name Description Assembly Ensembl

bosTau4 bos_taurus UMD3.1 75

ce10 caenorhabditis_elegans WBcel235 75

canFam3 canis_familiaris CanFam3.1 75

dm6 drosophila_melanogaster BDGP6 90

dm5 drosophila_melanogaster BDGP5 75

gg5 gallus_gallus Gallus_gallus-5.0 90

gg4 gallus_gallus GalGal4 75

hg38.p10 homo_sapiens GRCh38.p10 90

hg38.p7 homo_sapiens GRCh38.p7 85

hg19 homo_sapiens GRCh37 75

mm10.p5 mus_musculus GRCm38.p5 90

mm10.p2 mus_musculus GRCm38.p2 75

rn6 rattus_norvegicus Rnor_6.0 90

rn5 rattus_norvegicus Rnor_5.0 75

sacCer3 saccharomyces_cerevisiae R64-1-1 75

susScr11 sus_scrofa Sscrofa11.1 90

These archives are all created using versions 75, 85 and 90 of Ensembl.

	NGLess Language
	Tokenization
	Version declaration
	Module Import Statements
	Blocks

	Data types
	String
	Integer
	Double
	Boolean
	Symbol

	Variables
	Operators
	Unary

	Binary
	Indexing
	Conditionals
	Functions
	Methods
	Grammar

	NGLess Builtin Functions
	fastq
	Argument:
	Return:
	Arguments by value:

	paired
	Argument:
	Return:
	Arguments by value:

	samfile
	Returns
	Arguments by value:

	qcstats
	Returns
	Argument

	countfile
	Returns

	as_reads
	unique
	Argument:
	Return:
	Arguments by value:

	preprocess
	Argument:
	Return:
	Arguments by value:

	map
	Argument:
	Return:
	Arguments by value:

	mapstats
	Argument
	Return

	select
	Argument:
	Return:
	Arguments by value:

	count
	Argument:
	Return:
	Arguments by value:

	substrim
	Argument:
	Return:
	Arguments

	endstrim
	Argument:
	Return:
	Arguments

	smoothtrim
	Argument
	Return
	Arguments

	write
	ReadSet
	Argument:
	Return:
	Arguments by value:

	print
	Argument:
	Return:
	Arguments by value:

	readlines
	Argumment
	Example

	assemble
	Implementation
	Arguments
	Returns

	orf_find
	Argument:
	Return:
	Arguments by value:
	Implementation

	Methods
	Short reads
	Mapped reads
	filter

	NGLess Constants
	Built in constants

	Standard library
	Parallel module
	Full "parallel" example
	Parallel internals

	Samtools module
	Mocat module
	Functions

	Available Reference Genomes
	Genome references available

