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S1. The drug combination problem as approximating a function 
We model problem of drug combination as predicting the value of a function 𝑓(𝑥, 𝑦, 𝑧) given the 
values of 𝑓(0,0,0)- no drug. 𝑓(𝑥, 0,0), 𝑓(0, 𝑦, 0), 𝑓(0,0, 𝑧)- singles and 
𝑓(𝑥, 𝑦, 0), 𝑓(𝑥, 0, 𝑧), 𝑓(0, 𝑦, 𝑧)- pair measurements. 

The log linear formulae therefore correspond to the following approximation: 

𝑓(𝑥, 𝑦, 𝑧) ≈ 

𝛼𝑓(0,0,0) + 𝛽-𝑓(𝑥, 0,0) + 𝑓(0, 𝑦, 0) + 𝑓(0,0, 𝑧). + 𝛾(𝑓(𝑥, 𝑦, 0) + 𝑓(𝑥, 0, 𝑧) + 𝑓(0, 𝑦, 𝑧))  

Approximating to zeroth order 
Now we want to find the condition that this equality is true to zeroth order, we take Taylor 
expansions to zeroth order of both sides to get: 

𝑓(0,0,0) = 𝛼𝑓(0,0,0) + 3𝛽𝑓(0,0,0) + 3𝛾𝑓(0,0,0) 

And the condition for a formula to be precise to zeroth order is: 

1 = 𝛼 + 3𝛽 + 3𝛾 

This is how we added the 𝑆∅ terms to the standard formula – we require that the formula will 
satisfy the above equation so it will be precise to the zeroth order. 

Approximating to first order 
We can take the first order approximation (ignoring zeroth order), in the left side 𝑓(𝑥, 𝑦, 𝑧) we 
get: 
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Taking the first order Taylor approximation of the right side: 
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Therefore the deviation of a log-linear formula in the first order Taylor is proportional to: 

𝑃:;<(𝛼, 𝛽, 𝛾) = |1 − 𝛽 − 2𝛾| 

Approximating to second order 
We can continue to approximate a function to the second order, the left side will have the form 
(only second order, all derivative are taken at (0,0,0)): 
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For a log linear formula on the right side we get: 
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If we treat second derivatives and mixed derivative as more or less of the same size, we get that 
the deviation is proportional to:   

𝑃@DE,FG<HIDF<JKH(𝛼, 𝛽, 𝛾) = |
1
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2
− 𝛾| + |1 − 𝛾| 

Or since the terms adds incoherently, it makes sense to take a function of the form: 

𝑃@DE(𝛼, 𝛽, 𝛾) = B
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Were the first term come from comparing the second derivative terms and the second term comes 
from comparing mixed derivative terms. 

 

S2. Minimum of noise performance function 
 We wish to minimize 

𝑃L,MNDOJ;P(𝛼, 𝛽, 𝛾) = 𝜎R𝛼@ + 3𝛽@ + 3𝛾@  

Under the condition  

𝛼 + 3𝛽 + 3𝛾 = 1 

Substitute 𝛼 = 1 − 3𝛽 − 3𝛾 to get: 

𝑃L,MNDOJ;P(𝛼, 𝛽, 𝛾) = 𝜎R(1 − 3𝛽 − 3𝛾)@ + 3𝛽@ + 3𝛾@  

To minimize this expression, we can ignore the square root and take derivatives: 

𝑔(𝛽, 𝛾) = (1 − 3𝛽 − 3𝛾)@ + 3𝛽@ + 3𝛾@ 

𝜕𝑔
𝜕𝛽

= −6(1 − 3𝛽 − 3𝛾) + 6𝛽 

𝜕𝑔
𝜕𝛾

= −6(1 − 3𝛽 − 3𝛾) + 6𝛾 

Equating both derivatives to zero we find: 𝛽 = 𝛾 = :
U
. 



For 	
𝑃L,MNW:(𝛼, 𝛽, 𝛾) = 𝜎R3𝛽@ + 3𝛾@  

𝛽 = 𝛾 = 0 give the minimum. 

S3. The Pareto front of noise and first order precision 
We compute the Pareto front as the set of points for which the gradients of the performance 
functions are proportional (but in opposite directions), in the case of 1st order approximation 
performance the gradient is: 

𝑃:;<(𝛼, 𝛽, 𝛾) = |1 − 𝛽 − 2𝛾| 

∇𝑃:;<(𝛽, 𝛾) = ±(1,2) 

The noise function for noiseless wildtype is defined as: 

𝑃L,MNW:(𝛽, 𝛾) = 𝑃L,Z[(𝛼, 𝛽, 𝛾) = 𝜎R3𝛽@ + 3𝛾@ 

For simplicity we replace it by a function with the same contours: 

𝑃L,MNW:(𝛽, 𝛾) = 3𝛽@ + 3𝛾@  

The noise gradient will therefore be in the case of drug combination: 

∇𝑃L,MNW:(𝛽, 𝛾) = (6𝛽, 6𝛾) 

The Pareto front is then be defined by the equation (taking the gradients to be proportional): 

𝛾 = 2𝛽 

For the noisy wildtype case we have: 

𝑃L,MNDOJ;P(𝛽, 𝛾) = 𝑃L,MNDOJ;P(𝛼, 𝛽, 𝛾) = 𝜎R(1 − 3𝛽 − 3𝛾)@ + 3𝛽@ + 3𝛾@  

Or in simpler form: 

𝑃L,MNDOJ;P(𝛽, 𝛾) = (1 − 3𝛽 − 3𝛾)@ + 3𝛽@ + 3𝛾@ 

The gradient will be: 

∇𝑃L,MNDOJ;P(𝛽, 𝛾) = (−6(1 − 3𝛽 − 3𝛾) + 6𝛽,−6(1 − 3𝛽 − 3𝛾) + 6𝛾) 

We get the equation: 

−6(1 − 3𝛽 − 3𝛾) + 6𝛾 = 2(−6(1 − 3𝛽 − 3𝛾) + 6𝛽) 

Simplify to get: 

5𝛽 + 2𝛾 = 1 



 

S4. The Pareto front of noise and second order precision 
The Pareto front is defined as the set of points which can’t be improved at all performance 
functions at once. If we have two performance functions, it is simply the curve for which the 
gradients of the two performance functions are proportional to one another and point in opposite 
directions. This can be computed easily for the case of noise and second order performance 
functions. 

For 	

𝑃@DE(𝛽, 𝛾) = 𝑃@DE(𝛼, 𝛽, 𝛾) = B
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 And  

𝑃L,MNW:(𝛽, 𝛾) = 3𝛽@ + 3𝛾@  

We can compute the gradients according to the parameters 𝛽, 𝛾 to get: 

∇𝑃@DE(𝛽, 𝛾) = (−
1
2
+
𝛽
2
+ 𝛾,−2(1 − 𝛾) + (−1 + 𝛽 + 𝛾)) 

∇𝑃L,MNW:(𝛽, 𝛾) = (6𝛽, 6𝛾) 

Requiring the gradients to be proportional gives the following implicit representation of the 
Pareto front: 

6𝛽-−2(1 − 𝛾) + (−1 + 𝛽 + 𝛾). = 6𝛾(−
1
2
+
𝛽
2
+ 𝛾) 

Or: 

−2𝛾@ + 7𝛽𝛾 + 2𝛽@ + 𝛾 − 6𝛽 = 0 

If we take instead the function for noisy wild-type: 

𝑃L,MNDOJ;P(𝛽, 𝛾) = (1 − 3𝛽 − 3𝛾)@ + 3𝛽@ + 3𝛾@ 

∇𝑃L,MNDOJ;P(𝛽, 𝛾) = (−6(1 − 3𝛽 − 3𝛾) + 6𝛽,−6(1 − 3𝛽 − 3𝛾) + 6𝛾) 

The equation for the Pareto front becomes: 

(−6(1 − 3𝛽 − 3𝛾) + 6𝛽)-−2(1 − 𝛾) + (−1 + 𝛽 + 2𝛾).

= (−6(1 − 3𝛽 − 3𝛾) + 6𝛾)(−
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𝛽
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Or: 

5𝛽@ + 28𝛽𝛾 − 22𝛽 + 16𝛾@ − 20𝛾 + 5 = 0 



S5. Performance function for non-independent measurement noise 
In the main text we analyzed the noise-robustness performance function in the case in which 
noise in the different measurements is independent.  Here we consider the case of a general noise 
covariance matrix. 

Log-linear formulae are linear combinations of the variables, therefore their variance can be 
computed using the covariance matrix: 

 𝑃L,_OKFIJFD_H(𝛼, 𝛽, 𝛾)@ = 𝑉𝑎𝑟c𝛼𝐿∅ + 𝛽(𝐿: + 𝐿@ + 𝐿e) + 𝛾(𝐿:@ + 𝐿:e + 𝐿@e)f = 

= 𝛼@𝑉𝑎𝑟(𝐿∅) + 𝛽@∑𝑉𝑎𝑟(𝐿J) + 𝛾@∑𝑉𝑎𝑟-𝐿Jh. + 2𝛼𝛽∑𝐶𝑜𝑣(𝐿∅, 𝐿J) + 2𝛼𝛾∑𝐶𝑜𝑣-𝐿∅, 𝐿Jh. +
2𝛽𝛾∑𝐶𝑜𝑣-𝐿J, 𝐿hl. 

We find that the performance function for this case is also quadratic in 𝛼, 𝛽, 𝛾 and its equi-
performance contours are ellipsoids around the origin in the three dimensional space of  𝛼, 𝛽, 𝛾. 
The analysis is therefore analogous to that described in the main text. 

S6. Generalization to combinations of higher order 
In the main text we claim that our approach helps to overcome the exponential explosion problem 
of number of combinations, and the main text demonstrates the case 𝑛 = 3. We briefly discuss 
here the generalization to higher orders of interaction. We treated this problem from a 
mathematical perspective elsewhere (Tendler & Alon, 2018). 

The aim is to estimate the effect of 𝑘 perturbations using only the single and pair effects. One can 
define a family of log-linear formulae as: 

𝐿:…l = 𝛼𝐿∅ + 𝛽∑𝐿J + 𝛾∑𝐿Jh  

The noise performance function in this case is analogous to the triplet case: 

𝑃L,MNDOJ;H(𝛼, 𝛽, 𝛾) = 𝜎q𝛼@ + 𝑘𝛽@ +
𝑘(𝑘 − 1)

2
𝛾@ 

And in case II (noiseless 𝐿∅), depends only on the parameters 𝛽 and 𝛾:  

𝑃L,MNW:(𝛼, 𝛽, 𝛾) = 𝜎q𝑘𝛽@ +
𝑘(𝑘 − 1)

2
𝛾@  

The contours of this general performance functions are ellipsoids as in the triplet case. 

The zeroth order precision condition is also defined analogously by the zeroth order Taylor 
approximation as: 

1 = 𝛼 + 𝑘𝛽 +
𝑘(𝑘 − 1)

2
𝛾 



It is a line in the 3-dimensional space of formulae, and its exact form depends on the order of 
combination we try to estimate. 

The first order performance function is defined as the deviation of the first order Taylor 
approximation yielding (assuming zeroth order precision): 

𝑃:;<(𝛼, 𝛽, 𝛾) = (1 − 𝛽 − (𝑘 − 1)𝛾)@ 

As in the triplet case the contours are lines, whose slope depends on 𝑘. 

Finally, for the second-order precision we compute the deviation from the second order Taylor 
series. The generalized performance function is: 

𝑃@DE(𝛼, 𝛽, 𝛾) = 𝑘 B
1
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−
𝛽
2
−
𝑘 − 1
2

𝛾C
@

+
𝑘(𝑘 − 1)

2
(1 − 𝛾)@ 

As in the triplet case, there is a single regression formula which is precise to the second order, 
and the performance contours are ellipsoids around it. The second-order-precise formula is: 

𝑅𝑒𝑔l = ∑𝑠Jh − (𝑘 − 2)∑𝑠J +
𝑘@ − 3𝑘 + 2

2
𝑠∅ 

 

S7. Synthetically generated datasets 
To generate data synthetically we used randomly generated functions of third order of the 
following form: 

𝑓(𝑥, 𝑦, 𝑧) = 𝑎: + 𝑎@(𝑥 + 𝑦 + 𝑧) + 𝑎e(𝑥@ + 𝑦@ + 𝑧@) + 𝑎u(𝑥e + 𝑦e + 𝑧e) + 𝑎v𝑥𝑦𝑧
+ 𝑎w(𝑥𝑦 + 𝑥𝑧 + 𝑦𝑧) + 𝑎U(𝑥@𝑦 + 𝑥𝑦@ + 𝑥@𝑧 + 𝑥𝑧@ + 𝑦@𝑧 + 𝑦𝑧@) 

Were 𝑎J are chosen randomly from the uniform distribution on [0,1]. The function was evaluated 
at 𝑥, 𝑦, 𝑧 ∈ {0, 𝜖}. So 𝜖 is a measure for the distance of evaluation of the function, which we called 
“interaction strength” in our graphs. To all evaluations of the function we added Gaussian noise 
of STD 𝜎, which is the measurement of noise in the related plots. 

For each value of 𝜖 and 𝜎 we took 10 different random functions, from each random function we 
generated 300 data points by choosing random values for 𝑥, 𝑦, 𝑧 uniformly from [0,1]. For each 
dataset we computed the optimal formula, we obtain the optimal formula for the values of 𝜖, 𝜎 by 
averaging the optimal formulae predicting the 10 functions. 

We note that the distance of evaluation deserves the name “interaction strength”. It is indeed 

related to a natural definition of interaction strength as 
|	;~�;∅�;~;�|	

|;~;�|
. Fig A shows the relation 

between the two quantities on a simulated dataset.  



S8. The bias-variance tradeoff in the generalized mean class of formulae  
In the main text we analyzed the log-linear class of formula. Here we analyze another class of 
formula, the class of generalized means defined as: 

𝑠:@e = 𝐺𝑀� = �
1
3
(𝑠:𝑠@e)� +

1
3
(𝑠@𝑠:e)� +

1
3
(𝑠e𝑠:@)��

:
�

 

Where 𝑝 is a parameter. For p=-1 this is the harmonic mean of terms si sjk, and for p=1 it’s their 
arithmetic mean. Each of these terms is similar to a Bliss approximation taking a single si and the 
other pair sjk, so the generalized mean is away to account for all three Bliss-like possibilities. At 
certain limits of 𝑝  the generalized mean has the following forms: 

𝐺𝑀�� = min	(𝑠:𝑠@e, 𝑠@𝑠:e, 𝑠e𝑠:@) 

𝐺𝑀� =(𝑠:𝑠@e𝑠@𝑠:e𝑠e𝑠:@)
:
e 

𝐺𝑀� = max	(𝑠:𝑠@e, 𝑠@𝑠:e, 𝑠e𝑠:@) 

All GM formulae are accurate to the zeroth order. Indeed, if we plug in 𝑠: = 𝑠@ = 𝑠e = 𝑠:@ =
𝑠:e = 𝑠@e = 1 we get 𝑠:@e = 1. 

Moreover, the generalized means are precise to the first order: assuming 𝑠:@ = 𝑠:𝑠@, 𝑠:e =
𝑠:𝑠e, 𝑠@e = 𝑠@𝑠e we get: 

𝑠:@e = 𝐺𝑀� = �
1
3
(𝑠:𝑠@𝑠e)� +

1
3
(𝑠@𝑠:𝑠e)� +

1
3
(𝑠e𝑠:𝑠@)��

:
�
= 𝑠:𝑠@𝑠e 

These formulae are also precise to the second order, this can be seen by computing the Taylor 
series of both sides of the equation (not shown).  

The generalized mean formulae differ in their noise robustness. Noise grows with 𝑝 which makes 
the min model (𝐺𝑀��) the most noise-robust (Fig B). As suggested by the noise robustness 
analysis, the min model provides the best predictions in this class for some datasets (Extra data on 
A549, H1299 (Zimmer, Tendler, Katzir, Mayo, & Alon, 2017) and yeast three-gene deletion 
interactions (Kuzmin et al., 2018), not shown). 

Generalized means differ also by their prediction about the type of interactions, because of the 
mean inequality: if 𝑝 < 𝑞 then 𝐺𝑀� ≤ 𝐺𝑀�. Therefore, the min model will be favored for 
synergistic interactions, whereas the max model (𝐺𝑀�) will be preferred if most interactions in 
the dataset are antagonistic. In the present study, all non-expanded datasets (Table 1) showed a 
majority of antagonistic interactions (𝑠J𝑠h < 𝑠Jh). The only exception was  (Beppler et al., 2016), 
which was constructed as synergistic. 

This suggests a bias-variance tradeoff among the generalized mean formulae: the max model 
(𝐺𝑀�) has low bias since it predicts antagonism and most datasets are antagonistic, whereas the 
min (𝐺𝑀��)model has low variance since it is the most noise-robust.  



We compared the generalized mean class to the log-linear class for the present datasets (Fig 2SB). 
The generalized mean class performed significantly better on only one of the datasets studied 
here, the yeast triple gene deletion dataset. The best GM model showed a RMSE of 0.09, 
compared with 0.11 for the best loglinear formula, and 0.13 for the Isserlis model used in the 
original study as a null model.  
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Fig A. interaction strength is related to evaluation distance. For random simulated functions 
with difference evaluation distance we computed the resulted interaction strength as computed 
from the dataset. Each point is an average of 100 simulations, errorbars are standard deviation of  
the 100 results. 

  



 

Fig B. Analysis of the generalized mean class of formulae. (A) Noise increases with the 
parameter 𝑝. The horizontal axis is the parameter 𝑝 of the generalized mean model and the 
vertical axis is the standard deviation of the predictions of the model. Each point is based on 
100000 lognormally distributed 𝑠J, 𝑠Jh (log of si and sij has mean zero and standard deviation of 
1). The model becomes more sensitive to noise as 𝑝 grows larger. (B) Comparison of the 
performance of log-linear and generalize mean classes. For each dataset we computed the optimal 
formula in the log-linear and generalize mean classes, we compare the performance of the 
optimal formulae in terms of root mean square error. Error-bars result from bootstrapping each 
dataset 100 times.  
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