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Supplemental Information 

 
Supplemental Figures 

 

 
Figure S1. Histogram of the distribution of the across-participant mean of the overall decoding 
accuracy of individual muscle decoders from the same number of randomly selected muscles 
as the muscle synergies. Related to Figure 5. Vertical red lines indicate the 95% confidence 
intervals. The red arrow indicates the across-participant mean of the overall decoding accuracy 
of muscle synergy decoders. 
  



  

 

  

Figure S2. Decoding accuracy (coefficient of determination) of muscle synergy decoders in 
three different decoder types (Forward, Backward and Wide time lag models). Related to 
Figure 5. The mean and SEM across all participants are shown. Asterisks indicate significant 
differences (*: p < 0.05, FDR corrected for multiple comparisons; see Table S7 for detailed 
statistical values). 
 
 
 
 



  

 

Figure S3. Five extracted types of locomotor muscle synergies from non-normalized muscle 
activity (A) and decoding accuracy for the muscle synergies (B). Related to Figure 5. (A) 
Averaged muscle synergies (bars, spatial muscle weightings) across participants in each type are 
shown. Each bar height represents the relative level of activation of each muscle synergy. An 
enlarged view of the x-axis is shown at the bottom. (B) The mean and SD of the decoding 
accuracy (coefficient of determination) across participants for each muscle synergy type are 
shown. 
 
 

  



  

Figure S4. Examples of EEG data from three electrodes (Cz, Pz, C6), for the diversity of their 

spatial localizations (top, back, and right side of the head, respectively), from participants who 

showed the best, moderate, and worst decoding accuracies, respectively. Related to Figure 5 

and Figure7. The central column shows 5 seconds of EEG signals after artifact subspace 

reconstruction (ASR) just before low-pass filtering (4 Hz) to obtain slow cortical potentials. The 



  

right column shows the power spectra of the electrodes in the delta band (0.5–4 Hz). Red and 

green squares indicate their stride and step frequency, respectively.  



  

  

 

Figure S5. Relation between electrode contribution to the decoding and movement artifact 
size of participants who showed the best, moderate and worst decoding accuracy. Related to 
Figure 5 and Figure7. Each plot indicate each electrode data. Correlation coefficients are shown. 
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Figure S6. Correlation between electrode contribution to the decoding and movement artifact 
size for all muscle synergy decoders in all participants. Related to Figure 5 and Figure7. Each 
plot indicates the correlation value for each muscle synergy decoder. Open and filled circles 
indicate statistically non-significant and significant correlation values, respectively. 
 
  



  

 

 
Figure S7. Time courses of head accelerations (mediolateral, vertical, and anterior-posterior), 
and EEG signals (slow cortical potentials) from three electrodes (Cz, Pz, C6), for the diversity 
of their spatial localizations (top, back, and right side of the head, respectively), from all three 
participants in the supplemental experiment. Related to Figure 5 and Figure7. 
 
 
 
 
  



  

Figure S8. Cross-correlation results between vertical head accelerations and slow cortical 
potentials. Related to Figure 5 and Figure7. (A) Peak correlation coefficient values are shown in 
the bar graphs. Time lags at the peak correlation values are shown in the plot graphs. Red plots 
indicate that EEG signals are preceding the head accelerations; blue plots indicate that head 
accelerations are preceding the EEG signals. (B) Relation between the peak correlation values of 
the cross-correlation analysis and electrode contribution in all electrodes in each muscle synergy 
decoder.  
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Figure S9. Schematic illustration of the electrical source in the left primary motor cortex 
corresponding to the right lower leg muscle area and the resulting electrical field in the brain. 
Related to Figure7. Blue, green, and red rectangles represent the cortical areas corresponding 
to the hip, thigh, and lower leg muscles, respectively. The white arrow indicates direction of 
electric current of an electric source (i.e., neural column). Darker areas of color indicate a 
stronger electric field. Red and blue areas indicate positive and negative values, respectively. 
 
  



  

Supplemental tables 

Table S1. Characteristics of each type of locomotor muscle synergy. Related to Figure 3. 

Type Activation timing Major muscles 

Synergy A Mid stance phase TFL, Gmed, and GM 

Synergy B Mid swing phase and early stance phase ST, RF, VL, AM, and TA 

Synergy C Last swing to initial stance phase BF, ST 

Synergy D Mid swing phase and transition from the stance 

phase to the swing phase 

AM, TA 

Synergy E Latter half of stance phase SOL and MG 

 

 

 

  



  

Table S2. Summary of statistical analyses for comparisons of decoding accuracy among each 

ROI and all electrodes for Synergy A. Related to Figure 7. 

Method Pair Value 

ANOVA  F4,48 = 19.15, p = 1.8×10-9 

Multiple t-test with FDR correction Frontal vs. Cental p = 0.50 

Multiple t-test with FDR correction Frontal vs. Lateral p = 0.33 

Multiple t-test with FDR correction Frontal vs. Parietal p = 0.29 

Multiple t-test with FDR correction Frontal vs. All p = 0.00010 

Multiple t-test with FDR correction Central vs. Lateral p = 0.16 

Multiple t-test with FDR correction Central vs. Parietal p = 0.13 

Multiple t-test with FDR correction Central vs. All p = 6.3e-05 

Multiple t-test with FDR correction Lateral vs. Parietal p = 0.52 

Multiple t-test with FDR correction Lateral vs. All p = 7.1e-05 

Multiple t-test with FDR correction Parietal vs. All p = 0.00010 

 

Table S3. Summary of statistical analyses for comparisons of decoding accuracy among each 

ROI and all electrodes for Synergy B. Related to Figure 7. 

Method Pair Value 

ANOVA  F4,20 = 11.32, p = 5.8×10-5 

Multiple t-test with FDR correction Frontal vs. Cental p = 0.16 

Multiple t-test with FDR correction Frontal vs. Lateral p = 0.74 

Multiple t-test with FDR correction Frontal vs. Parietal p = 0.74 

Multiple t-test with FDR correction Frontal vs. All p = 0.027 

Multiple t-test with FDR correction Central vs. Lateral p = 0.16 

Multiple t-test with FDR correction Central vs. Parietal p = 0.46 

Multiple t-test with FDR correction Central vs. All p = 0.027 

Multiple t-test with FDR correction Lateral vs. Parietal p =0.47 

Multiple t-test with FDR correction Lateral vs. All p = 0.027 

Multiple t-test with FDR correction Parietal vs. All p = 0.036 

 

  



  

Table S4. Summary of statistical analyses for comparisons of decoding accuracy among each 

ROI and all electrodes for Synergy C. Related to Figure 7. 

Method Pair Value 

ANOVA  F4,36 = 17.57, p = 4.4×10-8 

Multiple t-test with FDR correction Frontal vs. Cental p = 0.80 

Multiple t-test with FDR correction Frontal vs. Lateral p = 0.45 

Multiple t-test with FDR correction Frontal vs. Parietal p = 0.77 

Multiple t-test with FDR correction Frontal vs. All p = 0.0013 

Multiple t-test with FDR correction Central vs. Lateral p = 0.77 

Multiple t-test with FDR correction Central vs. Parietal p = 0.77 

Multiple t-test with FDR correction Central vs. All p = 0.00026 

Multiple t-test with FDR correction Lateral vs. Parietal p = 0.99 

Multiple t-test with FDR correction Lateral vs. All p = 0.00023 

Multiple t-test with FDR correction Parietal vs. All p = 0.00023 

 

Table S5. Summary of statistical analyses for comparisons of decoding accuracy among each 

ROI and all electrodes for Synergy D. Related to Figure 7.  

Method Pair Value 

ANOVA  F4,24 = 9.18, p = 0.00012 

Multiple t-test with FDR correction Frontal vs. Cental p = 0.28 

Multiple t-test with FDR correction Frontal vs. Lateral p = 0.93 

Multiple t-test with FDR correction Frontal vs. Parietal p = 0.82 

Multiple t-test with FDR correction Frontal vs. All p = 0.0069 

Multiple t-test with FDR correction Central vs. Lateral p = 0.30 

Multiple t-test with FDR correction Central vs. Parietal p = 0.68 

Multiple t-test with FDR correction Central vs. All p = 0.0074 

Multiple t-test with FDR correction Lateral vs. Parietal p = 0.82 

Multiple t-test with FDR correction Lateral vs. All p = 0.0069 

Multiple t-test with FDR correction Parietal vs. All p = 0.0069 

 

  



  

Table S6. Summary of statistical analyses for comparisons of decoding accuracy among each 

ROI and all electrodes for Synergy E. Related to Figure 7. 

Method Pair Value 

ANOVA  F4,52 = 16.11, p = 1.22×10-8 

Multiple t-test with FDR correction Frontal vs. Cental p = 0.023 

Multiple t-test with FDR correction Frontal vs. Lateral p = 0.57 

Multiple t-test with FDR correction Frontal vs. Parietal p = 0.30 

Multiple t-test with FDR correction Frontal vs. All p = 0.00033 

Multiple t-test with FDR correction Central vs. Lateral p = 0.053 

Multiple t-test with FDR correction Central vs. Parietal p = 0.0082 

Multiple t-test with FDR correction Central vs. All p = 0.0013 

Multiple t-test with FDR correction Lateral vs. Parietal p = 0.84 

Multiple t-test with FDR correction Lateral vs. All p = 0.0012 

Multiple t-test with FDR correction Parietal vs. All p = 0.00040 

 
  



  

 
Table S7. Summary of statistical analyses for comparisons of decoding accuracy between three 

types of decoders (Forward, Backward and Wide time lag decoders). Related to Figure 5. See 

also Figure S2. 

 

Method 
Statistical value 

Synergy A Synergy B Synergy C Synergy D Synergy E 

ANOVA 
F2,24 = 19.08, 

p = 1.1×10-5 

F2,10 = 2.15, 

p = 0.168 

F2,18 = 32.99, 

p = 9.6×10-7 

F2,12 = 16.87, 

p = 0.00033 

F2,26 = 14.35, 

p = 6.3×10-5 

Multiple t-test with FDR correction 
(Forward vs. Backward) 

p = 0.6803 - p = 0.054 p = 0.65 p = 0.71 

Multiple t-test with FDR correction 
(Forward vs. Wide time lag) 

p = 9.1e-06 - p = 0.00015 p = 0.0060 p = 0.0030 

Multiple t-test with FDR correction 
(Backward vs. Wide time lag) 

p = 0.0056 - p = 0.0013 p = 0.012 p = 0.00045 

 
 
 
 
 
 
 
 
 
 
 
Table S8. Summary of decoding accuracy in the supplemental experiment. Related to Figure 5 

and Figure 7. See also Figure S7 and Figure S8. 

 ID-S01 ID-S02 ID-S03 All muscle synergies from three 
participants 

R2 (Mean (SD)) 0.29 (0.038) 0.21 (0.035) 0.20 (0.062) 0.23 (0.060) 

 
 
 
  



  

Transparent Methods 
 

Experimental model and subject details 

Participants 

In this study, we conducted two experiments: 1) the main experiment and 2) the supplemental 

experiment. Twelve healthy male volunteers (age, 23–31 years) participated in the main 

experiment. Additionally, three healthy male volunteers (age, 24–28 years) participated in the 

supplemental experiment. Each participant provided written informed consent. The 

experiments were performed in accordance with the Declaration of Helsinki and with the 

approval of the Ethics Committee of the Graduate School of Arts and Sciences, University of 

Tokyo. 

 

Method details 

Main experiment  

Experimental design and setup 

Participants walked on a treadmill (Bertec, Columbus, OH, USA) at 0.55 m/s for 7 min 30 seconds. 

The last seven minutes of data were used for the analysis. The slow walking speed was chosen 

based on two previous studies examining the effects of walking speed on movement artifacts in 

EEG signals (Kline et al., 2015; Nathan and Contreras-Vidal, 2016): Kline et al. (2015) used an 

experimental method to isolate and record independent movement artifacts with a silicone 

swim cap (nonconductive material), and reported large movement artifacts at walking speeds 

faster than 0.8 m/s. A study that analyzed relationships between head acceleration and motion 

artifacts in EEG signals indicated that recordings were robust at gait speeds below 3.0 km/h (0.83 

m/s) (Nathan and Contreras-Vidal, 2016). As a static baseline condition, the participants sat on 

a chair for two minutes. 



  

 

Data collection 

Three-dimensional ground reaction forces (GRF) were recorded from force plates under the 

right and left belts of the treadmill (sampling rate: 1000 Hz). GRF data were smoothed with a 

low-pass filter (zero-lag Butterworth filter, 5 Hz cutoff). MATLAB 2016b (MathWorks, Natick, MA, 

USA) was used to perform all the post-processing analyses offline. 

Surface electromyographic (EMG) signals were recorded from the following 13 leg 

muscles on the right side using a wireless EMG system (Trigno Wireless System, DelSys Inc., 

Boston, MA, USA): tensor fasciae latae (TFL), gluteus maximus (GM), gluteus medius (Gmed), 

sartorius (SART), biceps femoris (BF), semitendinosus (ST), rectus femoris (RF), vastus lateralis 

(VL), adductor magnus (AM), tibialis anterior (TA), peroneus longus (PL), soleus (SOL), and 

gastrocnemius medialis (MG). EMGs were amplified (with 300 gain preamplifier), band-pass 

filtered (20–450 Hz), and sampled at 1000 Hz. 

A 64-channel EEG cap (Waveguard original, ANT Neuro b.v., Enschede, Netherlands) 

and a mobile EEG amplifier (eego sports, ANT Neuro b.v., Enschede, Netherlands) were used to 

record EEG signals at a sampling frequency of 500 Hz. Arrangement of the electrodes was 

according to the international 10–20 electrode system. EEG signals were referenced to CPz and 

a ground electrode was placed on AFz. Electrode impedances were kept below 30 kΩ (10 kΩ in 

most electrodes), which was substantially below the recommended impedance (below 50 kΩ) 

for the high-impedance EEG amplifier. Peripheral channels, which are prone to contamination 

by facial/cranial muscle activity and eye blinks, were removed from the offline analysis (channels 

labeled Fp, AF, FT, T, TP, O, PO, and F5-8, P5-8) (Bulea et al., 2014), resulting in the 30 channels 

presented in Figure 1. 

 



  

EMG processing and extraction of locomotor muscle synergies 

Figure 2 shows an overview of our decoding methodology. From the recorded EMG signals, EMG 

envelopes and muscle synergies were used for the neural decoding analysis. 

 First, the recorded EMG data were high-pass filtered (zero-lag fourth-order 

Butterworth at 30 Hz), demeaned, full-wave rectified, and smoothed with a low-pass filter (zero-

lag fourth-order Butterworth at 4 Hz cutoff) to obtain EMG envelopes (Clark et al., 2010). EMG 

envelopes were resampled at 100 Hz. The amplitude of EMG envelopes for each muscle was 

normalized to the maximum value for that muscle during the walking task. Muscle synergies 

were extracted from the processed EMG envelopes using non-negative matrix factorization 

(NMF) (Clark et al., 2010; d'Avella and Bizzi, 2005; Dominici et al., 2011; Lee and Seung, 1999; 

Yokoyama et al., 2016). For each participant, muscle synergies were extracted from the EMG 

dataset organized as a matrix with 13 muscles × 42000 variables (i.e., 100 Hz × 420 sec [7 min]). 

Using NMF, the EMG matrix (M) was decomposed into spatial muscle weightings (S), which 

correspond to the muscle synergies and their temporal activations (C) according to formula (1): 

𝑀	 = 𝑆	 ∙ 	𝐶	 + 	𝐸	 (1) 

where M (m × t matrix, where m is the number of muscles and t is the number of samples in the 

EMG data matrix) is a linear combination of muscle synergies, S (m × Nsynergy matrix, where Nsynergy 

is the number of muscle synergies), and their temporal activation patterns, C (Nsynergy × t matrix), 

and E is the residual error matrix. The number of muscle synergies, Nsynergy, was determined by 

iterating each possible Nsynergy from 1 to 10. For each Nsynergy, the goodness of fit was evaluated 

based on the variance accounted for (VAF) (Torres-Oviedo et al., 2006). Based on the VAF, the 

optimal Nsynergy was defined as the minimum value fulfilling two criteria: (1) the number of 

muscle synergies achieving VAF > 90% (Torres-Oviedo et al., 2006), and (2) the number to which 

adding an additional muscle synergy did not increase VAF by > 5% (Frere and Hug, 2012). Then, 



  

we clustered the extracted muscle synergies using hierarchical clustering analysis to examine 

the extracted types of muscle synergies (Ward’s method, correlation distance) based on muscle 

weightings, as in our previous studies (Yokoyama et al., 2017a; Yokoyama et al., 2016; Yokoyama 

et al., 2017b). The gap statistic method was used to define the optimal number of clusters 

(Tibshirani et al., 2001). 

 

EEG pre-processing 

In the current study, fluctuations in the amplitude of slow cortical potentials (0.5 – 4 Hz in the 

time domain) were used for the neural decoding analysis (Figure 2) based on a similar 

methodology used in previous studies (Bradberry et al., 2010; Contreras-Vidal et al., 2018; 

Nakanishi et al., 2017; Presacco et al., 2012; Presacco et al., 2011). EEG data analysis was 

performed using custom programs in MATLAB incorporating functions of EEGLAB 14.1b 

(Delorme and Makeig, 2004). The EEG signals were band-pass filtered between 0.5−100 Hz with 

a Butterworth filter (fourth-order). The “cleanline” function in EEGLAB was used to remove 

power line noise (50 Hz). Next, the EEG signals were resampled at 100 Hz. Then, we checked 

noisy EEG channels based on two criteria adopted from a previous study (Gwin et al., 2011): 1) 

standard deviation greater than 1000 μV, and 2) kurtosis of more than five standard deviations 

from the mean. In this study, no EEG electrode satisfied the criteria in all the participants. Since 

various types of artifacts were potentially introduced in the EEG data, we used an artifact 

rejection method called Artifact Subspace Reconstruction (ASR) (Mullen et al., 2015) in EEGLAB 

to remove artifacts derived from walking, eye blinks, muscle, and heart activity. Next, the 

cleaned EEG signals were low-pass filtered at 4 Hz with a zero-phase Butterworth filter (fourth-

order) and re-referenced to a common average reference. Finally, the amplitude of each 

electrode was normalized by calculating the standard z-score. 



  

 

Neural decoding of muscle synergy and individual muscle activation 

To continuously decode the activation of muscle synergies and individual muscles from the slow 

cortical potentials, we designed a time-embedded (10 lags, corresponding to 0 ms to -90 ms) 

linear decoding model, called the Wiener filter (Bradberry et al., 2010; Carmena et al., 2003; 

Presacco et al., 2011), for the muscle synergy and EMG envelope data. The linear model is given 

by: 

𝑦(𝑡) 	= 	𝑏	 +	 . .𝑊01

2

134

567689:;<6

034

∙ 	𝑥0[𝑡 − (𝑗 − 1)] 	+ 	𝑒	(𝑡) (2) 

where y(t) is the predicted time series activation of each muscle synergy or EMG envelope at 

time t, b is the intercept, Nelectrode (= 30) is the number of electrodes, L (=10) is the number of 

time lags, x(t) is the normalized slow cortical potentials at electrode i at time t, Wij is the weights 

at electrode i and time lag j, and e(t) is the residual error. The time lag was selected to use the 

cortical information ahead of the muscle activity because we were interested in examining the 

cortical descending control of muscle activity. The maximum time lag (-90 ms) was chosen based 

on the traveling time of the cortical command to the muscles examined by TMS (~35−40 ms) 

(Nielsen et al., 1995; Terao et al., 2000). Thus, we set the time lag to sufficiently contain the 

traveling time. The parameters of the model were calculated with multidimensional generalized 

linear regression (Bradberry et al., 2010; Carmena et al., 2003; Presacco et al., 2011) using the 

“glm” function in MATLAB (Gaussian distribution condition). Neural decoders were designed 

separately for each participant and each decoded parameter (i.e., each muscle synergy and each 

EMG envelope).  



  

In addition to the above-explained forward decoder (-90 to 0 ms, forward model), we 

performed decoding analyses of muscle synergy activation using two additional types of 

decoders, which used positively time-lagged information (0 to 90 ms, backward model) and 

widely time-lagged information (-90 to 90 ms, wide time lag model). 

For assessing the predictive accuracy of each decoder, a seven-fold cross-validation 

procedure was performed. Thus, the data recorded during the 7 min walking task were divided 

into 7 segments (1 min each). Six segments were used for training data while the remaining 

segment was used for testing the decoding model. In the cross-validation, the temporal 

activation patterns of muscle synergies (C in equation (1)) for the test data were calculated using 

the NMF algorithm initialized with the spatial weightings of muscle synergies (S in equation (1)) 

extracted from the training data and updating only the temporal activation patterns of the 

synergies to reconstruct the muscle activation patterns of test data (Berger et al., 2013; Clark et 

al., 2010; d'Avella et al., 2006; Yokoyama et al., 2016). The EEG signals for the test data were 

normalized by subtracting a mean value from the training data and then dividing by the standard 

deviation of the training data. This procedure was repeated for all possible combinations (i.e., 

seven times).  Coefficient of determination (R2) were calculated between the real activation 

and the decoded activation at each decoder in each iteration. To compare the overall decoding 

accuracy between the two types of decoders (muscle synergy decoders vs. individual muscle 

decoders), overall R2 values were calculated for each type per participant. To minimize the 

effects of skewness in the sampling distributions on the correlation coefficients, each coefficient 

of determination value was averaged after Fisher’s Z-transformation (Corey et al., 1998). After 

averaging, the Z-values were back-transformed to the scale of Pearson’s r values. 



  

The difference in the number of decoders (individual muscles: 13, muscle synergies: 

3−5 depending on participants) may have possibly affected the comparisons of the overall 

decoding accuracy, as the sample mean of the larger sample size more accurately estimates the 

population mean. To overcome this issue, the overall decoding accuracy was calculated using 

the same number of randomly sampled individual muscle decoders with muscle synergies from 

13 muscles per participants (sampling without replacement). In this analysis, the Z-transformed 

decoding accuracy values were randomly sampled and averaged. We then calculated the across-

participant mean of the overall decoding accuracy for individual muscle decoders. The 

procedure was iterated 10000 times, and we calculated the 95% confidence interval of the 

distribution of the 10000 values of the across-participant mean of the overall decoding accuracy 

of individual muscles. Then, we tested whether the across-participant mean of the overall 

decoding accuracy for muscle synergy decoders was larger than the 95% confidence interval. 

Chance levels of neural decoding were evaluated by randomizing the EEG phase 

(Theiler et al., 1992). Phase-randomized EEG signals were generated using the fast Fourier 

transform of a time series throughout the recording duration to randomize the phase in the 

Fourier domain while keeping the power spectrum unchanged; then the inverse Fourier 

transform was performed to back to the time domain. After phase-randomization, the power 

spectrum was preserved in the surrogate data, but the phase relation to the muscle activity was 

disrupted. When decoding from the time-domain EEG signals, it is assumed that the signals are 

phase-locked to muscle activity and that a randomization of the phase can provide a chance 

level of the decoding accuracy. The same decoding procedure was performed using the phase-

randomized EEG signals. We generated 100 phase-randomized EEG datasets for each participant 



  

and performed neural decoding using each randomized dataset to obtain confidence intervals 

for the decoding accuracy. 

 

Analysis of relationships between muscle synergy decoders and individual muscle decoders 

We reconstructed individual muscle activations by summing the outputs of each 

decoded muscle synergy to test whether the variability in decoding accuracy in individual 

muscles would be reproduced by individual muscle activations indirectly decoded from muscle 

synergy activations decoded from muscle synergy decoders. The output of a decoded muscle 

synergy was explained by the product of the muscle weighting component and the decoded 

temporal activation pattern from the slow cortical potentials. Next, the decoding accuracy of 

the indirectly decoded individual muscle activation through the decoded muscle synergies were 

assessed. 

To examine the weight of each muscle decoder (Wmuscle) based on those of the muscle 

synergy decoders (Wsyn), a 300-dimensional weight of an individual muscle decoder was 

reconstructed as a linear combination of the weights of the muscle synergy decoders with non-

negative coefficients (Wmuscle’, conceptual schema presented in Figure 6C). The non-negative 

least squares problem was solved by the “lsqnonneg” function in MATLAB. The similarity of the 

weights of the original and reconstructed individual muscle decoders (i.e., Wmuscle and Wmuscle’, 

respectively) was evaluated using Pearson’s r, calculated from the decoder data of all 

participants. 

 

Contribution of each electrode to decoding 



  

To evaluate the spatial contributions of cortical activity to predict muscle synergy activations, 

we calculated the contribution of each electrode from the weights of the decoding model as 

determined in a previous study (Chao et al., 2010): 

%𝑇F 	= 	
∑ H𝑤F1H2
134

∑ ∑ H𝑤01H2
134

567689:;<6
034

× 100; (3) 

for all k from 1 to Nelectrode, where %Tk is the percentage contribution of each EEG electrode k. 

 In addition, we divided the electrodes into four major ROIs to examine the individual 

contribution of each area to the decoding. The ROIs were the frontal area (F3, F1, Fz, F2, F4, FC3, 

FC1, FCz, FC2, and FC4), central area (FC1, FCz, FC2, C3, C1, Cz, C2, C4, CP1, and CP2), lateral area 

(FC5, FC3, FC4, FC6, C5, C6, CP5, CP3, CP4, and CP6), and parietal area (CP3, CP1, CP2, CP4, P3, 

P1, Pz, P2, and P4). Using the same procedure as for the full electrodes, the decoding accuracy 

of each muscle synergy activation was separately calculated using the electrode set in each ROI. 

 

Effects of amplitude normalization of EMG signals  

To examine the effect of amplitude normalization of EMG signals on the decoding of muscle 

synergy activation, we also extracted muscle synergies from non-normalized EMG activity and 

performed decoding analyses using the muscle synergy activation. We performed the same 

procedures for muscle synergy extraction and activation decoding as those used those for 

muscle synergies extracted from normalized EMGs. 

 

Effects of motion artifact in EEG 

The spectra of the EEG signals were analyzed using the fast Fourier transform (FFT) via the fft 

function in Matlab. Default setting parameters of the fft function were used (FFT size was set to 



  

the length of the EEG signal rounded up to the next power of two). The power spectra of EEGs, 

which are affected by motion artifact during walking, exhibit the power peaks around the stride 

and step frequencies due to head motion (Arad et al., 2018; Kline et al., 2015; Nathan and 

Contreras-Vidal, 2016). Therefore, we calculated the relative power between the peak power in 

frequency from the stride to step frequencies and the mean power in the delta band frequency 

(0.5−4.0 Hz) as a rough indicator of artifact size of each electrode. Then, relationships between 

the artifact size and electrode contribution to the decoding, defined by formula (3), were 

examined using Pearson's correlation coefficient in each muscle synergy decoder per participant. 

 

Supplemental experiment 

Three participants walked on a treadmill under the same experimental conditions used in the 

main experiment. In this supplemental experiment, we measured tri-axial head accelerations 

with a 1000 Hz sampling frequency in addition to obtaining EEG, EMG, and GRF data under the 

same data recording conditions. An accelerometer (Trigno Wireless System, DelSys Inc., Boston, 

MA, USA) was attached to the participant’s forehead along the midline of the nose (Figure S7), 

as described in previous studies (Kline et al., 2015; Nathan and Contreras-Vidal, 2016), to 

measure the best estimate of the head acceleration without any interfering EEG recordings. 

Using the same analyses performed for the main experiment data, we extracted 

muscle synergies from EMG signals and then performed the decoding analysis of muscle synergy 

activation from slow cortical potentials obtained from the EEG signals. The acceleration signals 

were band-pass filtered between 0.5−4 Hz with a Butterworth filter (fourth-order) to examine 

the effects of head acceleration on the slow cortical potentials of EEGs. Then, the acceleration 



  

data were resampled at 100 Hz to match the sampling frequency for the slow cortical potentials. 

If the head acceleration affected the activation patterns of the slow cortical potentials, the two 

signals showed a correlation with the time lag, in which the head movement preceded the slow 

cortical potentials. Because movement artifacts are mainly caused by vertical head accelerations 

(Kline et al., 2015), we calculated the cross-correlation between the time series of vertical head 

accelerations and slow cortical potentials at each electrode. The maximum correlation between 

the vertical head accelerations and the slow cortical potentials were examined in a time lag 

range from -500 to 500 ms so as not to exceed the step duration (approximately 600—900 ms 

depending on the participants). Finally, we used Pearson's correlation to examine the 

relationships between the electrode contribution to the decoding and the maximum correlation 

of the cross-correlation analysis in all the electrodes in each muscle synergy decoder. 

 

Quantification and statistical analysis 

The differences between the overall correlation values (i.e., decoding accuracy) between the 

two types of decoders (muscle synergy decoder vs. individual muscle decoder) were assessed 

using two-tailed paired t-tests. In addition, the differences in decoding accuracy between each 

ROI and the full electrode set were compared using repeated measures one-way analysis of 

variance (ANOVA) test with multiple t-tests with FDR correction for each muscle synergy type. 

Before performing the t-test and ANOVA, the normality was tested and found using the Lilliefors 

test. For the statistical tests, the coefficient of determination values were transformed into Z-

values using Fisher’s Z-transformation and the tests (i.e., t-test, ANOVA, multiple t-tests with 



  

FDR correction) were conducted on the Fisher’s Z-values. Statistical significance was set at p < 

0.05. 
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