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Supplementary Figures 

 
Supplementary Figure 1. Histogram of the purity estimates of iPSC-derived macrophages. 
Macrophages were stained with antibodies for CD14, CD16 and CD206 and flow cytometry was 
used to estimate the proportion of cells stained positive for each of the three markers (see 
Supplementary Note). Since the purity estimates from all three markers were highly correlated, 
we decided to calculate their mean as an estimate of sample purity. The values for each sample 
are presented in Supplementary Table 1. 
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Supplementary Figure 2. Differential gene expression and chromatin accessibility in 
macrophage immune response. (A) Principal component analysis of the gene expression data, 
n = 84 independent donors in each condition. (B) Principal component analysis of the chromatin 
accessibility data. The number of independent donors in each condition was n = 42 (N), n = 41 
(I) and n = 31 (S and I+S). (C) Left panel: 8,758 differentially expressed genes clustered into 
nine distinct expression patterns (n = 84 unique donors across four conditions). Right panel: 
Selection of Gene Ontology terms enriched in each cluster. Only enrichments with p < 1×10-8 
are shown in the figure. Enrichment p-values were calculated using g:Profiler1. Differential gene 
expression patterns closely recapitulated known aspects of macrophage immune response. For 
example, genes upregulated by Salmonella (cluster 1) were enriched for tumor necrosis factor 
(TNF) signalling and cell death pathways whereas genes upregulated by IFNɣ (cluster 5) were 
enriched for IFNɣ response and antigen presentation pathways. (D) Left panel: heatmap of 
63,350 differentially accessible regions clustered into seven distinct patterns (n = 16 high quality 
donors across four conditions (see Supplementary Note)). Right panel: enrichment of TF motifs 
in four groups of differentially accessible clusters relative to all open chromatin regions. The 
points represent fold enrichment calculated using two-sided Fisher’s exact test. Due to the large 
number of differentially accessible regions, the 95% confidence intervals from Fisher’s exact 
test are too narrow to be visible on the plot. Similarly to the gene expression data (panel C), 
open chromatin regions in clusters 1 and 2 that became accessible after Salmonella infection 
were specifically enriched for NF-κB and AP-1 motifs, two main TFs activated downstream of 
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toll-like receptor 4 (TLR4) signalling2. In contrast, clusters 4 and 5 showed increased 
accessibility after IFNɣ stimulation and were enriched for IRF and STAT1 motifs, consistent with 
the activation of STAT1 and IRF1 downstream of IFNɣ signalling3.  
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Supplementary Figure 3. Genetic effects on gene expression and chromatin accessibility 
across conditions. (A) Number of genes and open chromatin regions for which we detected at 
least one significant QTL (FDR < 10%) using either allele-specific model (RASQUAL) or 
standard linear regression (FastQTL). The number of significant QTLs was counted in each 
condition separately. The RNA-seq data consisted of n = 84 independent donors in all four 
conditions. The number of independent donors in the ATAC-seq data was n = 42 (N), n = 41 (I) 
and n = 31 (S and I+S), depending on the condition. (B) Proportion of lead QTL variants shared 
(R2 > 0.8, Pearson correlation) between all pairs of conditions (n = 12) for both eQTLs and 
caQTLs. Box plots show the median (center line) and the 25th and 75th percentiles (box edges), 
with whiskers extending to 1.5 times the interquartile range. 
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Supplementary Figure 4. Quantile-quantile plots for eQTLs (A) and caQTLs (B) detected using 
either linear model (FastQTL) or RASQUAL. Each point represents the p-value of the lead eQTL 
(caQTL) variant for each gene (region). The -log10 p-values were calculated using either 
FastQTL or RASQUAL as indicated. The p-values have been adjusted with eigenMT4 to account 
for multiple variants tested per gene or accessible chromatin region. The RNA-seq data 
consisted of n = 84 independent donors in all four conditions. The number of independent 
donors in ATAC-seq data was n = 42 (N), n = 41 (I) and n = 31 (S and I+S), depending on the 
condition. 
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Supplementary Figure 5. Correlation between caQTL effect size and TF binding. Only credible 
set variants overlapping the regulated caQTL region were included in the analysis. Furthermore, 
each variant was required to have at least ten overlapping reads in the ChIP-seq data with at 
least two reads supporting the lower binding allele to exclude potential homozygotes. See 
Supplementary Note for more details. (A) Spearman’s correlation (rho) between allele-specific 
binding of CEBPβ and RASQUAL caQTL effect size (n = 42 independent donors) at 202 
heterozygous loci. (B) Spearman’s correlation between allele-specific binding of PU.1 and 
RASQUAL caQTL effect size (n = 42 independent donors) at 2159 heterozygous loci. 
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Supplementary Figure 6. Quantifying the effect of small sample size on the accuracy of 
response eQTL effect size estimates. (A) Response eQTL effect size distribution in the 
discovery sample of 84 individuals in the naive condition as well as in the stimulated condition 
with the largest effect size. (B) Effect size of the same response eQTLs in a much larger 
replication sample of 228 individuals.  
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Supplementary Figure 7. Characterisation of response caQTLs. (A) Response caQTLs 
clustered into six groups using k-means clustering. The number of unique donors in the ATAC-
seq data was n = 42 (N), n = 41 (I) and n = 31 (S and I+S), depending on the condition. (B) 
Distribution of mean gene expression (n = 387 genes with response eQTLs) (or chromatin 
accessibility (n = 2247 regions with a response caQTL)) in the naive condition and in the 
condition where the response QTL had the largest effect size. Condition-specific caQTLs were 
inaccessible in the naive cells and became accessible only in the condition in which the genetic 
effect appeared whereas mean expression of genes with response eQTLs did not differ 
between conditions. TPM, transcripts per million. Box plots show the median (center line) and 
the 25th and 75th percentiles (box edges), with whiskers extending to 1.5 times the interquartile 
range. Mean gene expression was calculated from n = 84 independent donors in each condition 
and mean chromatin accessibility was calculated from n = 16 high quality donors 
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(Supplementary Note) in each condition. (C) Enrichment of TF motif disruption by response 
caQTLs relative to all other caQTLs. The numbers on the left correspond to clusters from panel 
(A). The points represent log2 fold enrichment calculated using two-sided Fisher’s exact test and 
the solid lines show 95% confidence intervals. Salmonella-specific caQTLs (clusters 2 and 3 
from panel A) are enriched for disrupting NF-kB and AP-1 TF motifs whereas IFNɣ-specific 
caQTLs (clusters 5 and 6 from panel A) are enriched for disrupting the IRF motif.  
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Supplementary Figure 8. Fine mapping the causal variant for the caQTL upstream of GP1BA. 
The -log10 p-values were calculated with RASQUAL using either n = 42 (N condition) or n = 31 
(I+S condition) independent donors. The rs4486968 variant located within the accessible region 
is predicted to disrupt NF-κB binding motif (M1928_1.02 from CIS-BP) by changing high affinity 
G (92.6% relative binding score) at position 2 to low affinity A (88.3% relative binding score). 
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Supplementary Figure 9. Quantifying the robustness of the enhancer priming analysis. (A) 
Estimating the effect of the imbalance between the number of eQTLs and caQTLs. We 
randomly sampled 5383 caQTL regions (equal to the number of unique eQTL genes) 100 times 
and redid the enhancer priming analysis using the original fold change > 1.5 threshold. (B) 
Enhancer priming analysis using a more stringent (fold change > 2) threshold. Comparison of 
our estimated rate of enhancer priming (caQTL appears before response eQTL) to a negative 
control (eQTL appears before a response caQTL). This is the same analysis as presented on 
Fig. 2c except for a more stringent fold change threshold. Across conditions, 26/52 caQTLs 
linked to response eQTLs were present in the naive condition whereas only 4/100 eQTLs 
appeared before a response caQTLs. 
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Supplementary Figure 10. We performed colocalisation between eQTLs and caQTLs using the 
same cis-window size (200 kb) and posterior probability cutoffs that were used for the GWAS 
colocalisation analysis (see Online Methods). (A) Effect sizes of eQTL-caQTL pairs in naive and 
stimulated conditions. The pairs are grouped by the condition in which the eQTL had the largest 
effect size (I, S or I+S). The heat maps are sorted by caQTL effect size in the naive condition 
(first column). Approximately 90% of the caQTLs linked to response eQTLs using colocalisation 
are present in the naive condition (fold change > 1.5). Only a single eQTL-caQTL pair in the 
IFNɣ condition shows discordant effect size direction. (B) Comparison of our estimated rate of 
enhancer priming (caQTL precedes response eQTL) to a negative control (eQTL precedes a 
response caQTL) on colocalised eQTL-caQTL pairs. 
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Supplementary Figure 11. Histogram of the distances between master and dependent caQTL 
regions. 
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Supplementary Figure 12. Two examples of condition-specific dependent peaks. (A) 
Dependent peak appears after Salmonella infection. (B) Dependent peak disappears after 
Salmonella infection. 
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Supplementary Figure 13. GARFIELD5 enrichment of eQTLs and caQTLs among GWAS 
summary statistics from 10 complex diseases. The points represent the logarithm of enrichment 
odds ratios (OR) and error bars show the 95% confidence intervals (see Supplementary Note 
for more details). The raw data underlying this figure, including the number of loci considered for 
each trait and condition pair, is presented in Supplementary Table 4. Disease acronyms: IBD, 
inflammatory bowel disease; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; AD, 
Alzheimer’s disease; SCZ, schizophrenia; T2D, type 2 diabetes; MS, multiple sclerosis; NAR, 
narcolepsy; CEL, celiac disease; T1D, type 1 diabetes.  
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Supplementary Figure 14. Robustness of the colocalisation analysis. (A) Number of GWAS 
hits colocalised with caQTLs and eQTLs in each experimental condition. (B) Number of GWAS 
hits colocalised with eQTLs in each condition in either the full Fairfax dataset (up to 414 donors) 
or a subsample of 84 individuals. (C) Cumulative number of colocalisation detected in the 
Fairfax dataset across the four conditions. The analysis was performed either on the Full 
dataset (up to 414 donors per condition) or a random subsample of 84 donors. (D) In the 
subsample analysis, 18/30 colocalisations were detected only in the stimulated conditions and 
6/18 of those ‘condition-specific’ colocalisations were detected in the unstimulated condition 
(CD14, 414 donors) in the full dataset. 
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Supplementary Figure 15. Colocalisation between a response eQTL and a GWAS hit. (A) 
IFNɣ + Salmonella specific eQTL for TRAF1 colocalised with a GWAS hit for rheumatoid arthritis 
(RA). The eQTL -log10 p-values were calculated using FastQTL (n = 84 independent donors in 
both conditions). (B) TRAF1 expression in naive and IFNɣ + Salmonella conditions stratified by 
the lead GWAS variant (n = 84 unique donors in both conditions). Box plots show the median 
(center line) and the 25th and 75th percentiles (box edges), with whiskers extending to 1.5 times 
the interquartile range. 
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Supplementary Figure 16. TRAF1 eQTL in the Fairfax dataset. (A) Association between 
TRAF1 expression and rs10985070 variant in the four conditions. Box plots show the median 
(center line) and the 25th and 75th percentiles (box edges), with whiskers extending to 1.5 times 
the interquartile range. (B) Manhattan plots of the RA GWAS signal (top panel) and TRAF1 
eQTL in the four conditions. The -log10 p-values were calculated with QTLtools using either 414 
(CD14 condition), 367 (IFN condition), 261 (LPS2 condition) or 322 (LPS24 condition) 
independent donors. 
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Supplementary Figure 17. Dissecting the Alzheimer’s disease (AD) causal variant at the 
PTK2B locus. (A) Manhattan plots for the AD GWAS hit (top panel), colocalised caQTL (second 
panel) and colocalised eQTL for PTK2B gene (third panel). The bottom two tracks show all 
ATAC-seq peaks in the region as well as exons of the PTK2B gene. (B) ATAC-seq fragment 
coverage stratified by the lead caQTL and GWAS variant rs28834970. The lead variant was the 
only associated variant lying within the regulated caQTL peak, suggesting that this is the most 
likely causal variant. The lead variant rs28834970 is T/C polymorphism and the alternative C 
allele decreases the relative binding score of the CEBPα TF motif (M1925_1.02 in CIS-BP6) 
from 0.87 to 0.84. This is consistent with the decreased chromatin accessibility at the C allele 
(middle panel) as well as decreased expression of the PTK2B gene (panel C). The variant also 
overlaps experimental CEBPβ ChIP-seq peak in primary human macrophages (bottom panel)7. 
(C) Expression of the PTK2B gene stratified by the rs28834970 genotype. The caQTL (n = 42 
independent donors) and eQTL (n = 84 independent donors) -log10 p-values were calculated 
using RASQUAL. Box plots show the median (center line) and the 25th and 75th percentiles 
(box edges), with whiskers extending to 1.5 times the interquartile range. 
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Supplementary Figure 18. Left: Histogram of the number of caQTLs associated with each 
eQTL gene (Pearson correlation R2 > 0.8 between lead variants). Right: Histogram of the 
number of eQTLs associated with each caQTL region (Pearson correlation R2 > 0.8 between 
lead variants). 
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Supplementary Figure 19. Quantile-quantile plots for the eQTL detected in the full Fairfax 
dataset and two subsets of either 84 independent donors (A) or 42 independent donors (B). The 
full dataset consisted of either 414 (CD14 condition), 367 (IFN condition), 261 (LPS2 condition) 
or 322 (LPS24 condition) independent donors. Each point represents the p-value of the lead 
eQTL variant for each gene. The -log10 p-values were calculated with QTLtools. The p-values 
have been adjusted with eigenMT4 to account for multiple variants tested per gene.  
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Supplementary Tables 
Supplementary Table 1. Metadata for all iPSC to macrophage differentiation attempts. 
 
Supplementary Table 2. Estimating the fraction of eQTL that are likely to be false positives due 
to small sample size. The eQTL mapping was performed with QTLtools (see Supplementary 
Note). 

Discovery 
sample size 

Replication 
sample size 

Condition Fraction of discovery genes 
significant in replication 

42 228 
 

CD14 0.94 

IFN 0.94 

LPS2 0.93 

LPS24 0.94 

84 228 CD14 0.93 

IFN 0.93 

LPS2 0.91 

LPS24 0.93 

 
Supplementary Table 3. Estimating the fraction of response eQTLs that are likely to be false 
positives due to small sample size. The eQTL mapping was performed with QTLtools and 
response eQTLs were identified using a linear model interaction test implemented in R (see 
Supplementary Note). 

Discovery sample 
size 

Replication sample 
size 

Fraction of discovery genes 
significant in replication 

42 228 0.825 

84 228 0.934 

 
Supplementary Table 4. Enrichment of caQTLs and eQTLs among GWAS hits. GARFIELD 
was used to calculate fold enrichments and p-values for 10 different GWAS traits. 
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Supplementary Table 5. Colocalisation between eQTLs and GWAS associations. The coloc 
package was used to test for colocalisation between GWAS summary statistics for ten immune-
mediated traits and eQTLs identified in all four conditions (n = 84 independent donors). 
 
Supplementary Table 6. Colocalisation between caQTLs and GWAS associations. The coloc 
package was used to test for colocalisation between GWAS summary statistics for ten immune-
mediated traits and caQTLs identified in all four conditions. The number of independent donors 
in the ATAC-seq data was n = 42 (N condition), n = 41 (I condition) and n = 31 (S and I+S 
conditions). 
 
Supplementary Table 7. Metadata for the RNA-seq samples. 
 
Supplementary Table 8. Metadata for the ATAC-seq samples. 
 
Supplementary Table 9. List of published software packages used in this study. 

Name Website 

bedtools (v2.17.0)8 http://bedtools.readthedocs.io/ 

BWA (v0.7.12)9 http://bio-bwa.sourceforge.net/ 

skewer (v0.1.127)10  https://github.com/relipmoc/skewer 

MACS2 (v2.1.0)11 https://github.com/taoliu/MACS 

Mfuzz (v.2.28)12 http://bioconductor.org/packages/Mfuzz/ 

coloc (v2.3-1)13 https://github.com/chr1swallace/coloc 

TFBSTools (v1.10.4) 14 http://bioconductor.org/packages/TFBSTools/ 

RASQUAL15 https://github.com/dg13/rasqual 

FastQTL16 http://fastqtl.sourceforge.net/ 

ASEReadCounter17 https://software.broadinstitute.org/gatk/ 

limma voom (v3.26.3)18 https://bioconductor.org/packages/limma/ 
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DESeq2 (v1.10.0)19 https://bioconductor.org/packages/DESeq2/ 

FIMO20 http://tools.genouest.org/tools/meme/ 

bcftools http://www.htslib.org/ 

SNPRelate21 https://bioconductor.org/packages/SNPRelate/ 

samtools22 http://www.htslib.org/ 

verifyBamID (v1.1.2)23 http://genome.sph.umich.edu/wiki/VerifyBamID 

PEER24 https://github.com/PMBio/peer 

STAR (v2.4.0j)25 https://github.com/alexdobin/STAR 

cqn26 http://bioconductor.org/packages/cqn/ 

GARFIELD5 http://www.ebi.ac.uk/birney-srv/GARFIELD/ 

GAT27 http://gat.readthedocs.io/ 

Picard https://broadinstitute.github.io/picard/ 

eigenMT4 http://joed3.github.io/eigenMT/ 

CrossMap (v0.1.8)28 http://crossmap.sourceforge.net/ 

featureCounts (v.1.5.0)29 http://subread.sourceforge.net/ 

LiftOver http://genome.sph.umich.edu/wiki/LiftOver 

ggplot230 http://ggplot2.org/ 

wiggleplotr31 https://bioconductor.org/packages/wiggleplotr/ 

lme432 https://github.com/lme4/lme4/ 

QTLtools33 https://qtltools.github.io/qtltools/ 
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aFC34 https://github.com/secastel/aFC 
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Cell culture 

Feeder-free iPSC culture 
Feeder-free iPSCs were grown on tissue culture treated plates coated with vitronectin (VTN-N) 
(Gibco, cat. no. A14700) in Essential 8 (E8) medium (Gibco). The cells were dissociated from 
the plates using Gentle Cell Dissociation Buffer (Stemcell Technologies, cat. no. 07174) and 
passaged every 3-5 days. Prior to macrophage differentiation, the feeder-free iPSCs were first 
transferred to feeder-dependent media and propagated for at least two passages. This step was 
necessary because multiple attempts to differentiate macrophage directly from feeder-free 
iPSCs with our protocol failed. 
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Feeder-dependent iPSC culture   
Feeder-dependent iPSCs were grown on irradiated CF-1 mouse embryonic fibroblast (MEF) 
feeder cells (AMS Biotechnology) in Advanced DMEM-F12 (Gibco) supplemented with 20% 
Knock-Out Serum Replacement (KSR) (Gibco), 2mM L-glutamine (Sigma), 50 IU/ml penicillin 
(Sigma), 50 IU/ml Streptomycin (Sigma) and 50µM β-Mercaptoethanol (Sigma M6250). The 
media was supplemented with 4 ng/ml recombinant human fibroblast growth factor (rhFGF) 
basic (R&D, 233-FB-025) to maintain pluripotency and was changed daily. MEFs were seeded 
on 0.1% gelatine-coated tissue-culture treated plates (Corning 6-well or 10 cm plates) 24 hours 
prior to passaging iPSCs at a cell density of 2 million cells/6-well or 10-cm plate in Advanced 
DMEM-F12 supplemented with 10% FBS (labtech), 2mM L-glutamine (Sigma), 50 IU/ml 
Penicillin and 50 IU/ml Streptomycin (Sigma). Prior to passaging or embryoid body formation, 
iPSCs were dissociated from the plates using 1:1 mixture of collagenase (1 mg/ml) and dispase 
(1 mg/ml) (both Gibco). 

Macrophage differentiation protocol 
iPSCs were differentiated into macrophages using a previously published protocol35 involving 3 
stages: i) embryoid body (EB) formation, ii) generation of monocyte-like myeloid progenitors 
from the EBs and iii) terminal differentiation of the progenitors into macrophages. For EB 
formation, iPSC colonies were treated with 1:1 mixture of collagenase (1 mg/ml) and dispase (1 
mg/ml) and intact colonies were transferred to low-adherence plates (Sterilin). The colonies 
were cultured in feeder-dependent iPSC medium without rhFGF for 3 days. On day 3, the EBs 
were harvested and transferred to gelatinised tissue-culture treated 10 cm plates in serum-free 
haematopoietic medium (Lonza X-VIVO 15), supplemented with 2 mM L-glutamine (Sigma), 50 
IU/ml penicillin, 50 IU/ml streptomycin (Sigma), 50 µM β-Mercaptoethanol (Sigma M6250), 50 
ng/ml macrophage colony stimulating factor (M-CSF) (R&D) and 25 ng/ml interleukin-3 (IL-3) 
(R&D). EBs were maintained in these plates with media changes every 3-5 days for 4-6 weeks 
until the progenitor cells appeared in the supernatant. Progenitor cells were harvested from the 
supernatant, filtered through a 40µm cell strainer (BD 352340), centrifuged at 1200 rpm for 5 
minutes, counted, and plated in RPMI 1640 (Gibco) supplemented with 10% FBS (labtech), 
2mM L-glutamine (Sigma) and 100 ng/ml hM-CSF (R&D) at a cell density of 150,000 cells per 
well on a 6-well plate and differentiated for another 7 days. 

Salmonella infection and IFNɣ stimulation 
Two wells of a 6-well plate were used per condition to ensure sufficient amount of RNA. On day 
6 of macrophage differentiation, medium was changed for all wells with half of the wells 
receiving macrophage differentiation media (with M-CSF) and the other half of the cells 
receiving macrophage differentiation media supplemented with 20 ng/ml IFNɣ (R&D) and M-
CSF. After 18 hours, cells from two wells of the naive and IFNɣ conditions were harvested for 
RNA extraction. The remaining two wells from each condition were additionally infected with 
Salmonella enterica serovar Typhimurium SL1344 (hereafter Salmonella) for 5 hours.  
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Two days before infection, Salmonella culture was inoculated in 10 ml low salt LB broth and 
incubated overnight in a shaking incubator (200 rpm) at 37°C. Next morning, the culture was 
diluted 1:100 into 10 ml of fresh LB broth and incubated again in a shaking incubator. In the 
afternoon the culture was diluted once more 1:100 into 45 ml of LB broth and kept overnight in a 
static incubator. In the morning before infection, the culture was centrifuged at 4000 rpm for 10 
minutes, washed once with 4°C PBS and resuspended in 30 ml of PBS. Subsequently, optical 
density at 600 nm was measured and Salmonella was diluted in macrophage differentiation 
media (without MCSF) at multiplicity of infection (MOI) 10 assuming 300,000 cells per well. To 
infect the cells, old media was removed and replaced with 1 ml of media containing Salmonella 
for 45 minutes. Subsequently, the cells were washed twice with PBS and replaced in fresh 
medium with 50 ng/ml gentamicin (Sigma) to kill extracellular bacteria. After 45 minutes the 
medium was changed once again to fresh medium containing 10 ng/ml gentamicin. 
 
For RNA extraction, cells were washed once with PBS and lysed in 300 ul of RLT buffer 
(Qiagen) per one well of a 6-well plate. Lysates from two wells were immediately pooled and 
stored at -80°C. RNA was extracted using RNA Mini Kit (Qiagen) following manufacturer’s 
instructions and eluted in 35 µl nuclease-free water. RNA concentration was measured using 
NanoDrop and RNA integrity was measured on Agilent 2100 Bioanalyzer using RNA 6000 Nano 
total RNA kit. 

Data acquisition 

RNA-seq 
All of the RNA-seq libraries were constructed using poly-A selection. The first 120 RNA-seq 
libraries from 30 donors were constructed manually using the Illumina TruSeq stranded library 
preparation kit. The TruSeq libraries were quantified using Bioanalyzer and manually pooled for 
sequencing. For the remaining 216 samples, we used an automated library construction 
protocol that was based on the KAPA stranded mRNA-seq kit. The KAPA libraries were 
quantified using Quant-iT plate reader and pooled automatically using the Beckman Coulter NX-
8. The first 16 samples were sequenced on Illumina HiSeq 2500 using V3 chemistry and 
multiplexed at 4 samples/lane. All of the other samples were sequenced on Illumina HiSeq 2000 
using V4 chemistry and multiplexed at 6 samples/lane. All four RNA samples from a single 
donor were sequenced in the same sequencing batch. Sample metadata is presented in 
Supplementary Table 7. 

ATAC-seq 
We used an adapted version of the original ATAC-seq protocol36. Approximately 150,000 cells 
were seeded into 1 well of a 6-well plate and treated identically to the RNA-seq samples. After 
stimulation, cells were washed once with ice-cold Dulbecco’s phosphate buffered saline without 
calcium and magnesium and incubated for 12 minutes on ice in 500 µl freshly-made sucrose 
buffer (10 mM Tris-Cl pH 7.5, 3 mM CaCl2, 2mM MgCl2, 0.32 M sucrose). After 12 minutes, 25 
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µl of 10% Triton-X-100 (final concentration 0.5%) was added and the cells were incubated for 
another 6 minutes to release the nuclei. The lysate was transferred to 1.5 mL microfuge tube, 
vortexed briefly, and centrifuged at 300 g for 8 minutes at 4°C. All traces of the sucrose lysis 
buffer were removed before immediately resuspending the nuclei pellet in 50 µL of Nextera 
tagmentation master mix (Illumina FC-121-1030), comprising 25 µL 2x Tagment DNA buffer, 20 
µL nuclease-free water and 5 µL Tagment DNA Enzyme 1. The tagmentation reaction mixture 
was immediately transferred to a 1.5 mL low adherence microfuge tube and incubated at 37°C 
for 30 minutes. The tagmentation reaction was stopped by the addition of 250 µL Buffer PB 
(Qiagen) and PCR was performed as described previously15. The tagmented chromatin was 
then purified using the MinElute PCR purification kit (Qiagen 28004), according to the 
manufacturer’s instructions, eluting in 10 µL of buffer EB (Qiagen). Finally, size selection was 
performed using agarose gel and SPRI beads15. Five samples were pooled per lane and 75 bp 
paired end reads were sequenced on Illumina HiSeq 2000 using the V4 chemistry.  

Flow cytometry 
We used flow cytometry to measure the cell surface expression of three canonical macrophage 
markers: CD14, CD16 (FCGR3A/FCGR3B) and CD206 (MRC1). Macrophages were cultured in 
10 cm tissue-culture treated plates and detached from the plates by incubation in 6 mg/ml 
lidocaine-PBS solution (Sigma L5647) for 30 minutes followed by gentle scraping. From each 
cell line we harvested between 300,000-500,000 cells. Detached cells were washed in media, 
centrifuged at 1200 rpm for 5 minutes and resuspended in flow cytometry buffer (2% BSA, 
0.001% EDTA in D-PBS) and split into two wells of a 96-well plate. Nonspecific antibody binding 
sites were blocked by incubating cells with Human TruStain FcX (Biolegend) for 45 minutes and 
washing with flow cytometry buffer. Half of the cells were stained for 1 hour with the PE-isotype 
control (BD 555749) antibody. The other half of the cells were co-stained for 1 hour with 
following three antibodies: CD14-Pacific Blue (BD 558121), CD16-PE (BD 555407), CD206-
APC (BD 550889). After staining, the cells were washed three times. Resuspended cells were 
filtered through cell-strainer cap tubes (BD 352235) and measured on the BD LSRFortessa Cell 
Analyzer. 

Differential gene expression and chromatin 
accessibility  

Differential gene expression 
We included 15,797 genes whose mean expression in at least one of the conditions was greater 
than 0.5 TPM into our differential expression analysis. For each gene, we used likelihood ratio 
test implemented in DESeq219 v1.10.0 (test = “LRT”) to test if a model that allowed different 
mean expression in each condition explained the data better than a null model assuming the 
same mean expression across conditions. Overall, 8758 genes with Benjamini-Hochberg FDR < 
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1% and fold change between naive and any one of the stimulated conditions greater than 2 
were identified as differentially expressed.  
 
To identify differentially expressed genes with specific expression patterns, we calculated mean 
quantile-normalised expression level in each condition and standardised the mean expression 
values across conditions to have zero mean and unit variance. Subsequently, we used c-means 
fuzzy clustering implemented in MFuzz v.2.2812 package with parameters ‘c = 9, m = 1.5, iter = 
1000’ to assign the genes into 9 clusters. The number of clusters was chosen iteratively by 
trialing different numbers and observing which ones led to stable clustering results from 
independent runs. We ranked the genes in each cluster by their fold change between naive and 
highest expression conditions and used g:Profiler1 R package with ‘max_set_size = 3000, 
ordered_query = TRUE, exclude_iea = TRUE’ options to identify pathways and Gene Ontology 
(GO) categories enriched in each cluster. 

Differentially chromatin accessibility 
We used limma voom v3.26.318 with TMM normalisation to identify 63,430 regions that were 
more than 4-fold differentially accessible (FDR < 0.01) between naive and any one of the 
stimulated conditions. We only included high quality samples from 16 independent donors (64 
samples) (Supplementary Table 8) in the analysis, because we noticed that limma voom was 
sensitive to additional noise in the lower quality samples. Subsequently, we quantile-normalised 
the region accessibility data using cqn26, calculated the mean accessibility of each region in 
each condition and used Mfuzz v.2.2812 to cluster the regions into seven distinct activity 
patterns. 

Motif enrichment 
We downloaded the CIS-BP6 human TF motif database from the MEME website and used 
FIMO20 to identify the occurrences of all TF motifs within the ATAC consensus peaks with FIMO 
threshold p-value < 10-5. We also performed the same motif scan for 2 kb promoter sequences 
upstream of 21,350 human genes (downloaded from the PWMEnrich37 R package) and used 
this as the background set. We used Fisher’s exact test to identify motifs that occurred 
significantly more often in macrophage open chromatin regions compared to the background 
promoter sequences. Because the CIS-BP database contains many redundant motifs, we 
manually selected 21 representative motifs for downstream analysis corresponding to the major 
TFs important in macrophage biology: AP-1, IRF-family, ETS-family (PU.1, ELF1, FLI1), NF-κB, 
CEBPα, CEBPβ, ATF4, CTCF, STAT1, MAFB, MEF2A and USF1. We used Fisher’s exact test 
to identify motifs that were specifically enriched in each cluster of differentially accessible peaks 
compared to the background of all macrophage ATAC-seq peaks. 

ChIP-seq data analysis 
Human macrophage PU.1 ChIP-seq data38 (75 bp single-end reads) and C/EBPβ ChIP-seq 
data7 (50 bp paired-end reads) were downloaded from GEO (accessions GSE66594 and 
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GSE54975, respectively). Macrophage H3K27ac ChIP-seq data39 (50bp single-end reads) was 
also downloaded from GEO (GSE43036). Single-end datasets were aligned to the GRCh38 
reference genome using bwa aln v0.7.129 and paired-end dataset was aligned to the same 
reference using bwa mem v0.7.12 with the -M flag set. For the paired-end dataset, only properly 
paired reads were used for downstream analysis. Duplicate reads were removed with Picard 
v1.134 MarkDuplicates with the ‘REMOVE_DUPLICATES=true’ parameter set. We used 
bedtools v2.17.08 to construct genome-wide read (single-end) or fragment (paired-end) 
coverage tracks in BigWig format. For the PU.1 and C/EBPβ data we used MACS2 v2.1.0 with ‘-
q 0.01’ option to call narrow peaks. For the H3K27Ac we used MACS2 to call both broad and 
narrow peaks at 1% FDR. We first removed broad peaks that were detected in only one 
biological replicate or did not overlap any narrow peaks in the same condition. We then defined 
the union of broad peaks identified in each condition as the consensus set of H3K27ac peaks 
that we used in downstream analysis. 

Characterisation of QTLs 

Sharing of QTL lead variants between conditions  
To quantify how often QTL lead variants were shared between two conditions (e.g. A and B), we 
first identified all features (genes or peaks) with the nominal p-value of the lead variant < 10-6 in 
condition A. Next, for each feature, we took the lead variant in condition B and counted how 
often were the two lead variants in high LD with each other (R2 > 0.8). We did not impose any p-
value threshold for the lead variant in condition B, reasoning that if there is no association in 
condition B then the lead variant is picked randomly and is therefore unlikely to be in high LD 
with the lead variant in condition A. 

Allele-specific binding at caQTL regions 
We used the published PU.1 and C/EBPβ ChIP-seq data described above to quantify the extent 
of allele-specific binding of these two factors at caQTL regions. We used ASEReadCounter17 
together with the same VCF file that was used in the rest of the analysis to count the number of 
reads overlapping each allele. Since genotype data was not available for the ChIP-seq samples, 
it was not possible to distinguish extreme allele-specific binding from homozygous sites. Thus, 
we restricted our analysis to variants that overlapped at least ten reads in the ChIP-seq dataset, 
of which at least two supported the allele with lower binding affinity. To calculate correlation with 
caQTL effect size (π) estimated by RASQUAL (Supplementary Fig. 5), we further limited the 
analysis to credible set variants that lied within the regulated accessible region. 

caQTL overlap with annotated promoters and enhancers 
To estimate the overlap with promoters, we counted the number of caQTL regions that were 
within 500 bp from an annotated transcription start site for either a protein coding gene or a 
lincRNA in Ensembl 79. To estimate the overlap with putative enhancer elements, we counted 
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the number of caQTL regions that overlapped the consensus set of macrophage H3K27ac 
peaks defined above. 

caQTL overlap with topologically associated domains 
Since we were not aware of a Hi-C dataset from human macrophages, we used annotated 
topologically associated domains (TADs) from the GM12878 lymphoblastoid cell line40 as a 
proxy to test if master-dependent region pairs were more likely to occur within the same TAD 
than random pairs of regions. First, we obtained the list of chromatin loops identified by Hi-C 
from GEO (GSE63525_GM12878_primary+replicate_HiCCUPS_looplist.txt file in GSE63525 
experiment). We then counted how often at least one loop endpoint was located between 
master and dependent region pairs, suggesting that a given pair might span two different TADs. 
We repeated this analysis for randomly selected pairs of accessible chromatin regions that were 
matched by distance to each other. We found that that true master-dependent pairs were less 
likely to span multiple TADs compared to random pairs (7.7% (156/2023) vs 11.5% (543/4688), 
Fisher’s exact test p = 1.26x10-6). 

Overlap with genome-wide association studies 

Data preprocessing 
We obtained full summary statistics for ten immune-mediated disorders: inflammatory bowel 
disease (IBD) including ulcerative colitis (UC) and Crohn’s disease (CD)41, Alzheimer’s disease 
(AD)42, rheumatoid arthritis (RA)43, systemic lupus erythematosus (SLE)44, type 1 diabetes 
(T1D)45, schizophrenia (SCZ)46, multiple sclerosis (MS)47, celiac disease (CEL)48 and narcolepsy 
(NAR)49. In addition, we used summary statistics from type 2 diabetes (T2D)50 as a negative 
control for a trait that should not be specifically enriched in macrophages. Summary statistics for 
T1D, CEL, IBD, RA, AD, MS and SLE were downloaded in 2015. SCZ, T2D and NAR were 
downloaded in 2016. T2D summary statistics were converted from GRCh36 to GRCh37 
coordinates using the LiftOver tool, all of the other summary statistics already used GRCh37 
coordinates. 
 
Summary statistics for Alzheimer’s disease were downloaded from International Genomics of 
Alzheimer's Project (IGAP)42. IGAP is a large two-stage study based upon genome-wide 
association studies (GWAS) on individuals of European ancestry. In stage 1, IGAP used 
genotyped and imputed data on 7,055,881 single nucleotide polymorphisms (SNPs) to meta-
analyse four previously-published GWAS datasets consisting of 17,008 Alzheimer's disease 
cases and 37,154 controls (The European Alzheimer's disease Initiative – EADI the Alzheimer 
Disease Genetics Consortium – ADGC The Cohorts for Heart and Aging Research in Genomic 
Epidemiology consortium – CHARGE The Genetic and Environmental Risk in AD consortium – 
GERAD). In stage 2, 11,632 SNPs were genotyped and tested for association in an 
independent set of 8,572 Alzheimer's disease cases and 11,312 controls. Finally, a meta-
analysis was performed combining results from stages 1 & 2. 
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Enrichment analysis 
In each of the four conditions, we took all variants that were associated with either gene 
expression or chromatin accessibility with nominal p-value < 10-5 and used that set of variants 
as a custom annotation track. We then used GARFIELD5 to test if these variants were 
collectivity enriched for GWAS hits for the ten traits described above. We excluded the MHC 
region (GRCh37: 6:20,000,000-40,000,000) from the GWAS summary statistics prior to 
enrichment testing, because this region was found to significantly inflate estimates of fold 
enrichment. We reported fold enrichment at 10-5 GWAS significance threshold (Supplementary 
Fig. 13, Supplementary Table 4). 

Analysis of the Fairfax dataset 
We obtained processed microarray gene expression data from the Fairfax study51 from 
ArrayExpress (E-MTAB-2232). In the Fairfax dataset the gene expression of primary human 
monocytes was profiled in four conditions (naive, n = 414; 24 hours IFNɣ stimulation, n = 367; 2 
hours LPS stimulation, n = 261; 24 hours LPS stimulation, n = 322). Data from all four 
conditions were available for 228 individuals. Out of the 47,231 probes in the dataset, we 
retained 26,543 probes that mapped uniquely to 17,755 genes in Ensembl Release 89. We then 
obtained the GRCh37 start and end coordinates for those genes from Ensembl 74 for eQTL 
analysis. 
 
The raw genotype data were downloaded from the EGA (EGAS00000000109) and 
subsequently imputed using the Sanger Imputation Service (https://imputation.sanger.ac.uk/) 
with Human Reference Consortium v1.1 reference panel. We used 5,368,367 variants with 
minor allele frequency >= 0.05, INFO score >= 0.4 and Hardy-Weinberg equilibrium chi-square 
p-value > 1x10-6 for downstream eQTL and colocalisation analyses.  

eQTL mapping 
We used QTLtools33 with the ‘--grp-best’ and ‘--permute 10000’ options to identify gene level 
eQTLs in the +/-500 kb region around each gene and used Benjamini-Hochberg correction to 
identify all significant QTLs at the 10% FDR level. We performed eQTL mapping in each 
condition of the full dataset (up to 414 samples per condition) as well as three different subsets 
of the data: (i) 228 donors profiled in all four conditions, (ii) a random sample of 84 donors 
profiled in all four conditions and (iii) a random sample of 42 donors profiled in all four 
conditions. The quantile-quantile plots of the association p-values are shown on Supplementary 
Fig. 19. Finally, we used the aFC34 package to estimate the allelic fold change of each lead 
eQTL variant in each condition. 
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Estimating the fraction of false positive eQTLs 
To test if the relatively small sample size in our study could lead to inflated rate of false 
positives, we first identified eQTLs in two small subsamples (n = 42 and n = 84 independent 
donors) and then asked what fraction of those eQTLs remained significant when we considered 
the full dataset of 228 shared individuals. We found that consistent with our 10% FDR, over 
90% of the eQTLs detected in the small subsamples remained significant in the full dataset 
(Supplementary Table 2).  
 
Next, we performed the same analysis for response eQTLs. We used identical linear mixed 
model with first six principal components as covariates that we used for the primary eQTL 
analysis. We found that 93% of the response eQTLs that were detected with 84 individuals were 
also detected in the full data set of 228 individuals (Supplementary Table 3). The rate of 
replication was a bit lower for the smaller subsample consisting of 42 individuals (83%). Thus, 
false positives caused by small sample size do not seem to seem to be a significant concern in 
our analysis.  

Quantifying the impact of false negative colocalisations 
We sought to estimate the proportion of condition-specific colocalisations that were missed in 
the naive cells due to low power (false negatives). For this purpose, we performed colocalisation 
analysis with the 84 donors in four conditions. We identified a total of 30 overlaps with GWAS, 
18 of which were not detected in the naive condition. We then performed the same 
colocalisation analysis on the full naive dataset (414 individuals, 5-fold larger) and found that 
6/18 colocalisations were now detected in the naive state (Supplementary Fig. 14).  
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