Contents:	Р#
Figure S1. Structures of representative examples of HDAC PRPs reported in the literature	S2
Table S1. In silico physicochemical properties of PRPs in comparison to their parent HDACi.	S3
Scheme S1. Synthesis of the TFPA control 16.	S4
Scheme S2. Synthesis of tag-free competitor S20.	S4
Scheme S3. Optimization of synthetic strategy.	S 5
Figure S2. Representative Dose-response curves for TFPA HDAC PRPs and their parent HDACi	S6
Table S2. Percentage inhibition of recombinant HDAC4 for PRPs and their parent compounds	S7
Figure S3. Densitometric analysis of HDAC2 and HDAC3 photolabeling in SET-2 cells.	S8
Figure S4. Densitometric analysis of HDAC photolabeling in HepG2, HuH7 and HEK293T cells.	S 9
Figure S5. Concentration dependent labeling with PRPs 14, 13 and 9 in live SET-2 cells	S10
Figure S6. Concentration dependent labeling with PRPs 15, 12 and 11 in live SET-2 cells	S11
Figure S7. Competition of PRP 8 with S20 compared to SAHA 1 in rHDAC1 and live SET-2 cells.	S12
Figure S8. Western blot analysis of HDAC1,2,3 and 8 in SET-2, HepG2, HuH7 and HEK293T cells.	S13
Figure S9. Densitometric analysis of HDAC1-3 and 8 photolabeling in mouse liver tissue.	S14
Molecular Modeling Procedure	S15
Synthesis Procedure and Compounds Characterization	S16
Supplementary References	S66

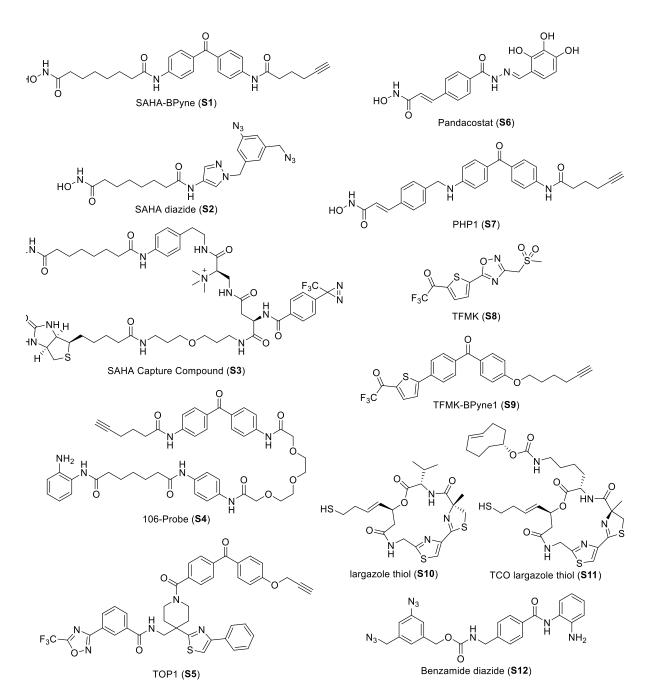


Figure S1. Structures of representative examples of HDAC PRPs reported in the literature

Table S1. In silico phys	icochemical properties of PF	RPs in comparison to their	r parent HDACi calculated in MOE.
--------------------------	------------------------------	----------------------------	-----------------------------------

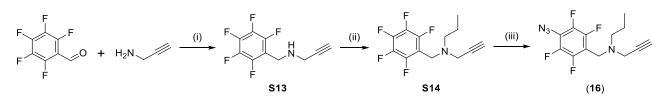
Compound name (#) ^{[Ref]a}	M.W. ^b	TPSA ^c	ASA H ^d	SlogP ^e	logSi	MR ^g	Drug-	Lipiniski
	IVI.VV.~	IP3A°	АЗА_п°	SlogP	logS ^f	MK ⁹	like ^h	violation ⁱ
SAHA (1)	264.3	78.4	379	2.5	-2.9	7.5	1	0
PRP 8	387.3	77.3	404	4.0	-4.1	9.1	1	0
PRP 9	534.5	106.4	561	6.1	-6.8	13.5	0	2
SAHA-BPyne (S1) ¹	477.6	124.6	629	4.4	-6.3	13.6	1	0
SAHA-diazide (S2) ²	440.5	145.7	394	5.0	-3.3	11.6	0	2
SAHA-capture compound (S3) ³	1104.3	299.0	883	3.8	-8.8	28.5	0	3
PDA-106 (6)	339.4	84.2	508	4.1	-4.5	10.1	1	0
PRP 14	609.6	112.2	677	7.9	-8.4	16.1	0	2
106-PRP (S4) ⁴	847.0	216.3	1050	6.8	-10.3	23.8	0	4
TMP-269 (7)	514.5	90.1	515	5.7	-7.8	13.2	0	2
PRP 15	541.4	96.0	459	5.7	-8.3	12.0	0	2
TOP1 (S5)⁵	775.8	127.5	808	8.0	-12.5	20.9	0	2
Panobinostat (2)	349.4	77.2	459	3.6	-4.1	10.4	1	0
PRP 10	433.4	77.3	437	4.9	-5.9	10.6	1	0
Pandacostat (S6)	357.3	151.5	302	1.1	-3.0	9.2	1	1
PHP1 (S7) ⁵	481.6	107.5	634	5.1	-7.0	14.1	1	1
PCI-34051 (4)	296.3	63.5	354	3.1	-3.4	8.5	1	0
PRP 12	460.4	82.2	420	4.9	-5.6	11.2	1	0
TFMK (S8)	340.3	90.1	234	2.4	-4.4	7.0	1	0
TFMK-BPyne (S9)⁵	456.5	43.4	546	6.6	-8.6	12.1	1	1
Largazole-thiol (S10)	496.7	148.6	468	2.6	-5.0	13.1	1	0
TCO largazole thiol (S11) ⁶	677.9	186.9	602	4.7	-6.5	18.2	0	2
Entinostat (5)	376.4	177	513	3.9	-3.8	10.7	1	0
PRP 13	547.6	333	515	6.2	-7.0	12.3	1	1
Benzamide-diazide (S12)	482.4	209	560	8.2	-7.8	15.4	0	3
Givinostat (3)	421.5	77	377	4.5	-5.4	9.7	1	1
PRP 11	407.3	91	496	5.1	-5.9	12.1	1	0

^aCompound numbers: corresponding to structures in Figures 1 & 2 of the manuscript, and PRPs from previous studies shown in Figure S1 below, rows of parent HDACi are highlighted in grey.

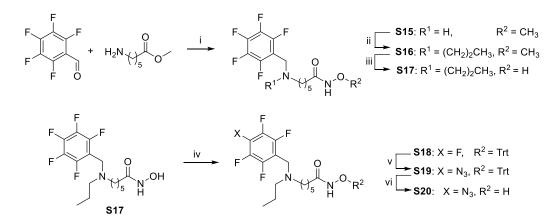
^bM.W.: Molecular weight

^cTPSA: Topological Polar surface area (Å²)

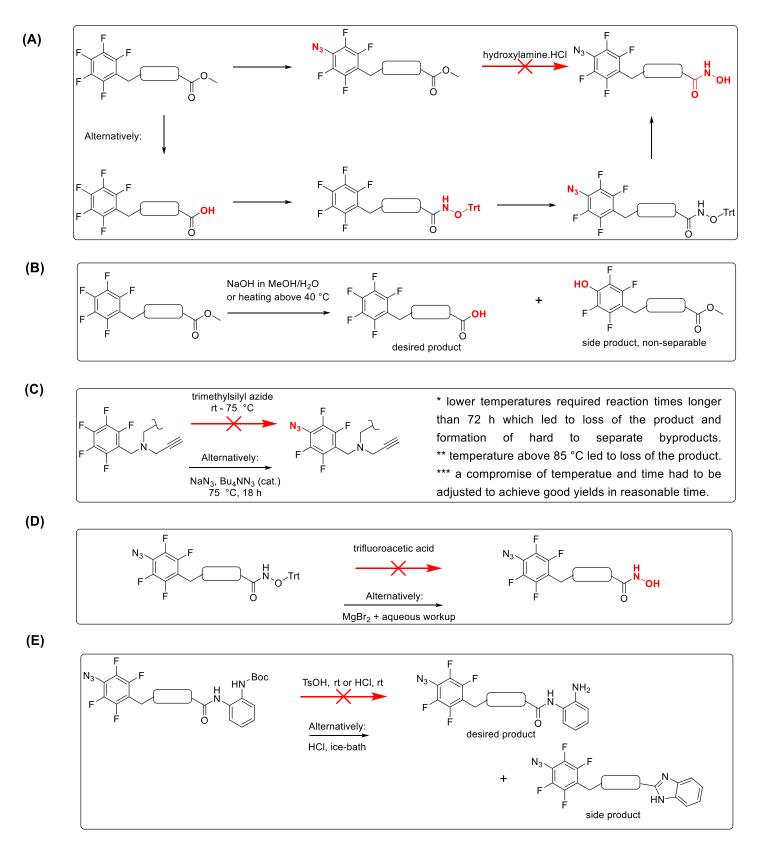
^{*d}*ASA_H: water accessible surface area of all hydrophobic atoms (Å²)</sup>


eSlogP: Log of the octanol/water partition coefficient (including implicit hydrogens).

¹logS: Log of the aqueous solubility (mol/L).


^gMR: Molecular refractivity (including implicit hydrogens).

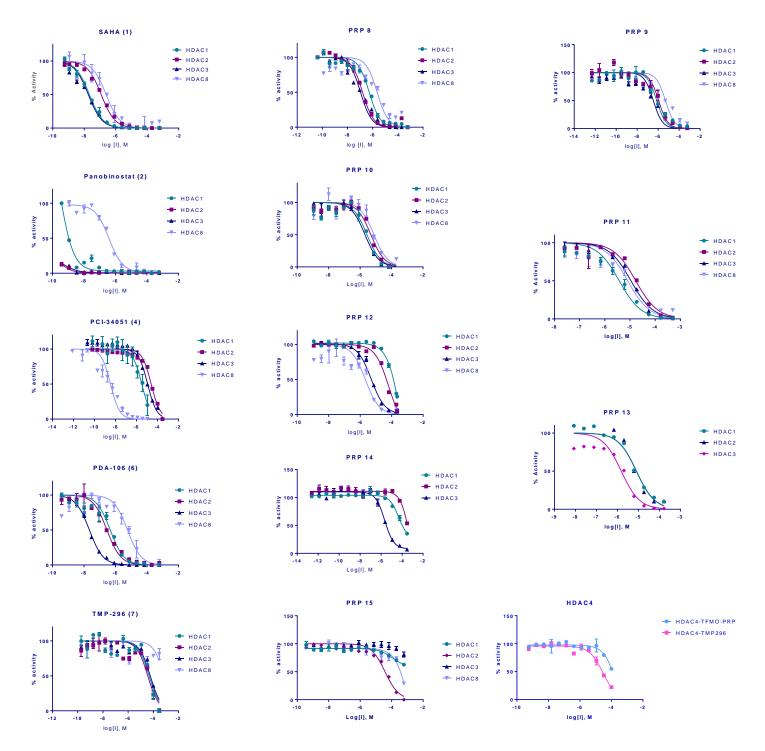
^hDrug-like: Lipiniski drug-likeness test, 1 for pass (<2 in violation of lipiniski).

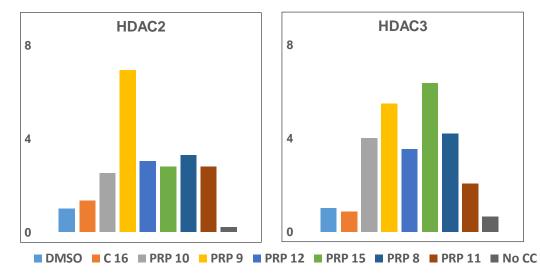

Lipiniski violation: The number of violations of Lipinski's Rule of Five.

Scheme S1. Synthesis of the TFPA control **16**. Reagents and Conditions: (i) a. DCM,18 h, b. NaBH₄, CH₃OH, 0 °C-rt, (ii) propyl bromide, K₂CO₃, CH₃CN, reflux, 20 h; (iii) NaN₃, Bu₄NN₃, DMF, 80 °C, 18 h.

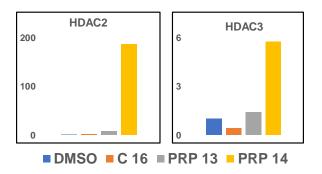
Scheme S2. Synthesis of tag-free competitor **S20**. Reagents and conditions: (i) NaBH₄, CH₃OH, 0 °C \rightarrow rt, 24 h (ii) propyl bromide, CH₃CN, K₂CO₃, 12 h; (iii) LiOH, THF/H₂O (1:1), 18 h; (iv) *O*-tritylhydroxylamine, EDC•HCl, HOBt, DMAP, Et₃N, CHCl₃, 18 h; (v) NaN₃, Bu₄NN₃, DMF, 75 °C, 18 h; (vi) MgBr₂, DCM, 30 min.

Scheme S3. Optimization of synthetic strategy.




Figure S2. Representative Dose-response curves for TFPA HDAC PRPs (8-15) and their parent HDACi (1, 2, 4, 6, and 7). Data points represent the mean of inhibition at each concentration from at least two duplicate data sets. HDAC pIC_{50} values were calculated by fitting the data using non-linear regression dose-response curve variable slope (four parameters).

Compound SAHA (1)	HDAC4% inhibition ± SD						
	10 µM			100 µM			
	33	±	3.8	77	±	0.5	
8	46	±	0.9	92	±	0.12	
9	7	±	2.5	18	±	0.7	
Panobinostat (2)	27	±	6.6	83	±	18.5	
10	6	±	1.5	19	±	0.0	
PDA-106 (6)	8	±	0.9	9	±	5.9	
14	9	±	3.5	12	±	4.7	
PCI-34051(4)	ND [*]				ND		
12	5	±	3.1	ND			


Table S2 Percentage inhibition of recombinant HDAC4 for PRPs and their parent compounds

*ND; not determined.


(a) SET-2

(b) SET-2

Figure S3 Densitometric analysis of HDAC2 and HDAC3 photolabeling in SET-2 cells by (a) PRPs **9-12** and **15** (Figure 4a, manuscript) and (b) PRPs **13** and **14** (Figure 4b, manuscript). Photolabeling signal (800 nm) was normalized to the antibody signal (700 nm) of corresponding isoform and GAPDH and calculated as a fold change relative to DMSO signal.

Figure S4 Densitometric analysis of HDAC photolabeling in (a) HepG2 cells (Figure 5a, manuscript), (b) HuH7 cells (Figure 5b, manuscript) and (c) HEK293T cells (Figure 5c, manuscript) by PRPs **9** and **14**. HDAC1 analysis was only done in HEK293T cells where a labeling band for HDAC1 was detected. Photolabeling signal (800 nm) was normalized to the antibody signal (700 nm) of corresponding isoform and GAPDH and calculated as a fold change relative to DMSO signal.

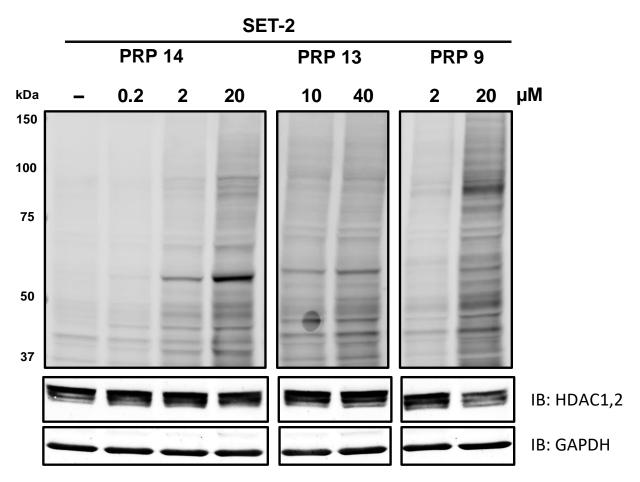


Figure S5. Concentration dependent labeling with PRPs 14, 13 and 9 in live SET-2 cells.

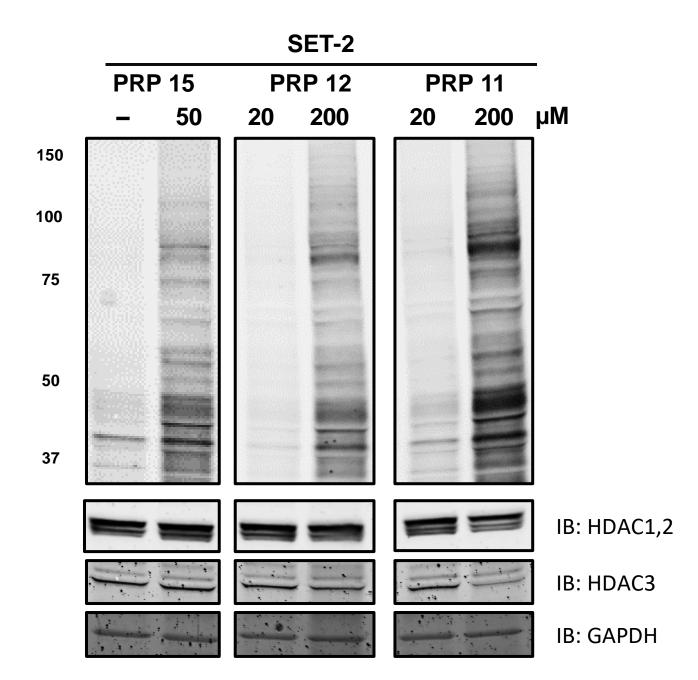


Figure S6. Concentration dependent labeling with PRPs 15, 12 and 11 in live SET-2 cells.

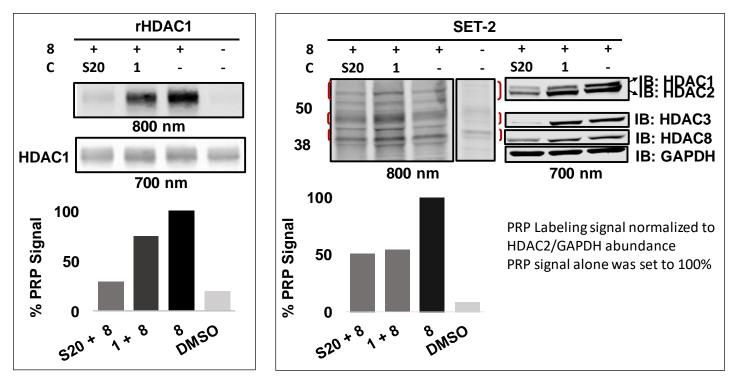


Figure S7. Competition of PRP 8 with S20 compared to SAHA 1 in rHDAC1 and live SET-2 cells. Densitometry analysis of labeling bands is indicated below each gel section.

Left: Labeling of rHDAC1with PRP 8. Labeling signal was normalized to HDAC1 immunoblotting signal. Densitometric analysis shows that **S20** is a better competitor (signal is 25% of PRP alone) for 8 than 1 (signal is 75% of PRP alone).

Right: Labeling of live SET-2 cells with PRP **8**. HDAC2 Labeling signal was normalized to HDAC2/GAPDH abundance detected by immunoblotting. Densitometric analysis shows insignificant difference was between **1** and **S20** in SET-2 cells. A decline in HDAC1-3 abundance was observed in case of **S20** competition.

(a)

(b)

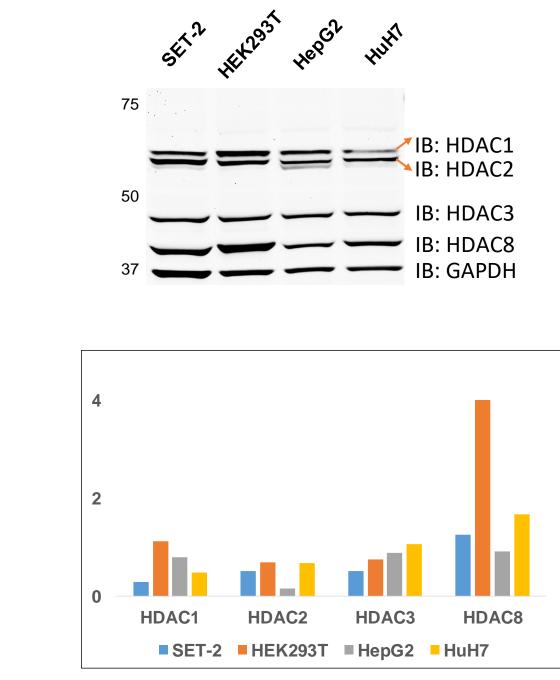
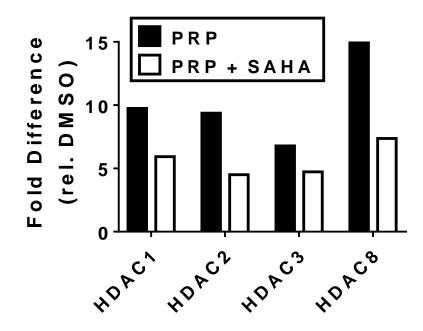



Figure S8 (a) Western blot analysis of HDAC1, 2, 3 and 8 in the four cell lines SET-2, HepG2, HuH7 and HEK293T.

(b) Densitometric analysis of (a), Immunoblotting signal of corresponding isoform normalized to GAPDH signal for each cell line.

Mouse Liver

Figure S9 Densitometric analysis of HDACs1-3 and 8 photolabeling in mouse liver tissue (Figure 6, manuscript) calculated as a fold change relative to DMSO signal.

Molecular Modeling Procedure

Coordinates of X-ray models of class I HDAC2 (4LXZ)⁷, HDAC8 (1T69)⁸ and class II HDAC7 (3ZNR)⁹ were downloaded from the protein data bank (PDB). All molecular modeling studies were performed in Molecular Operating Environment (MOE). The proteins were subjected to the "structure preparation" procedure. Hydrogen atoms were added using the Protonate3D algorithm. The structures were aligned and the ligands were replaced with SAHA. The energy of the resulting protein-SAHA complexes was minimized utilizing AMBER12EHT forcefield.¹⁰ The ligands for docking were assigned MMFF94x charges and minimized using the MMFF94x forcefield until the RMS gradient was less than 0.001 kcal/mol/Å². The MOE docking module "Dock" was used for docking/scoring using the default parameters and settings. SAHA was used to define the binding site. Docking was performed using the "induced fit" and the "rigid receptor" algorithms, "Triangle Matcher" for placement, "London dG" for scoring of the binding poses after placement, and "GBVI/WSA dG" for rescoring of the resulting poses. The hydroxamic acid portion of SAHA was used as a template for placement.

Water/octanol partition coefficients SlogP and logD, solubility logS, and topological surface area (TPSA) parameters were calculated in MOE software.

Synthesis Procedure and Compounds Characterization:

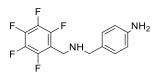
General Procedure (A) for reductive amination: A solution of the aldehyde (1 equivalent) in anhydrous DCM (5 mL/mmol) was added to a solution of the amine (1 equivalent) in anhydrous DCM (5 mL/mmol) in a round bottom flask containing oven–dried 4 Å molecular sieves (0.1 g/10 mL) and stirred at room temperature (rt) for 6–18 h under nitrogen atmosphere until complete formation of imine on as monitored by TLC. Then, the reaction mixture was placed in an ice bath, diluted with anhydrous methanol (10 mL/mmol), and sodium tetrahydroborate (4 equivalents) was added portionwise with 10 min intervals over 30 min and stirred for an additional 3–6 h. Molecular sieves were filtered under vacuum and the solvent was evaporated. Water (10 mL/mmol) was added to the residue and pH adjusted to ca. 10–12 and extracted 3 times with equal volume of EtOAc. Combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo. The crude product was purified by silica gel chromatography eluting 10–50% EtOAc/hexanes to give the secondary amine.

General Procedure (B) for amide coupling: To a stirred solution of the acid (1 equivalent) in anhydrous chloroform (10 mL/mmol) in a round bottom flask was added EDC.HCI (1.5 equivalent), HOBt (1.1 equivalent), DMAP (1.1 equivalent) and triethylamine (1.5 equivalent) then stirred for 30 min at rt under nitrogen atmosphere. Then, the amine (1.25 equivalent) was added and reaction mixture was stirred for 6–18 h until completion as verified by TLC. The solvent was then evaporated in vacuo, water was added to the residue and pH adjusted as necessary then extracted 3 times with DCM or EtOAc (10 mL/mmol). The combined organic extracts were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude product was purified by silica gel chromatography using 10–35% EtOAc/hexanes to afford the amide product.

General Procedure (C) for alkylation: To a solution of the secondary amine (1 equivalent) in anhydrous acetonitrile (10 mL/mmol) in a round bottom flask, oven-dried potassium carbonate (3 equivalents) was added and the suspension was stirred for 30 min at rt under nitrogen. Then, the alkyl bromide (3 equivalents) was added portionwise and the reaction mixture was stirred, monitored for completion by TLC and more potassium carbonate and/or alkyl bromide was added as necessary. The solvent was evaporated, the residue was diluted with water (10 mL/mmol) and pH adjusted to ca. 10–12 and extracted with DCM (3×10 mL/mmol). The combined DCM layers were concentrated, washed with saturated sodium bicarbonate solution (15 mL/mmol) and brine (5 mL/mmol) sequentially then dried over anhydrous sodium sulfate and solvent evaporated in vacuo. The crude product was purified by silica gel chromatography if needed eluting a gradient of EtOAc/hexanes.

General Procedure (D) for ester hydrolysis:

D–1: To a solution of the ester (1 equivalent) in tetrahydrofuran (20 mL/mmol), lithium hydroxide (5 equivalent) in water (10 mL/mmol ester) was added and stirred at rt for 4–120 h. After complete hydrolysis as monitored by TLC, the reaction mixture was concentrated in vacuo, acidified with 2N hydrochloric acid to pH ca. 1–5 by 1 M HCl, placed on ice-bath and diluted with ice-cooled water. The precipitated acid was filtered, and the residue washed with ice-cooled EtOAc and the aqueous solution was extracted with EtOAc (3×10 mL/mmol). The combined organic extracts were dried over anhydrous sodium sulfate and concentrated in vacuo to afford the corresponding carboxylic acid that was used in the next steps without further purification.

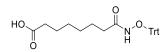

N.B. Esters **39** and **47** were poorly soluble in THF/water, so dioxane was added to give a THF/water/dioxane mixture in a ratio of 6:3:1 to ensure their solubility.

D–2: To a solution of the ester (1 equivalent) in methanol (20 mL/mmol), sodium hydroxide (5 equivalent) in water (10 mL/mmol ester) was added and stirred in a round bottom flask at rt for 4–10 h. After complete hydrolysis as monitored by TLC, the reaction mixture was concentrated in vacuo, acidified with 2N hydrochloric acid to pH ca. 1–5, diluted with brine and extracted with EtOAc (2×10 mL). The combined organic extracts were dried over anhydrous sodium sulfate and concentrated to afford the corresponding carboxylic acid that was used in next steps without further purification.

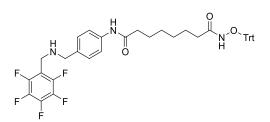
General Procedure (E) for azidation: To a solution of the pentafluorophenyl derivative (1 equivalent) in anhydrous dimethylformamide (5 mL/mmol), sodium azide (2 equivalent) and tetrabutylammonium azide (0.1 equivalent) were added in a sealed pressure vessel and protected from light by tin foil wrap. The reaction mixture was stirred at 50–80 °C for 17–22 h. After completion as monitored by LC–MS (both product and starting material have the same retention factor (R_f) on TLC and time of retention (RT) on LC), reaction mixture was allowed to cool to rt, poured in an ice/water mixture and extracted with EtOAc (2×10 mL). The organic extract was dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The crude was purified immediately by short silica gel column if necessary eluting 30±10% EtOAc/hexanes isocratically. The product was stored under nitrogen in an air-tight container at –20 °C until the next step.

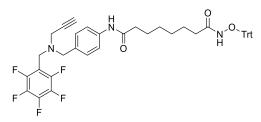
General Procedure (F) for detritylation: To a stirred solution of the tritylhydroxamate (1 equivalent) in anhydrous DCM (20 mL/mmol), magnesium bromide (10 equivalent) was added and stirred at rt under nitrogen in a tin foil wrapped round bottom flask for 0.5–6 h. After completion as monitored by TLC, the reaction mixture was poured to an ice–cooled water (20 mL/mmol), pH adjusted to ca. 7–9 and extracted with EtOAc (3×20 mL). Combined organic extracts were dried over anhydrous sodium sulfate and the solvent was evaporated in vacuo. The crude product was purified either by silica–gel chromatography eluting 0–10% methanol in DCM or C_{18} –modified silica eluting 0–10% methanol in water to yield the hydroxamate.

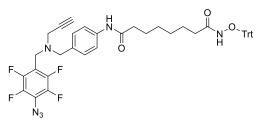
- N.B. Extra peaks in the ¹⁹F-NMR spectrum arise from residual starting material of azidation reaction which is not separable from the azide product
- N.B. ¹H NMRs of the *o*-aminoanilide PRPs 14, 13 and intermediates of their synthesis indicate presence of ca. 10/90 E*/Z* isomers around the C-N amide bond.

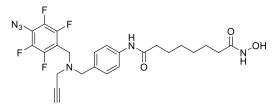

4-((((Perfluorophenyl)methyl)amino)methyl)aniline (18). Following general procedure (A), perfluorobenzaldehyde (1.0 g, 5.1 mmol) was reacted with 4-(aminomethyl)aniline **18** (0.62 g, 5.1 mmol) for 18 h then with sodium tetrahydroborate (0.77 g, 20.4 mmol) for 4 h. Reaction workup pH was adjusted to ca. 12 and the aqueous layer was extracted with EtOAc (3×25 mL). The crude product was purified by silica gel chromatography eluting 10–50% EtOAc/hexanes to give **18** as a yellow solid (0.93 g, 60% yield). ¹H NMR (400 MHz, DMSO–*d*₆) δ 6.95 (s, 2H), 6.49 (s, 2H), 4.89 (s, 2H), 3.74 (s, 2H), 3.50 (s, 2H), 2.40 (s, 1H). The amine peaks were confirmed by D₂O exchange. ¹³C NMR (101 MHz, DMSO–*d*₆) δ 147.68, 146.47, 138.24, 135.94, 129.00, 127.37, 114.64, 113.96, 52.19, 52.13. ¹⁹F NMR (376 MHz, DMSO–*d*₆) δ –143.73 (d, *J* = 23.9 Hz, 2F), –157.32 (t, *J* = 21.9 Hz, 1F), –163.39 (t, *J* = 23.1 Hz, 2F).

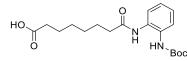
PhPhO NH_2

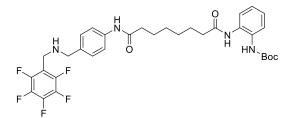

O-tritylhydroxylamine (19). Following a previously reported procedure¹¹ in two step synthesis: reaction of trityl chloride (8.4 g, 30 mmol) and *N*-hydroxyphthalimide (4.9 g, 30 mmol) gave the *N*-trityloxyphthaimide (10 g, 24.7 mmol) that was reacted in the next step with hydrazine hydrate (2.6 mL, 51.2 mmol). Final product was purified by recrystallization from isopropanol to give **19** as yellowish white crystals (6 g, 75% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 7.3 Hz, 6H), 7.41–7.29 (m, 9H), 4.95 (bs, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 143.30, 128.88, 127.90, 127.27, 90.85. ¹³C NMR (101 MHz, CDCl₃) δ 143.30, 128.88, 127.90, 127.27, 90.85.

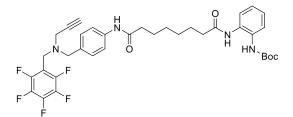

tert-butyl (2-aminophenyl)carbamate (20). di–*tert*–butyl dicarbonate (2.22 g, 10.19 mmol) solution in methanol (10 mL) was added dropwise to *O*–phenylenediamine (1 g, 9.26 mmol) solution in methanol (10 mL) over 45 min. The reaction was stirred at rt for 24 h. The solvent was evaporated in vacuo and the crude product purified by silica gel chromatography eluting 10–50% EtOAc/hexanes to afford the desired product **20** as white shiny crystals (1.8 g, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, *J* = 8.5 Hz, 1H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.80 (dd, *J* = 12.4, 7.8 Hz, 2H), 6.26 (bs, 1H), 3.76 (bs, 2H), 1.54 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 153.86, 139.95, 126.16, 124.80, 119.65, 117.63, 80.54, 28.34.


8–oxo–8-((trityloxy)amino)octanoic acid (21). Step 1: Following general procedure (B), suberic acid monomethyl ester (0.72 mL, 4 mmol) was coupled with **19** (1.37 g, 5 mmol) to give methyl 8–oxo–8-((trityloxy)amino)octanoate (**21a**) as a white solid (1.5 g, 85% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (bs, 1H), 7.60–7.40 (m, 3H), 7.36 (s, 12H), 3.68 (s, 3H), 2.28 (t, *J* = 7.5 Hz, 2H), 1.71–1.46 (m, 4H), 1.36–1.10 (m, 4H), 1.11–0.99 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 174.23, 170.39, 141.19, 129.07, 128.15, 93.48, 51.46, 33.99, 28.74, 24.71. **Step 2:** Following general procedure (D–2), **21a** (1.47 g, 3.3 mmol) was hydrolyzed to the corresponding acid **21** which was purified as a white solid (1.3 g, quantitative yield). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (bs, 1H), 7.61–7.39 (m, 3H), 7.36 (s, 12H) 2.30 (t, *J* = 7.4 Hz, 2H), 1.57 (dt, *J* = 15.2, 7.0 Hz, 4H), 1.37–1.14 (m, 4H), 1.07 (d, *J* = 6.1 Hz, 2H).

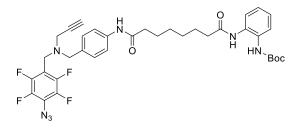

*N*¹-(4-((((perfluorophenyl)methyl)amino)methyl)phenyl)-*N*^g-(trityloxy)octanediamide (23). Following general procedure (B), the acid **21** (0.6 g, 1.35 mmol) was coupled in 8 h reaction to the amine **19** (0.42 g, 1.39 moles) to produce **23** as a white solid (0.48 g, 50% yield). ¹H NMR (400 MHz, DMSO– d_6) δ 10.16 (s, 1H), 9.78 (s, 1H), 7.51 (d, *J* = 8.5 Hz, 2H), 7.33 (s, 15H), 7.22 (d, *J* = 8.5 Hz, 2H), 3.76 (s, 2H), 3.62 (s, 2H), 2.23 (t, *J* = 7.4 Hz, 2H), 1.78 (t, *J* = 7.0 Hz, 2H), 1.49 (dt, *J* = 15.0, 7.5 Hz, 2H), 1.17 (dd, *J* = 12.4, 5.3 Hz, 4H), 1.06–0.91 (m, 2H). ¹³C NMR (101 MHz, DMSO– d_6) δ 192.88, 142.96, 138.45, 129.44, 128.56, 127.98, 119.22, 95.34, 91.49, 74.18, 64.08, 52.04, 36.81, 28.82, 25.15, 19.98. LC–MS (ESI) for C₄₁H₃₈F₅N₃O₃ *m/z*: 714.3 [M–H]⁻.


*N*¹-(4-((((perfluorophenyl)methyl)(prop-2-yn-1-yl)amino)methyl)phenyl)-*N*⁸-(trityloxy)octanediamide (25). Following general procedure (C), **23** (460 mg, 0.64 mmol) was alkylated with propargyl bromide (0.42 mL, 1.9 mmol) for 48 h at rt and the crude product was purified by silica–gel chromatography eluting 25–50% EtOAc/hexanes to give **25** as a yellowish white solid (240 mg, 60% yield). ¹H NMR (400 MHz, DMSO–*d*₆) δ 10.16 (s, 1H), 9.82 (s, 1H), 7.53 (d, *J* = 8.4 Hz, 2H), 7.32 (s, 15H), 7.19 (d, *J* = 8.5 Hz, 2H), 3.76 (s, 2H), 3.61 (s, 2H), 3.28–3.18 (m, 3H), 2.23 (t, *J* = 7.4 Hz, 2H), 1.77 (t, *J* = 7.0 Hz, 2H), 1.55–1.39 (m, 2H), 1.16 (dt, *J* = 14.3, 6.8 Hz, 4H), 0.99 (dd, *J* = 19.7, 12.8 Hz, 2H). ¹³C NMR (101 MHz, DMSO–*d*₆) δ 171.60, 170.76, 142.95, 138.97, 132.70, 129.43, 127.97, 119.26, 92.18, 78.46, 76.90, 60.22, 56.98, 44.61, 41.59, 36.81, 32.44, 28.81, 28.63, 25.43, 25.15. ¹⁹F NMR (376 MHz, DMSO–*d*₆) δ –142.14 (dd, *J* = 23.8, 7.9 Hz, 2F), – 156.31 (t, *J* = 22.1 Hz, 1F), –163.28 (dd, *J* = 23.0, 8.6 Hz, 2F). HRMS (ESI–TOF) for C₄₄H₄₀F₅N₃O₃ *m/z* [M–H]⁻ calcd: 752.2917, found: 752.2925.

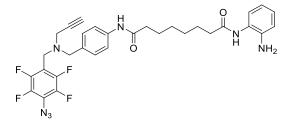

*N*¹-(4-(((4–Azido–2,3,5,6–tetrafluorobenzyl)(prop–2–yn–1–yl)amino)methyl)phenyl)-*N*⁸-(trityloxy)octanediamide (27). Following general procedure (E), **25** (156 mg, 0.2 mmol) was subject to azidation for 17 h at 75 °C to afford **27** as a yellow oil (70 mg, 45% yield) after purification on a short silica gel column eluting 25% EtOAc/hexanes. ¹H NMR (400 MHz, DMSO–*d*₆) δ 10.16 (s, 1H), 9.82 (s, 1H), 7.52 (d, *J* = 8.5 Hz, 2H), 7.30 (dd, *J* = 8.7, 5.7 Hz, 15H), 7.18 (d, *J* = 8.5 Hz, 2H), 3.75 (s, 2H), 3.60 (s, 2H), 3.25 (t, *J* = 2.2 Hz, 1H), 3.23 (d, *J* = 2.0 Hz, 2H), 2.23 (t, *J* = 7.4 Hz, 2H), 1.77 (t, *J* = 6.9 Hz, 2H), 1.49 (dt, *J* = 15.0, 7.5 Hz, 2H), 1.16 (dt, *J* = 14.5, 6.6 Hz, 4H), 0.99 (dt, *J* = 15.5, 7.9 Hz, 2H). ¹³C NMR (101 MHz, DMSO–*d*₆) δ 171.59, 170.76, 142.95, 138.94, 132.73, 129.43, 127.97, 119.27, 92.18, 78.48, 76.89, 56.93, 44.75, 41.67, 36.81, 32.44, 28.82, 28.63, 25.43, 25.15. ¹⁹F NMR (376 MHz, DMSO–*d*₆) δ –143.02 (dd, *J* = 22.6, 9.8 Hz, 2F), -152.94 (dd, *J* = 22.6, 9.8 Hz, 2F). MS (ESI) *m/z*: 775.25 [M–H]⁻.


*N*¹-(4-(((4–Azido–2,3,5,6–tetrafluorobenzyl)(prop–2–yn–1–yl)amino)methyl)phenyl)-*N*⁸–hydroxyoctanediamide (9). Following general procedure (F), **27** (70 mg, 0.09 mmol) was detritylated to give PRP **9** as a light brown solid (20 mg, 42% yield). ¹H NMR (400 MHz, DMSO– d_6) δ 10.33 (s, 1H), 9.85 (s, 1H), 8.65 (s, 1H), 7.52 (d, *J* = 8.5 Hz, 2H), 7.18 (d, *J* = 8.5 Hz, 2H), 3.75 (s, 2H), 3.60 (s, 2H), 3.25 (d, *J* = 2.0 Hz, 1H), 3.23 (s, 2H), 2.28 (t, *J* = 7.4 Hz, 2H), 1.94 (t, *J* = 7.4 Hz, 2H), 1.52 (ddd, *J* = 30.9, 13.8, 6.8 Hz, 4H), 1.27 (dd, *J* = 9.9, 6.8 Hz, 4H). ¹³C NMR (101 MHz, DMSO– d_6) δ 171.60, 169.52, 138.94, 132.74, 129.45, 119.28, 78.48, 76.89, 56.93, 44.75, 41.67, 36.81, 32.70, 28.89, 25.51. ¹⁹F NMR (376 MHz, DMSO– d_6) δ –143.03 (dd, *J* = 22.6, 9.7 Hz, 2F), –152.95 (dd, *J* = 22.5, 9.8 Hz, 2F). HRMS (ESI–TOF) for C₂₅H₂₆F₄N₆O₃ *m*/z [M+H]⁺ calcd: 535.2076, found: 535.2077.

8-((2-((*tert*-butoxycarbonyl)amino)phenyl)amino)-8-oxooctanoic acid (22). Step 1: Following general procedure (B), suberic acid monomethyl ester (0.36 mL, 2 mmol) was coupled with 20 (0.46 g, 2.2 mmol) to give methyl 8-((2-((*tert*-butoxycarbonyl)amino)phenyl)amino)-8-oxooctanoate (22a) as a colorless oil (0.76 g, 98% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (bs, 1H), 7.48 (d, J = 7.8 Hz, 1H), 7.39 (d, J = 6.8 Hz, 1H), 7.16 (quint, J = 7.9 Hz, 2H), 6.93 (bs, 1H), 3.68 (s, 3H), 2.35 (dt, J = 17.6, 7.4 Hz, 4H), 1.74 (dd, J = 14.5, 7.2 Hz, 2H), 1.65 (dd, J = 13.8, 6.9 Hz, 2H), 1.53 (s, 9H), 1.40 (dd, J = 4.6, 1.4 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 174.21, 172.13, 154.23, 130.62, 130.14, 126.16, 125.50, 125.41, 124.52, 80.91, 51.50, 37.19, 33.97, 28.75, 28.30, 25.48, 24.73. Step 2: Following general procedure (D-2), 22a (0.76 g, 2.7 mmol) was hydrolyzed to the corresponding acid 22 which was purified as a sticky solid (0.7 g, quantitative yield). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (bs, 1H), 7.58 (bs, 1H), 7.38 (t, J = 7.7 Hz, 1H), 7.17 (dd, J = 10.3, 4.7 Hz, 2H), 2.46 – 2.32 (m, 4H), 1.77 (t, J = 7.6 Hz, 2H), 1.66 (dd, J = 14.3, 7.6 Hz, 2H), 1.53 (s, 9H), 1.46 – 1.35 (m, 4H).

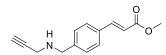


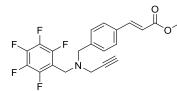
tert-butyl (2-(8-oxo-8-((4-((((perfluorophenyl)methyl)amino)methyl)phenyl)amino)octanamido)phenyl)carbamate (24). Following general procedure (B), the acid 22 (0.45 g, 1.2 mmol) was coupled in 16 h reaction to the amine 19 (0.37 g, 1.25 mmol) to produce the 24 as a viscous oil (0.42 g, 55% yield). ¹H NMR (400 MHz, DMSO- d_6) δ 9.81 (s, 1H), 9.45 (s, 1H), 8.31 (s, 1H), 7.52 (t, J = 8.1 Hz, 3H), 7.41 (dd, J = 7.8, 1.7 Hz, 1H), 7.22 (d, J = 8.5 Hz, 2H), 7.11 (dtd, J = 25.6, 7.5, 1.6, 2H), 5.77 (s, 1H), 3.79–3.74 (m, 2H), 3.63 (s, 2H), 2.33 (dt, J = 22.3, 7.3 Hz, 4H), 1.71–1.55 (m, 4H), 1.45 (s, 9H), 1.36 (dd, J = 7.6, 3.6 Hz, 4H). ¹³C NMR (101 MHz, DMSO– d_6) δ 172.25, 171.49, 153.53, 138.45, 135.09, 131.56, 130.16, 128.55, 125.51, 125.33, 124.37, 124.16, 119.22, 79.80, 52.03, 36.84, 36.41, 28.98, 28.84, 28.51, 25.57. ¹⁹F NMR (376 MHz, DMSO– d_6) δ –143.65 (dd, J = 24.1, 8.1 Hz, 2F), –157.13 (t, J = 22.1 Hz, 1F), –163.29 (td, J = 23.8, 8.0 Hz, 2F). MS (ESI) m/z: 649.25 [M+H]⁺.


tert-butyl (2-(8-oxo-8-((4-((((perfluorophenyl)methyl)(prop-2-yn-1-

yl)amino)methyl)phenyl)amino)octanamido)phenyl)carbamate (26). Following general procedure (C), **24** (0.42 g, 0.65 mmol) was alkylated with propargyl bromide (0.42 mL, 1.9 mmol) for 48 h at rt and the crude product was purified by silica– gel chromatography eluting 25–50% EtOAc/hexanes to give **26** as a yellowish white solid (0.45 g, 65% yield). ¹H NMR (400 MHz, DMS– d_6) δ 9.85 (s, 1H), 9.45 (s, 1H), 8.31 (s, 1H), 7.53 (d, *J* = 7.0 Hz, 3H), 7.41 (d, *J* = 7.7 Hz, 1H), 7.23–7.00 (m, 4H), 3.77 (s, 2H), 3.61 (s, 2H), 3.327–3.17 (m, 3H), 2.42–2.22 (m, 4H), 1.68–1.55 (m, 4H), 1.44 (d, *J* = 14.9 Hz, 9H), 1.35–1.14 (m, 4H). ¹³C NMR (101 MHz, DMSO– d_6) δ 172.21, 171.55, 153.46, 144.52, 132.66, 129.47, 125.49, 124.34, 119.24, 79.78, 76.89, 56.99, 44.59, 41.57, 36.83, 28.50, 25.59. MS (ESI) *m/z*: 687.3 [M+H]⁺ and 685.2 [M–H]⁻.

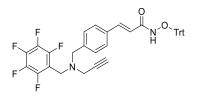
tert-butyl (2-(8-((4-(((4-azido-2,3,5,6-tetrafluorobenzyl)(prop-2-yn-1-yl)amino)methyl)phenyl)amino)-8-


oxooctanamido)phenyl)carbamate (28). Following general procedure (E), **26** (200 mg, 0.29 mmol) was subject to azidation for 17 h at 75 °C to afford **27** as a yellow oil (50 mg, 25% yield) after purification on a short column eluting 35% EtOAc/Hexanes isocratically. ¹H NMR (400 MHz, DMSO– d_6) δ 9.85 (bs, 1H), 9.44 (bs, 1H), 8.30 (bs, 1H), 7.52 (d, J = 8.4 Hz, 3H), 7.40 (d, J = 7.9 Hz, 1H), 7.18 (d, J = 8.5 Hz, 2H), 7.13 (td, J = 7.8, 1.4 Hz, 1H), 7.07 (td, J = 7.6, 1.5 Hz, 1H), 3.75 (s, 2H), 3.60 (s, 2H), 3.25 (t, J = 2.1 Hz, 1H), 3.23 (s, 2H), 2.32 (dt, J = 20.6, 7.3 Hz, 4H), 1.61 (d, J = 5.5 Hz, 4H), 1.45 (s, 9H), 1.39–1.28 (m, 4H). ¹³C NMR (101 MHz, DMSO– d_6) δ 172.24, 171.52, 153.53, 146.90, 138.95, 132.73, 131.56, 130.15, 129.44, 125.50, 124.36, 119.27, 79.79, 78.47, 76.89, 60.22, 56.93, 44.75, 36.83, 36.41, 28.97, 28.83, 28.50, 25.54. ¹⁹F NMR (376 MHz, DMSO– d_6) δ –143.03 (dd, J = 22.6, 9.8 Hz, 2F), –152.95 (dd, J = 22.5, 9.7 Hz, 2F). MS (ESI) *m/z*: 710.3 [M+H]⁺ and 708.1 [M–H]⁻.

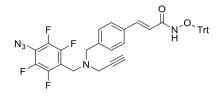

N¹-(2-aminophenyl)-N⁸-(4-(((4-azido-2,3,5,6-tetrafluorobenzyl)(prop-2-yn-1-

yl)amino)methyl)phenyl)octanediamide (14). To a stirred solution of 28 (20 mg, 0.03 mmol) in 1,4–dioxane, 4M hydrochloric acid in 1,4–dioxane (0.5 mL) was added dropwise and stirred for 2 h in an ice–bath. The solvent was evaporated in vacuo and residue was diluted in EtOAc, washed with saturated sodium bicarbonate then 10% NaOH added to pH ca. 9. The EtOAc layer was dried over anhydrous sodium sulfate, solvent evaporated under vacuo and the crude was purified by preparative TLC eluting with 40% EtOAc/hexanes (R_f = 0.2) then extracted with EtOAc and dried in vacuo to give 14 as a yellowish white solid (10 mg, 56% yield). ¹H NMR (400 MHz, DMSO–*d*₆) δ 10.34 (s, 1H), 9.53 (s, 1H), 7.88 (d, *J* = 7.9 Hz, 2H), 7.49 (dd, *J* = 14.3, 7.9 Hz, 3H), 7.19 (t, *J* = 7.5 Hz, 1H), 7.01 (d, *J* = 7.9 Hz, 1H), 6.82 (t, *J* = 7.5 Hz, 1H), 4.98 (s, 2H), 3.86 (s, 2H), 3.70 (s, 2H), 3.32 (d, *J* = 6.3 Hz, 3H), 2.33 (dd, *J* = 13.4, 6.7 Hz, 4H), 1.58 (bs, 4H), 1.31 (bs, 4H). ¹³C NMR (101 MHz, DMSO–*d*₆) δ 171.62, 142.36, 138.96, 132.75, 129.46, 126.15, 125.76, 124.07, 119.30, 116.65, 116.36, 78.50, 76.90, 56.95, 44.77, 41.68, 36.86, 36.24, 29.00, 25.71, 25.56. ¹⁹F NMR (376 MHz, DMSO–*d*₆) δ –143.01 (dd, *J* = 22.6, 9.6 Hz, 2F), –152.93 (dd, *J* = 22.5, 9.6 Hz, 2F). HRMS (ESI–TOF) *m*/z calcd for C₃₁H₃₁F₄N₇O₂ [M+H]⁺: 610.2548; found: 610.2545.

(*E*)-methyl 3-(4–formylphenyl)acrylate (31). To a solution of anhydrous sodium acetate, NaOAc (2.7 g, 33.0 mmol), *p*– bromobenzaldehyde, **29** (5.55 g, 30.0 mmol) and palladium acetate, Pd(OAc)₂ (2.6 mg, 0.04% mol) in anhydrous *N*–methyl– 2–pyrrolidone, NMP (40 mL), methyl acrylate, **30** (3.9 mL, 43.3 mmol) was introduced via a syringe and the reaction mixture was heated at 120 °C for 60 min under nitrogen. The resulting red solution containing a white precipitate was diluted with water (100 mL) and extracted with EtOAc (2×70 mL). The combined organic layers were washed twice with water, once with brine, dried over anhydrous sodium sulfate, and filtered. The solvent was evaporated in vacuo to give **31** as a yellow solid (5.63 g, 99%) which was used in the next step without further purification. ¹H NMR (400 MHz, DMSO–*d*₆) δ 10.04 (s, 1H), 8.02–7.88 (m, 4H), 7.74 (d, *J* = 16.1 Hz, 1H), 6.83 (d, *J* = 16.1 Hz, 1H), 3.76 (s, 3H). ¹³C NMR (101 MHz, DMSO–*d*₆) δ 193.11, 166.78, 143.52, 140.04, 137.46, 130.32 (2C), 129.42 (2C), 121.39, 52.15.

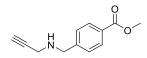


Methyl (*E***)-3-(4-(prop–2–yn–1–ylamino)phenyl)acrylate (32).** To a solution of **31** (5.6 g, 29.6 mmol) in anhydrous dichloroethane (70 mL), propargyl amine (2.6 mL, 32.6 mmol) was added. The reaction mixture was stirred under nitrogen at rt for 1 h. Sodium triacetoxyborohydride (12.6 g, 59.3 mmol) was added, reaction was stirred for 16 h. The reaction mixture was concentrated in vacuo, diluted with water (100 mL) and extracted with DCM (3×100 mL). The combined DCM extracts were washed with brine, dried over anhydrous sodium sulfate and concentrated in vacuo. The crude product was purified by silica gel chromatography eluting 10–70% EtOAc/hexanes to give **32** as a yellow solid (3.6 g, 70%). ¹H NMR (400 MHz, DMSO–*d*₆) δ 7.74–7.60 (m, 3H), 7.37 (d, *J* = 7.7 Hz, 2H), 6.61 (d, *J* = 16.0 Hz, 1H), 3.77 (s, 2H), 3.73 (s, 3H), 3.09 (s, 1H), 2.09 (s, 2H), 1.94–1.88 (m, 1H). ¹³C NMR (101 MHz, DMSO–*d*₆) δ 167.20, 144.91, 143.44, 132.92, 128.94 (2C), 128.71 (2C), 117.60, 83.16, 74.29, 51.89, 37.18, 31.15. HRMS (ESI–TOF) *m/z* calcd for C₁₄H₁₅NO₂ [M+H]⁺: 230.1176, found: 230.1167.

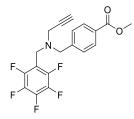


Methyl (*E*)-3-(4-((((perfluorophenyl)methyl)(prop-2-yn-1-yl)amino)methyl)phenyl)acrylate (33). Following general procedure (C), **32** (3.6 g, 16 mmol) was reacted with pentafluorobenzyl bromide (2.5 mL, 16 mmol) for 14 h. The crude product was purified by silica gel chromatography eluting 5–25% EtOAc/hexanes to give **33** as a yellowish white solid (6.41 g, 98%). ¹H NMR (400 MHz, DMSO–*d*₆) δ 7.65 (t, *J* = 12.1 Hz, 3H), 7.34 (d, *J* = 8.1 Hz, 2H), 6.61 (d, *J* = 16.0 Hz, 1H), 3.79 (s, 2H), 3.73 (s, 3H), 3.71 (s, 2H), 3.29–2.25 (m, 3H). ¹³C NMR (101 MHz, DMSO–*d*₆) δ 167.13, 144.69, 141.19, 133.52, 129.54 (2C), 128.72 (2C), 117.95, 78.38, 76.97, 57.09, 51.90, 44.76, 41.95. HRMS (ESI–TOF) *m/z* calcd for C₂₁H₁₆F₅NO₂ [M+H]⁺: 410.1174, found: 410.1158.

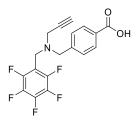
(*E*)-3-(4-((((perfluorophenyl)methyl)(prop-2-yn-1-yl)amino)methyl)phenyl)acrylic acid (34). Following general procedure (D-1), **33** (6.41 g, 15.68 mmol) was hydrolyzed for 20 h. During the aqueous workup, pH was adjusted to ca. 5. The carboxylic acid **34** was obtained as a white solid (6.13 g, 99%). ¹H NMR (400 MHz, DMSO- d_6) δ 12.37 (s, 1H), 7.63 (d, 2H, *J* = 8.0 Hz), 7.56 (d, *J* = 16.0 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 2H), 6.49 (d, *J* = 16.0 Hz, 1H), 3.78 (s, 2H), 3.69 (s, 2H), 3.26 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 168.04, 144.05, 140.87, 133.76, 129.54 (2C), 128.55 (2C), 119.39, 114.93, 87.19, 78.40, 76.97, 57.10, 41.94. HRMS (ESI-TOF) *m/z* calcd for C₂₀H₁₄F₅NO₂ [M+H]⁺: 396.1017, found: 396.0994.

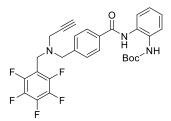


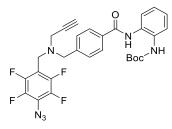
(*E*)-3-(4-((((perfluorophenyl)methyl)(prop-2-yn-1-yl)amino)methyl)phenyl)-*N*-(trityloxy)acrylamide (35). Following general procedure (B), **34** (6.13 g, 15.52 mmol), was coupled to **19** (5.34 g, 19.4 mmol) in a 6 h reaction. The crude product was then purified by silica gel chromatography eluting 0–35% EtOAc/hexanes to give **35** as a white solid (4.45 g, 75%). ¹H NMR (400 MHz, DMSO- d_6) δ 10.40 (bs, 1H), 7.62–6.76 (m, 20H), 6.45 (d, *J* = 14.6 Hz, 1H), 3.76 (s, 2H), 3.66 (s, 2H), 3.25 (s, 3H).¹³C NMR (101 MHz, DMSO- d_6) δ 170.79, 129.53 (2C), 129.34 (12C), 128.07 (5C), 78.39, 76.95, 60.21, 57.09, 44.75, 41.90. HRMS (ESI–TOF) *m/z* calcd for C₃₉H₂₉F₅N₂O₂ [M–H]⁻: 651.2076, found: 651.2078.

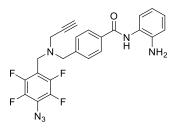


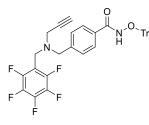
(*E*)-3-(4-(((4-azido-2,3,5,6-tetrafluorobenzyl)(prop-2-yn-1-yl)amino)methyl)phenyl)-*N*-(trityloxy)acrylamide (36). Following general procedure (E) at 80 °C for 15 h, **35** (4.45 g, 6.8 mmol) was azidated to **36**. The brown crude product was purified by short silica gel column eluting with 20% EtOAc/ hexanes to give **36** as a shiny yellow solid (0.86 g, 25%). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 16.8 Hz, 1H), 7.61–7.03 (m, 19H), 6.10 (d, *J* = 15.8 Hz, 1H), 3.84 (s, 2H), 3.72 (s, 2H), 3.29 (s, 2H), 2.32 (s, 1H).¹³C NMR (101 MHz, CDCl₃) δ 170.60, 142.15, 142.09, 141.52, 141.18, 140.01, 139.96, 129.15 (2C), 128.96 (12C), 128.19 (3C), 128.04 (2C), 93.65, 77.59, 73.81, 57.01, 45.07, 41.71. HRMS (ESI–TOF) *m/z* calcd for C₃₉H₂₉F₄N₅O₂ [M–H]: 674.2184, found: 674.2206. N₃ F F F

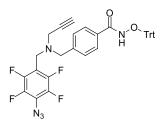

(*E*)-3-(4-(((4-azido-2,3,5,6-tetrafluorobenzyl)(prop-2-yn-1-yl)amino)methyl)phenyl)-*N*-hydroxyacrylamide (10). Following general procedure (F) for 30 min, **36** (0.70 g, 1.03 mmol) was detritylated. Upon completion, reaction mixture was concentrated under vacuum, diluted with water, pH adjusted to ca. 8, the precipitate was filtered, washed with 20% EtOAc/hexanes (5×5 mL) and purified by recrystallization from 20% EtOAc/Hexanes. The product was dried under vacuum to yield a **10** as a light brown solid (0.2 g, 50%). The solubility of **10** was limited in DMSO-*d*₆, CDCl3, acetone-*d*₆, MeOD and mixtures thereof. Purity was confirmed by HPLC analysis to be ca. 97%. ¹H NMR (400 MHz, MeOD) δ 7.57 (d, *J* = 15.8 Hz, 1H), 7.50 (d, *J* = 7.0 Hz, 2H), 7.37 (d, *J* = 7.7 Hz, 2H), 6.47 (d, *J* = 15.7 Hz, 1H), 5.12 (s, 2H), 3.86 (s, 2H), 3.38 – 3.35 (m, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 179.82, 146.39, 143.96, 141.23, 138.57, 129.05, 128.86, 127.73, 127.48, 126.88, 126.60, 118.97, 112.04, 77.91, 76.45, 56.55, 48.56, 44.36.¹⁹F NMR (376 MHz, DMSO-*d*₆) δ –143.00 (dd, *J* = 22.3, 9.2 Hz, 2F), -152.91 (dd, *J* = 22.4, 9.5 Hz, 2F). HRMS (ESI-TOF) *m/z* calcd for C₂₀H₁₅F₄N₅O₂ [M+H]⁺: 434.1235, found: 434.1236.

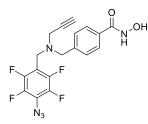

methyl 4-((prop-2-yn-1-ylamino)methyl)benzoate (38). Following general procedure (A), the aldehyde **37** (0.5 g, 3.04 mmol) was reacted with propargylamine (0.2 mL, 3.05 mmol) and after reduction of the imine, the crude product was filtered, washed with 10% sodium bicarbonate then ice–cooled EtOAc (3x5 mL) to give **38** as a white solid (0.5 g, 81% yield). ¹H NMR (400 MHz, DMSO–*d*₆) δ 7.92 (d, *J* = 8.1 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 2H), 3.85 (s, 3H), 3.82 (s, 2H), 3.30 (d, *J* = 2.4 Hz, 2H), 3.12–3.05 (m, 1H). ¹³C NMR (101 MHz, DMSO–*d*₆) δ 166.66, 146.52, 129.54 (2C), 128.64 (2C), 128.48, 83.12, 74.37, 52.49, 51.36, 37.19. MS (ESI) *m/z*: 204.0 [M+H]⁺.

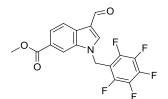

methyl 4-((((perfluorophenyl)methyl)(prop-2-yn-1-yl)amino)methyl)benzoate (39). Following general procedure (C), 38 (0.63 g, 3.1 mmol) was alkylated with perfluorobenzylbromide (0.39 g, 4.6 mmol) for 48 h at rt to give 39 as a white solid (1.00 g, 84% yield). ¹H NMR (400 MHz, DMSO- d_6) δ 7.92 (d, J = 8.3 Hz, 2H), 7.45 (d, J = 8.2 Hz, 2H), 3.85 (s, 3H), 3.80 (s, 2H), 3.76 (s, 2H), 3.29 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 166.54, 147.06, 144.61, 144.28, 138.52, 129.59 (2C), 129.32 (2C), 129.08, 112.29, 78.31, 77.07, 57.03, 52.54, 44.79, 42.00. ¹⁹F NMR (376 MHz, DMSO- d_6) δ -142.10 (dd, J =23.8, 8.6 Hz, 2F), -156.18 (t, J = 22.0 Hz, 1F), -163.18 (td, J = 23.1, 8.6 Hz, 2F). MS (ESI) *m/z*: 384.1 [M+H]⁺.

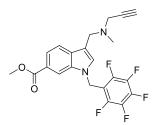

4-((((perfluorophenyl)methyl)(prop-2-yn-1-yl)amino)methyl)benzoic acid (40). Following general procedure (D–1), **39** (1 g, 2.61 mmol) was hydrolyzed in 6:3:1 THF:water:dioxane to **40** after 48 h reaction. Product was obtained as a yellowish white solid (0.98 g, quantitative). ¹H NMR (400 MHz, DMSO– d_6) δ 7.88 (d, J = 7.4 Hz, 2H), 7.39 (d, J = 7.5 Hz, 2H), 3.80 (s, 2H), 3.74 (s, 2H), 3.28 (s, 3H). ¹³C NMR (101 MHz, DMSO– d_6) δ 167.81, 143.22, 129.69 (2C), 129.02 (2C), 78.36, 77.02, 57.09, 44.81, 41.97. MS (ESI) m/z: 370.0 [M+H]⁺, MS 368.0 [M–H]⁻.

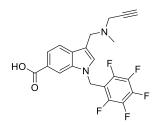

tert-butyl (2-(4-((((perfluorophenyl)methyl)(prop-2-yn-1-yl)amino)methyl)benzamido)phenyl)carbamate (43). Following general procedure (B), 40 (0.4 mg, 1.08 mmol) was reacted with 20 (0.27 g, 1.3 mmol), the crude mixture was purified on silica–gel column eluting 20–40% EtOAc/hexanes to give 43 as yellowish–white solid (0.43 g, 71% yield). ¹H NMR (400 MHz, DMSO–*d*₆) δ 9.82 (bs, 1H), 8.69 (bs, 1H), 7.92 (d, *J* = 8.3 Hz, 2H), 7.54 (ddd, *J* = 9.6, 7.8, 1.6 Hz, 2H), 7.47 (d, *J* = 8.2 Hz, 2H), 7.18 (dtd, *J* = 18.5, 7.4, 1.7 Hz, 2H), 3.81 (s, 2H), 3.78 (s, 2H), 3.31 (d, *J* = 2.0 Hz, 2H), 3.28 (t, *J* = 2.2 Hz, 1H), 1.45 (s, 9H). ¹³C NMR (101 MHz, DMSO–*d*₆) δ 165.49, 153.97, 147.09, 144.66, 142.63, 136.06, 133.69, 132.16, 130.29, 129.12 (2C), 128.01 (2C), 126.48, 126.05, 124.62, 124.37, 112.28, 80.11, 78.36, 77.00, 57.08, 44.70, 41.94, 28.46 (9C). ¹⁹F NMR (376 MHz, DMSO–*d*₆) δ –142.02 (dd, *J* = 23.9, 7.9 Hz, 2F), –156.13 (t, *J* = 22.1 Hz, 1F), –163.16 (td, *J* = 23.6, 7.9 Hz, 2F). MS (ESI) *m/z*: 560.2 [M+H]⁺ and 558.2 [M–H]⁻. HRMS (ESI–TOF) *m/z* calcd for C₂₉H₂₆F₅N₃O₃ [M+H]⁺: 560.1967, found: 560.1974.

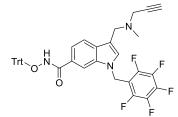

tert-butyl (2-(4-(((4-azido-2,3,5,6-tetrafluorobenzyl)(prop-2-yn-1-yl)amino)methyl)benzamido)phenyl)carbamate (44). Following general procedure (E) at 80 °C, 43 (0.3 g, 0.5 mmol) was azidated and the crude product was purified on a short column eluting 20% EtOAc/hexanes to give 44 as a yellow oil (0.17, 59% yield). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.80 (bs, 1H), 8.68 (bs, 1H), 7.91 (d, *J* = 8.2 Hz, 2H), 7.53 (t, *J* = 8.6 Hz, 2H), 7.45 (d, *J* = 8.2 Hz, 2H), 7.23–7.10 (m, 2H), 3.79 (s, 2H), 3.76 (s, 2H), 3.28 (s, 3H), 1.48–1.38 (m, 9H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 165.49, 153.95, 142.65, 133.68, 132.15, 130.27, 129.07 (2C), 128.01 (2C), 126.48, 126.05, 124.61, 124.35, 80.11, 78.37, 77.01, 57.00, 44.80, 41.94, 28.46 (9C). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ –142.94 (dd, *J* = 22.6, 9.7 Hz, 2F), –152.85 (dd, *J* = 22.5, 9.8 Hz, 2F). MS (ESI) *m/z*: 583.2 [M+H]⁺ and 581.2 [M–H]⁻.


N-(2-aminophenyl)-4-(((4-azido-2,3,5,6-tetrafluorobenzyl)(prop-2-yn-1-yl)amino)methyl)benzamide (13). To a stirred solution of 44 (20 mg, 0.03 mmol) in 1,4-dioxane, 4M hydrochloric acid in 1,4-dioxane (0.5 mL) was added dropwise and stirred for 6 h in an ice-bath. The solvent was evaporated in vacuo and the residue was diluted in EtOAc, washed with saturated sodium bicarbonate then 10% NaOH added to pH ca. 9. The EtOAc layer was dried over anhydrous sodium sulfate, solvent evaporated under vacuo and the crude was purified by preparative TLC running 25% EtOAc/hexanes (R_f = 0.15) then extracted with EtOAc and dried in vacuo to give **13** as a yellowish white solid (5 mg, 35% yield). ¹H NMR (400 MHz, CDCl3) δ 8.12 (d, *J* = 7.1 Hz, 1H), 7.89 (d, *J* = 8.1 Hz, 2H), 7.49 (d, *J* = 8.2 Hz, 2H), 7.37 (d, *J* = 7.8 Hz, 1H), 7.13 (td, *J* = 7.6, 1.6 Hz, 1H), 6.94 - 6.86 (m, 2H), 4.71 (t, *J* = 4.5 Hz, 1H), 3.87 (t, *J* = 1.6 Hz, 2H), 3.82 (s, 1H), 3.32 (d, *J* = 2.3 Hz, 2H), 2.34 (t, *J* = 2.4 Hz, 1H). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.70 (bs, 1H), 7.98 (d, *J* = 8.1 Hz, 2H), 7.46 (d, *J* = 8.2 Hz, 2H), 7.21 (d, *J* = 7.1 Hz, 1H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.84 (d, *J* = 8.0 Hz, 1H), 6.66 (t, *J* = 7.5 Hz, 1H), 3.83 (s, 2H), 3.79 (s, 2H), 3.61 (s, 2H), 3.31 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 165.53, 146.96, 144.52, 142.10, 134.03, 130.07, 128.91 (2C), 128.26 (2C), 127.19, 126.97, 124.06, 117.11, 116.86, 78.39, 77.04, 57.00, 44.90, 41.86. ¹⁹F NMR (376 MHz, CDCl₃) δ -142.02 (dd, *J* = 21.0, 10.2 Hz, 2F), -152.07 (dd, *J* = 21.2, 10.4 Hz, 2F). HRMS (ESI-TOF) *m*/z calcd for C₂₄H₁₈F₄N₆O [M+H]⁺; 483.1551, found: 483.15590.

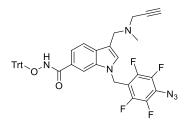

4-((((perfluorophenyl)methyl)(prop-2-yn-1-yl)amino)methyl)-N-(trityloxy)benzamide (**41).** Following general procedure (B), the reaction of **40** (0.4 mg, 1.08 mmol) and **19** (0.42 g, 1.39 moles) gave **41** as a white solid (0.43 mg, 64% yield). ¹H NMR (400 MHz, DMSO- d_6) δ 10.86 (bs, 1H), 7.50-7.40 (m, 5H), 7.40–7.21 (m, 14H) 3.77 (s, 2H), 3.67 (s, 2H), 3.27–3.20 (m, 3H). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.56 (d, J = 6.1 Hz, 5H), 7.45 – 7.29 (m, 13H), 3.83 (s, 2H), 3.72 (s, 2H), 3.24 (d, J = 2.1 Hz, 2H), 2.30 (t, J = 2.1 Hz, 1H). ¹³C NMR (101 MHz, DMSO– d_6) δ 143.00, 129.62 (6C), 129.36 (2C), 128.70 (2C), 127.95 (6C), 127.87 (3C), 92.87, 78.28, 77.02, 56.89, 44.76, 41.65. ¹⁹F NMR (376 MHz, DMSO– d_6) δ – 142.10 (dd, *J* = 23.6, 7.3 Hz, 2F), –156.04 (t, *J* = 22.3 Hz, 1F), –163.08 (td, *J* = 23.4, 7.5 Hz, 2F). MS (ESI) *m/z*: 627.2 [M+H]⁺ and 625.1 [M-H]⁻. HRMS (ESI–TOF) *m/z* calcd for C₃₇H₂₇F₅N₂O₂ [M+H]⁺: 627.2065, found: 627.20710.


4-(((4-azido-2,3,5,6-tetrafluorobenzyl)(prop-2-yn-1-yl)amino)methyl)-*N*-(trityloxy)benzamide (42). Following general procedure (E) at 80 °C for 18 h, **41** (60 mg, 0.1 mmol) was azidated and the crude product was purified on a short column eluting 20% EtOAc/hexanes to give **42** as a yellow oil (30 mg, 46% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.01–7.34 (m, 19H), 3.81 (s, 2H), 3.71 (s, 2H), 3.29 (s, 2H), 2.47–2.22 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 141.77, 131.44, 129.16, 128.93 (8C), 128.06 (8C), 127.87 (3C), 127.60, 127.15, 77.34, 77.02, 76.70, 73.88, 56.82, 45.09, 41.56. ¹⁹F NMR (376 MHz, CDCl₃) δ -142.13 (dd, J = 21.2, 10.3 Hz, 2F), -152.12 (dd, J = 21.2, 10.4 Hz, 2F). MS (ESI) *m/z*: 648.2s [M-H]⁻.

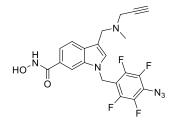

4-(((4-azido-2,3,5,6-tetrafluorobenzyl)(prop-2-yn-1-yl)amino)methyl)-*N***-hydroxybenzamide** (11). Following general procedure (F) for 30 min, 42 (30 mg, 0.046 mmol) was detritylated to give **11** as a brown solid (6 mg, 32% yield). ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.18 (bs, 1H), 9.00 (bs, 1H), 7.70 (d, *J* = 8.1 Hz, 2H), 7.35 (d, *J* = 7.9 Hz, 2H), 3.77 (s, 2H), 3.71 (s, 2H), 3.31 (s, 2H), 3.16 (s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 164.49, 141.79, 132.23, 128.94 (2C), 127.30 (2C), 78.37, 77.01, 56.91, 44.89, 41.84. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -143.03 (dd, *J* = 22.9, 9.6 Hz, 2F), -152.85 (dd, *J* = 22.5, 9.2 Hz, 2F). MS (ESI) *m/z*: 408.1 [M+H]⁺. HRMS (ESI-TOF) *m/z* calcd for C₁₈H₁₃F₄N₅O₂ [M+H]⁺: 408.1078, found: 408.10910.


Methyl 3–formyl–1-((perfluorophenyl)methyl)-1*H***–indole–6–carboxylate (46). To a solution of methyl 3–formyl–1***H***– indole–6–carboxylate, 45** (230 mg, 1.13 mmol) and pentafluorobenzylbromide (0.17 mL, 1.13 mmol) in anhydrous dimethylformamide (3 mL) was added sodium hydride (60% mineral oil suspension, 67.9 mg, 1.69 mmol) and stirred at rt for 18 h. Upon completion, the reaction mixture was diluted with water (30 mL), extracted with EtOAc (3×30 mL). The combined organic extracts were washed with dilute sodium bicarbonate (30 mL) and brine (30 mL) then dried over anhydrous sodium sulfate, filtered and solvent removed in vacuo. The product **46** was obtained as orange–yellow solid (430 mg, 99%) and used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 10.06 (s, 1H), 8.42–8.21 (m, 2H), 8.03 (d, *J* = 7.8 Hz, 1H), 7.94 (s, 1H), 5.52 (s, 2H), 3.99 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 183.99, 166.75, 146.25, 143.74, 139.31, 138.61, 136.04, 128.33, 126.11, 123.93, 121.62, 118.82, 111.31, 99.59, 51.93, 37.63. HRMS (ESI–TOF) *m/z* calcd for C₁₈H₁₀F₅NO₃ [M+H]⁺: 384.0654, found: 384.0655.

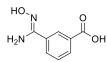
Methyl 3-((methyl(prop-2-yn-1-yl)amino)methyl)-1-((perfluorophenyl)methyl)-1*H*-indole-6-carboxylate (47). To a solution of 46 (360 mg, 0.94 mmol) in dichloroethane (3 mL) was added *N*-methylpropargylamine (0.237 mL, 2.8 mmol) and sodium triacetoxyborohydride (398.3 mg, 1.88 mmol). The reaction mixture was stirred at rt under nitrogen for 5 h then concentrated, diluted with water (3 mL), pH adjusted by 1N sodium hydroxide to ca. 9 and extracted with DCM (3×3mL). The DCM extracts were combined, dried over anhydrous sodium sulfate and the solvent was evaporated in vacuo to yield 47 as an orange oil (400 mg, 97%) which was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (s, 1H), 7.88–7.80 (m, 1H), 7.77 (dd, *J* = 7.7, 5.1 Hz, 1H), 7.28 (s, 1H), 5.42 (s, 2H), 3.98 (s, 3H), 3.75 (s, 2H), 3.33 (s, 2H), 2.38 (s, 3H), 2.31 (d, *J* = 2.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 167.53, 146.13, 143.72, 136.02, 135.27, 131.44, 129.77, 123.80, 120.54, 119.11, 113.54, 110.94, 109.91, 78.23, 73.01, 51.66, 49.79, 44.32, 41.39, 36.74.

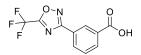


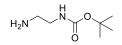
3-((Methyl(prop-2-yn-1-yl)amino)methyl)-1-((perfluorophenyl)methyl)-1*H***-indole-6-carboxylic acid (48).** Following general procedure (D–1), **47** (400 mg, 0.92 mmol) was hydrolyzed in 30 mL 6:3:1 THF/water/dioxane using lithium hydroxide (110 mg, 4.6 mmol) in a 120 h reaction to give **48** as an orange brown solid (380 mg, 98%) that was employed for the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.80 (d, *J* = 7.3 Hz, 1H), 7.69 (d, *J* = 6.5 Hz, 1H), 7.33 (s, 1H), 5.33 (s, 2H), 3.81 (s, 2H), 3.40–3.22 (m, 2H), 2.40 (s, 3H), 2.31 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.21, 146.15, 143.70, 142.31, 139.77, 138.49, 135.96, 135.17, 131.38, 130.90, 124.94, 121.10, 118.59, 111.36, 111.07, 109.84, 76.79, 74.48, 48.68, 43.38, 40.39, 36.70. HRMS (ESI–TOF) *m/z* calcd for C₂₁H₁₅F₅N₂O₂ [M–H]⁻: 421.0981, found: 421.0967.



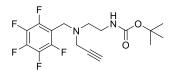
3-((Methyl(prop-2-yn-1-yl)amino)methyl)-1-((perfluorophenyl)methyl)-N-(trityloxy)-1H-indole-6-carboxamide

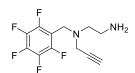

(49). Following general procedure (B), 48 (400 mg, 1.0 mmol) and 19 (326 mg, 1.2 mmol) were coupled in 6 h reaction. The crude product was purified by silica gel chromatography eluting a gradient of 10–80% EtOAc/hexanes to give 49 as white solid (300 mg, 50%). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.76 (s, 1H), 7.66–7.53 (m, 7H), 7.42–7.19 (m, 12H), 7.10 (d, *J* = 7.3 Hz, 1H), 5.33 (s, 2H), 3.70 (s, 2H), 3.28 (s, 2H), 2.33 (s, 3H), 2.28 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.39, 147.25, 143.63, 141.60 (3C), 139.86, 135.27, 130.56, 129.30, 128.52 (6C), 127.63 (6C), 127.39 (3C), 125.89, 119.40, 117.44, 113.39, 108.75, 92.83, 78.16, 78.16, 73.03, 49.75, 44.24, 41.34, 36.75. HRMS (ESI–TOF) *m/z* calcd for C₄₀H₃₀F₅N₃O₂ [M+H]⁺: 680.2331, found: 680.2312.


1-(4–Azido–2,3,5,6–tetrafluorobenzyl)-3-((methyl(prop–2–yn–1–yl)amino)methyl)-*N*-(trityloxy)-1*H*–indole–6– carboxamide (50). Following general procedure (E), **49** (300 mg, 0.442 mmol) was azidated at 50 °C for 22 h. After the workup, **50** was given as a brown solid (305 mg, 98%) which was used for the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.75 (s, 1H), 7.60 (s, 5H), 7.43–7.20 (m, 12H), 7.11 (s, 1H), 5.31 (s, 2H), 3.70 (s, 2H), 3.28 (s, 2H), 2.33 (s, 3H), 2.29 (d, J = 2.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.70, 141.61 (3C), 135.24, 130.57, 129.43, 128.54 (6C), 127.64 (6C), 127.39 (3C), 125.84, 119.35, 117.46, 113.15, 108.76, 92.83, 78.11, 73.10, 49.70, 44.19, 41.29, 36.85. ¹⁹F NMR (376 MHz, CDCl₃) δ –139.96—140.95 (m, 2F), –149.04 (d, J = 21.2 Hz, 2F). HRMS (ESI–TOF) *m/z* calcd for C₄₀H₃₀F₄N₆O₂ [M–H]⁻: 701.2293, found: 701.2295.

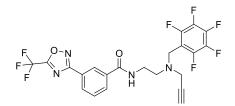

1-(4–Azido–2,3,5,6–tetrafluorobenzyl)-*N***–hydroxy–3-((methyl(prop–2–yn–1–yl)amino)methyl)-1***H***–indole–6– carboxamide (12). Following general procedure (F), 50** (210 mg, 0.3 mmol) was detritylated in 3 h at rt under nitrogen atmosphere to give **12** as a brown solid (50 mg, 36%). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.77 (s, 1H), 7.41 (s, 1H), 7.29 (s, 1H), 5.39 (s, 2H), 3.76 (s, 2H), 3.33 (s, 2H), 2.38 (s, 3H), 2.32 (s, 1H). ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.12 (bs, 1H), 8.97 (bs, 1H), 7.96 (s, 1H), 7.64 (d, *J* = 8.1 Hz, 1H), 7.5 –7.38 (m, 2H), 5.57 (s, 2H), 3.64 (s, 2H), 3.25 (s, 2H), 3.19 (s, 1H), 2.21 (s, 3H). ¹³C NMR (101 MHz, DMSO–*d*6) δ 165.78, 135.82, 130.65, 130.35, 126.88, 119.58, 118.13, 112.68, 111.24, 109.47, 79.62, 76.34, 50.40, 44.73, 41.45, 37.59. ¹⁹F NMR (376 MHz, DMSO–*d*₆) δ –143.36 (dd, *J* = 22.3, 9.1 Hz, 2F), –151.78 (dd, *J* = 22.3, 9.2 Hz, 2F). HRMS (ESI–TOF) *m/z* calcd for C₂₁H₁₆F₄N₆O₂ [M–H]: 459.1198, found: 459.1196.

(*Z*)-3-(*N*-hydroxycarbamimidoyl)benzoic acid (52). To a solution of 3–cyanobenzoic acid 51 (1.00 g, 6.8 mmol) in ethanol (50 mL), 8–hydroxyquinoline (5 mg, 0.03 mmol) was added. A solution of hydroxylamine hydrochloride (0.95 g, 13.6 mmol) in water (8 mL) and sodium carbonate (1.20 g, 10.9 mmol) in water (12 mL) were added successively. The reaction was refluxed for 4 h (85 °C). Upon completion, ethanol was removed under vacuum, the residue was diluted with water and set in an ice–bath. The cooled mixture pH was adjusted to ca. 3.5 using 1 N HCl, the precipitate was filtered, washed with iced water and dried in vacuo to give 52 as a greyish–white solid (500 mg, 41%),. ¹H NMR (400 MHz, DMSO–*d*₆) δ 9.73 (bs, 1H), 8.27 (s, 1H), 7.93 (d, *J* = 6.9 Hz, 1H), 7.88 (d, *J* = 6.9 Hz, 1H), 7.49 (t, *J* = 7.0 Hz, 1H), 5.89 (bs, 2H). ¹³C NMR (101 MHz, DMSO–*d*₆) δ 159.26, 150.36, 133.70, 129.63, 129.44, 128.42, 128.39, 126.41. HRMS (ESI–TOF) *m/z* calcd for C₈H₈N₂O₃ [M+H]⁺: 181.0608, found: 181.0603.

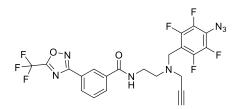

3-(5-(Trifluoromethyl)-1,2,4–oxadiazol–3–yl)benzoic acid (53). A suspension of the benzamidoxime **52** (500 mg, 2.8 mmol) in anhydrous pyridine (8 mL) was cooled in an ice bath. Trifluoroacetic anhydride, TFAA (1.62 mL, 8.34 mmol) was added dropwise over 20 min. The reaction was slowly warmed to rt and further heated to 50 °C for 3 h. The reaction mixture was poured into ice–water and pH adjusted to ca. 4 by 10% hydrochloric acid. The product was extracted by EtOAc and the solvent was removed under reduced pressure. The crude was purified by silica gel chromatography eluting 3–20% EtOAc/hexanes to give **53** as white crystals (200 mg, 25%). ¹H NMR (400 MHz, DMSO–*d*₆) δ 13.42 (bs, 1H), 8.57 (s, 1H), 8.30 (d, *J* = 7.8 Hz, 1H), 8.21 (d, *J* = 7.8 Hz, 1H), 7.77 (t, *J* = 7.8 Hz, 1H). ¹³C NMR (101 MHz, DMSO–*d*₆) δ 168.49, 167.97, 166.35, 133.12, 132.11, 131.44, 130.27, 128.00, 124.99, 120.81. HRMS (ESI–TOF) *m/z* calcd for C₁₀H₅F₃N₂O₃ [M–H]: 257.0179, found: 257.0191.


tert–Butyl (2–aminoethyl)carbamate (55). A solution of di–*tert*–butyl dicarbonate (2.5 g, 12 mmol) in 60 mL chloroform was added dropwise to a solution of 1,2–diamimoethane **54** (8.3 mL, 125 mmol) in 125 mL of chloroform over 3 h with vigorous stirring and cooling in an ice bath. The reaction mixture was stirred for additional 16 h at rt. The reaction mixture was concentrated in vacuo then washed with (6×60 mL) of water. The chloroform layer was dried over anhydrous sodium sulfate and evaporated to give **55** as a colorless oil (1.5 g, 80%) which was used for the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 4.87 (bs, 1H), 3.27–3.11 (m, 2H), 2.80 (dd, *J* = 7.8, 3.7 Hz, 2H), 1.46 (s, 9H), 1.35 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.19, 79.22, 41.89, 28.40 (9C), 28.37. HRMS (ESI–TOF) *m/z* calcd for C₇H₁₆N₂O₂ [M+H]⁺: 161.1285, found: 161.1284.

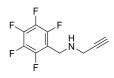
$$F \xrightarrow{F} F \xrightarrow{N} H \xrightarrow{N} O \xrightarrow{N} O$$


tert–Butyl (2-(((perfluorophenyl)methyl)amino)ethyl)carbamate (56). Following general procedure (A), pentafluorobenzaldehyde (1.53 g, 7.81 mmol) and **55** (1.4 g, 8.72 mmol) were reacted, then the crude product was purified by silica gel chromatography eluting with 20–50% EtOAc/hexanes to give **56** as a colorless viscous oil (1.5 g, 56%). ¹H NMR (400 MHz, CDCl₃) δ 4.86 (bs, 1H), 3.93 (s, 2H), 3.34–3.15 (m, 2H), 2.80–2.63 (m, 2H), 2.06 (bs, 1H), 1.45 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 155.65, 143.66, 143.02, 142.67, 104.76, 78.95, 47.66 (2C), 39.72, 27.96 (9C). HRMS (ESI–TOF) *m/z* calcd for C₁₄H₁₇F₅N₂O₂ [M+H]⁺: 341.1283, found: 341.1254.

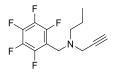
tert–Butyl (2-(((perfluorophenyl)methyl)(prop–2–yn–1–yl)amino)ethyl)carbamate (57). Following general procedure (C), **56** (500 mg, 1.47 mmol) was alkylated with propargyl bromide (80% w/v in toluene, 0.48 mL, 4.41 mmol) in 24 h reaction. After the workup, **57** was obtained an orange solid (550 mg, 98%) which was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 4.83 (s, 1H), 3.86–3.76 (m, 2H), 3.37 (d, *J* = 2.5 Hz, 2H), 3.24 (t, *J* = 5.6 Hz, 2H), 2.72 (t, *J* = 5.3 Hz, 2H), 2.25 (d, *J* = 2.4 Hz, 1H), 1.44 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 155.91, 148.30, 148.03, 130.49, 108.67, 79.22, 77.45, 73.64, 52.24, 44.68, 41.88, 37.70, 28.34 (9C). HRMS (ESI–TOF) *m/z* calcd for C₁₇H₁₉F₅N₂O₂ [M+H]⁺: 379.1439, found: 379.1426.



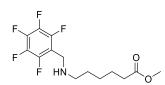
*N*¹-((perfluorophenyl)methyl)-*N*¹-(prop-2-yn-1-yl)ethane-1,2-diamine (58). To a solution of 57 (550 mg, 1.45 mmol) in 1,4-dioxane (6 mL) was added 4M hydrochloric acid in 1,4-dioxane (10 mL) and stirred for 3 h at rt. The solvent was then evaporated under vacuo to yield a brown sticky solid (453 mg, 99%). The amine hydrochloride salt was converted into the free amine base by adding trimethylamine (0.2 mL) to a DCM suspension till complete dissolution then the solvent was evaporated yielding 58 as a light brown solid (400 mg). ¹H NMR (400 MHz, DMSO-*d*₆) δ 4.37 (bs, 2H), 3.84 (s, 2H), 3.48 (s, 2H), 3.29 (s, 1H), 2.91 (dd, *J* = 11.3, 5.6 Hz, 2H), 2.79 (t, *J* = 6.1 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 110.93, 77.63, 76.91, 49.18, 44.44, 41.55, 36.10. HRMS (ESI-TOF) *m/z* calcd for C₁₂H₁₁F₅N₂ [M+H]⁺: 279.0915, found: 279.0907.



N-(2-(((Perfluorophenyl)methyl)(prop-2-yn-1-yl)amino)ethyl)-3-(5-(trifluoromethyl)-1,2,4-oxadiazol-3-

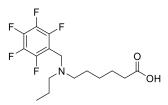

yl)benzamide (59). Following general procedure (B), **53** (200 mg, 0.8 mmol) and **58** (214 mg, mmol) were coupled in 20 h. During the workup pH was made ca. 9, extracted with DCM (3×10 mL). The crude product was purified by silica gel chromatography eluting 5–35% EtOAc/hexanes to give **59** as a white solid (220 mg, 55%). ¹H NMR (400 MHz, CDCl3) δ 8.47 (s, 1H), 8.28 (d, J = 7.8 Hz, 1H), 8.02 (d, J = 7.8 Hz, 1H), 7.65 (t, J = 7.8 Hz, 1H), 6.74 (bs, 1H), 3.89 (s, 2H), 3.63 (dd, J = 11.0, 5.3 Hz, 2H), 3.43 (d, J = 2.2 Hz, 2H), 2.94 (t, J = 5.7 Hz, 2H), 2.34 (t, J = 2.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.61, 166.01, 135.56, 130.90, 130.44, 129.65, 125.76, 125.41, 77.22, 74.05, 51.65, 44.89, 41.68, 36.99.¹⁹F NMR (376 MHz, CDCl₃) δ -65.39 (s, 3F), -142.42 (dd, J = 22.0, 8.1 Hz, 2F), -154.12 (t, J = 20.7 Hz, 1F), -161.62 (dt, J = 22.2, 8.1 Hz, 2F). HRMS (ESI–TOF) *m/z* calcd for C₂₂H₁₄F₈N₄O₂ [M+H]⁺: 519.1062, found: 519.1048.

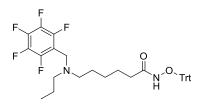
N-(2-((4–Azido–2,3,5,6–tetrafluorobenzyl)(prop–2–yn–1–yl)amino)ethyl)-3-(5-(trifluoromethyl)-1,2,4–oxadiazol–3– yl)benzamide (15). Following general procedure (E), **59** (200 mg, 0.38 mmol) was azidated at 80 °C for 18 h. The crude was purified by a short silica gel column eluting 25% EtOAc/hexanes to give **15** as a white solid (50 mg, 25%). ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 8.29 (d, *J* = 7.7 Hz, 1H), 8.02 (d, *J* = 7.8 Hz, 1H), 7.66 (t, *J* = 7.8 Hz, 1H), 6.76 (bs, 1H), 3.88 (s, 2H), 3.63 (dd, *J* = 10.8, 5.2 Hz, 2H), 3.43 (d, *J* = 2.0 Hz, 2H), 2.93 (t, *J* = 5.6 Hz, 2H), 2.34 (t, *J* = 2.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.64, 165.97, 135.57, 130.87, 130.43, 129.63, 125.82, 125.43, 77.22, 74.01, 51.59, 45.00, 41.77, 37.00. ¹⁹F NMR (376 MHz, CDCl₃) δ –65.37 (s, 3F), –142.81 (dd, *J* = 21.1, 10.3 Hz, 2F), –151.67 (dd, *J* = 21.1, 10.3 Hz, 2F). HRMS (ESI–TOF) *m/z* calcd for C₂₂H₁₄F₇N₇O₂ [M+H]⁺: 542.1170, found: 542.1166.

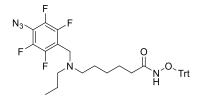


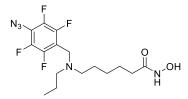
N-((perfluorophenyl)methyl)prop-2-yn-1-amine (S13). Following general procedure (A), pentafluorobenzaldehyde (0.89 g, 4.5 mmol) and propargylamine (0.32 mL, 4.9 mmol) were reacted to give S13 as colorless oil (0.8 g, 76% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.02 (t, J = 1.5 Hz, 2H), 3.47 (d, J = 2.4 Hz, 2H), 2.26 (t, J = 2.4 Hz, 1H), 1.64 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.68, 136.18, 112.89, 81.03, 71.97, 39.47, 37.68. ¹⁹F NMR (376 MHz, CDCl₃) δ -143.91 (dd, J = 22.4, 8.6 Hz, 2F), -155.26 (t, J = 20.7 Hz, 1F), -162.08 (dt, J = 22.7, 8.8 Hz, 2F). MS (ESI) *m/z*: 236.0 [M+H]⁺.

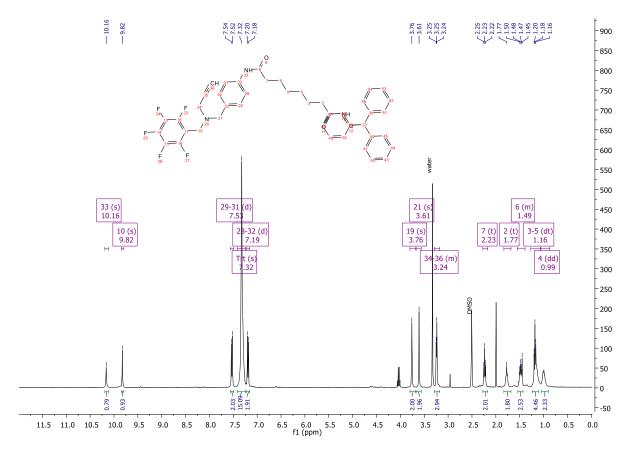
N-((perfluorophenyl)methyl)-*N*-propylprop-2-yn-1-amine (S14). Following general procedure (C), S13 (0.24 g, 1 mmol) was alkylated with propyl bromide (0.27 mL, 3 mmol) and refluxed for 20 h. The crude product was purified on a silica column eluting 0-10% EtOAc/hexanes to give S14 as a colorless oil (0.15 g, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ 3.78 (s, 2H), 3.40 (d, *J* = 2.3 Hz, 2H), 2.58–2.50 (m, 2H), 2.23 (t, *J* = 2.4 Hz, 1H), 1.58–1.45 (m, 2H), 0.91 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.04, 144.58, 112.16, 78.01, 73.11, 54.98, 44.88, 41.94, 20.56, 11.63. ¹⁹F NMR (376 MHz, CDCl₃) δ -142.05 (dd, *J* = 22.3, 8.5 Hz, 2F), -155.41 (t, *J* = 20.8 Hz, 1F), -162.48 (td, *J* = 22.7, 8.7 Hz, 2F). MS (ESI) *m/z*: 278.1 [M+H]⁺.

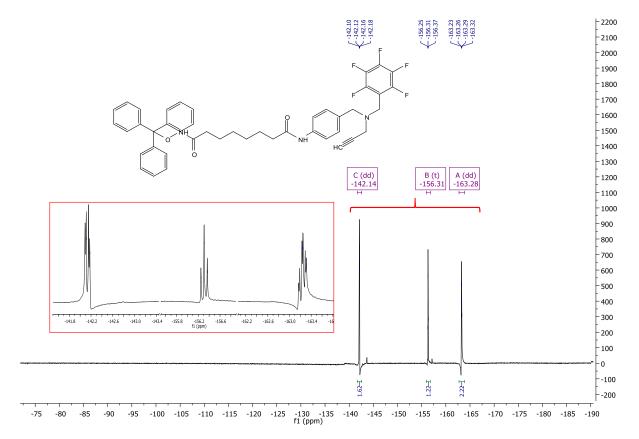

N-(4-azido-2,3,5,6-tetrafluorobenzyl)-*N*-propylprop-2-yn-1-amine (16). Following general procedure (E), SA-02-175 (0.10 g, 0.36 mmol) was azidated to give **SA-02-179** (16) as colorless oil (60 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ 3.77 (t, *J* = 1.5 Hz, 2H), 3.39 (d, *J* = 2.3 Hz, 2H), 2.57–2.50 (m, 2H), 2.23 (t, *J* = 2.4 Hz, 1H), 1.57–1.46 (m, 2H), 0.91 (t, *J* = 7.4 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -142.34 (dd, *J* = 21.4, 10.4 Hz, 2F), -152.35 (dd, *J* = 21.3, 10.4 Hz, 2F). MS (ESI) *m/z*: 301.10 [M+H]⁺. HRMS (ESI–TOF) *m/z* calcd for C₁₃H₁₂F₄N₄ [M+H]⁺: 301.1071, found: 301.1065.

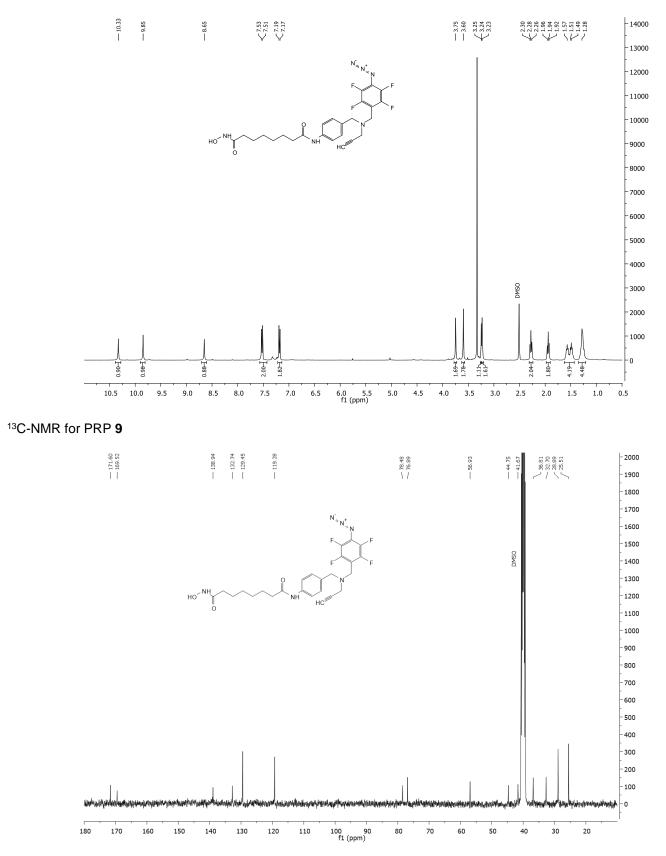

Methyl 6-(((perfluorophenyl)methyl)amino)hexanoate (S15). Following general procedure (A), pentafluorbenzaldehyde, (1.96 g, 10 mmol) and methyl 6-aminohexanoate hydrochloride (1.54 g, 10.6 mmol) were reacted for 16 h then reduced with sodium tetrahydroborate (0.60 g, 16 mmol) for 18 h. The crude product was purified by silica gel chromatography eluting 0-40% EtOAc/hexanes to give **S15** as a colorless liquid (2.6 g, 80%). ¹H NMR (400 MHz, CDCl₃) δ 3.91 (s, 2H), 3.66 (s, 3H), 2.56 (t, *J* = 7.0 Hz, 2H), 2.30 (t, *J* = 7.4 Hz, 2H), 1.70–1.56 (m, 2H), 1.48 (m, 2H), 1.40–1.29 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 174.05, 51.47, 48.57, 40.50, 33.92, 29.54, 26.71, 24.74. ¹⁹F NMR (376 MHz, CDCl₃) δ -144.78 (dd, *J* = 22.8, 8.7 Hz, 2F), -156.24 (t, *J* = 20.7 Hz, 1F), -162.62 (td, *J* = 22.6, 8.8 Hz, 2F). HRMS (ESI-TOF) *m/z* for C₁₄H₁₆F₅NO₂ [M+H]⁺ calcd: 326.1174, found: 326.1193.

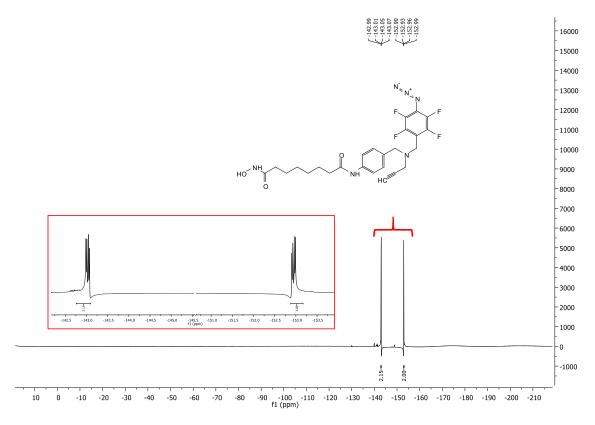

Methyl 6-(((perfluorophenyl)methyl)(propyl)amino)hexanoate (S16). The secondary amine S15 (0.88 g, 2.7 mmol) was alkylated with propyl bromide (2 mL, 20 mmol) in a sealed pressure vessel for 48 h. The crude product was purified with silica gel chromatography eluting 5-35% EtOAc/hexanes to give S16 as a glassy solid (0.88 g, 90%). ¹H NMR (400 MHz, CDCl₃) δ 3.70 (d, *J* = 9.6 Hz, 5H), 2.37 (d, *J* = 36.7 Hz, 6H), 1.49 (t, *J* = 59.0 Hz, 8H), 0.87 (s, 3H). MS (ESI) *m/z*: 368.1 [M+H]⁺.


6-(((Perfluorophenyl)methyl)(propyl)amino)hexanoic acid (S17). The tertiary amine **S16** (0.87 g, 2.4 mmol) was hydrolyzed following general procedure (D-1). Upon completion, as monitored by TLC, the reaction was brought to pH ca. 4.5 with 10% hydrochloric acid and extracted with DCM (3×30 mL). The crude product was obtained as white solid and used in the next reaction without further purification (0.76 g, 90%). ¹H NMR (400 MHz, CDCl₃) δ 3.66 (s, 2H), 2.24 (m, 8H), 1.64–1.12 (m, 6H), 0.78 (t, *J* = 6.8 Hz, 3H).

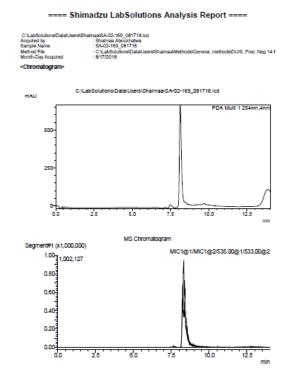

6-(((Perfluorophenyl)methyl)(propyl)amino)-*N*-(trityloxy)hexanamide (S18). Following general procedure (B), S17 (0.70 g, 2 mmol) was coupled with **19** (0.68 g, 2.5 mmol) The crude product was then purified by silica gel chromatography eluting 5-35% EtOAc/hexanes to give **19** as a white solid (0.91 g, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.49 (s, 3H), 7.36 (s, 12H), 3.69 (s, 4H), 2.39–2.30 (m, 4H), 1.47 (dd, J = 14.3, 7.3 Hz, 2H), 1.35 (s, 2H), 1.27 (d, J = 6.8 Hz, 2H), 1.04 (s, 2H), 0.86 (t, J = 7.3 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -141.91 (dd, J = 22.6, 7.6 Hz, 2F), -155.76 (t, J = 20.9 Hz, 1F), -162.24–-162.76 (m, 2F). MS (ESI) *m/z*: 611.3 [M+H]⁺ and 609.2 [M-H]⁻.

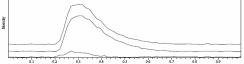

6-((4-Azido-2,3,5,6-tetrafluorobenzyl)(propyl)amino)-*N*-(trityloxy)hexanamide (S19). Following general procedure (E), **S18** (0.45 g, 0.75 mmol) was azidated with sodium azide (0.91 g, 1.5 mmol), tetrabutylammonium azide (0.02 g, 0.077 mmol) at 75 °C for 18 h. The crude brown solid was then passed through a short silica gel column eluting 35% EtOAc/hexanes to give **S19** as a colorless sticky solid (0.19 g, 40%). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.49 (s, 3H), 7.36 (s, 12H), 3.68 (s, 4H), 2.33 (s, 4H), 1.47 (dd, *J* = 13.3, 6.8 Hz, 2H), 1.35 (s, 2H), 1.28 (s, 2H), 1.04 (s, 2H), 0.86 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 129.05, 128.12, 55.40, 53.28, 44.99, 31.21, 26.80, 26.68, 20.12, 11.77. ¹⁹F NMR (376 MHz, CDCl₃) δ -142.15 (d, *J* = 11.6 Hz, 2F), -152.39 (d, *J* = 11.4 Hz, 2F). MS (ESI) *m/z*: 634.25 [M-H]⁺ and 632.15 [M-H]⁻.



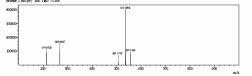

6-((4-Azido-2,3,5,6-tetrafluorobenzyl)(propyl)amino)-*N***-hydroxyhexanamide (S20).** Following general procedure (F), **S19** (0.19 g, 0.3 mmol) in DCM was detritylated to give **S20** as a sticky colorless solid (0.09 g, 80%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.32 (s, 1H), 8.65 (s, 1H), 3.67 (s, 2H), 2.33 (s, 4H), 1.91 (s, 2H), 1.42 (s, 4H), 1.22 (s, 2H), 0.81 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.49, 146.72, 141.72, 139.08, 129.43, 128.00, 113.09, 55.25, 53.15, 45.21, 32.75, 26.77, 26.60, 25.46, 20.11, 12.10. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -143.34 (dd, *J* = 22.9, 9.3 Hz, 2F), -152.75 (dd, *J* = 22.9, 9.1 Hz, 2F). HRMS (ESI–TOF) *m/z* calcd for C₁₆H₂₁F₄N₅O₂ [M+H]⁺: 392.1704, found: 392.1705.

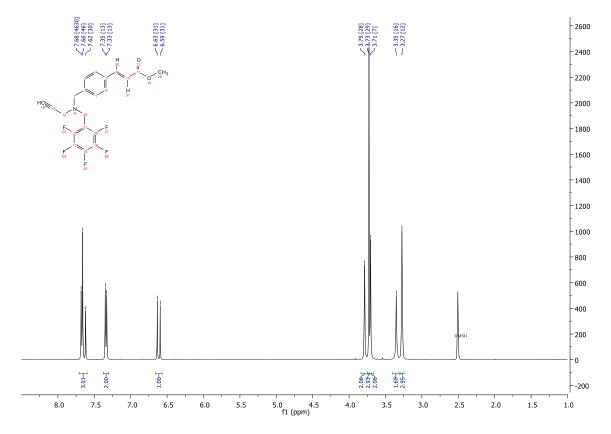
¹⁹F NMR for intermediate **25**



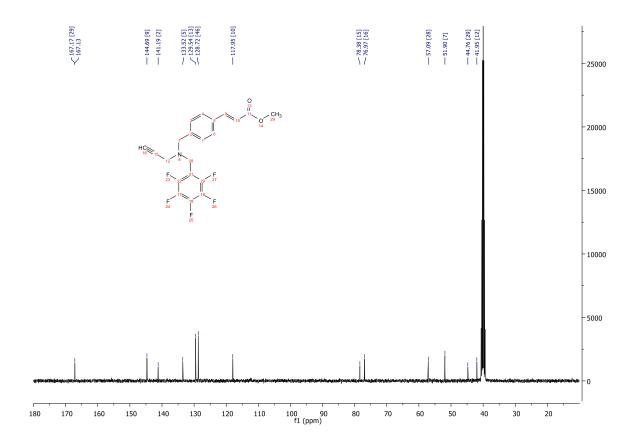


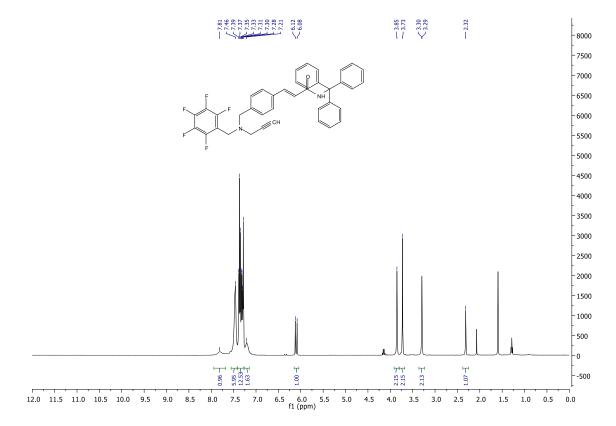
LC-MS analysis of PRP 9


HRMS report for PRP 9

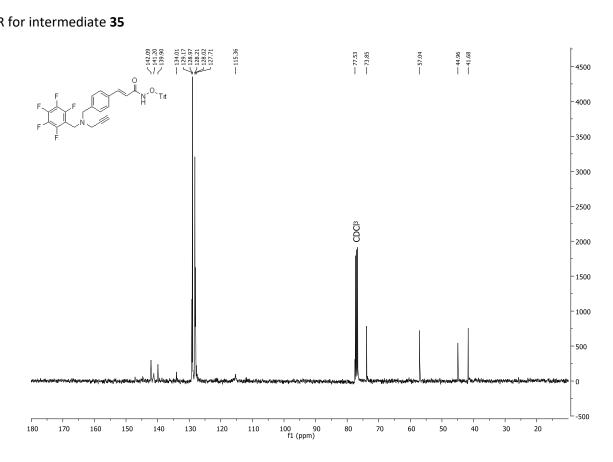


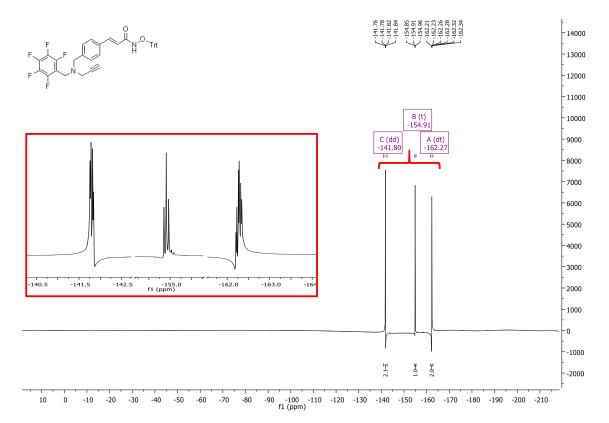
<Spectrum> Bren#1MS(E+) Ret.Time:0.08

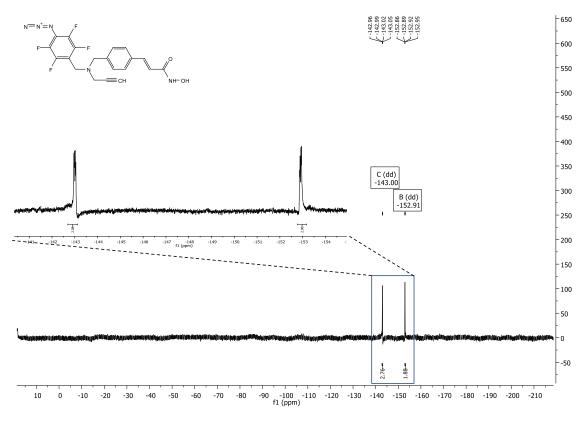


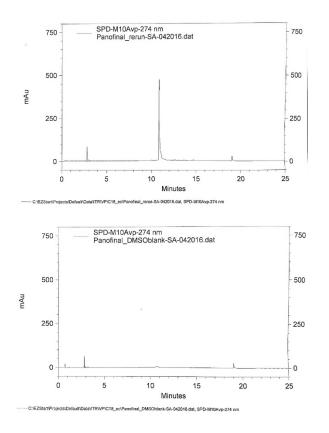

Mass Calculator									*
Formula Calculator									
535.2090 Mr 534.2017	Ion:	+ •	Charge: 1	Adduct:	н 👻	1	51	hits:	
Mass Type:	-	Mas	s Diff	Formula		DBE	Diff (ppm)	*	Calc. Formulae
Mono-isotopic 💌	39	534,205	4 0.00369	C27 H27 N4 0	02.F5	14.0	6.91	1	
	43	534,206	5 0.00480	C27 H25 N7 0	03F2	17.5	8,98		
Error Margin:	39	534, 197	B 0.00396	C26 H23 N9 0	D F3	18.5	7.41		
10 ppm 👻	51	534.196-	4 0.00530	C25 H27 N5 0	05F3	13.5	9.91		
DBE Range:	17	534.200	3 0.00147	C 25 H25 N6 0	03/#4	14.0	2.76		
	5	534.201	4 0.00037	C25 H25 N9 0	04F	17.5	0.69		
Fixed 0.0 - 45.0	23	534.204	1 0.00235	C25 H25 N7 0	D F5	14.5	4.40		
Flectron Tons:	31	534.205	2 0.00345	C25 H24 N10	O2F2	18.0	6.46		
	9	534.202	7 0.00101	C24 H29 N3 0	DSFS	9.5	1.90		
Both configurations 🔹	29	534.198	9 0.00281	C23 H24 N9 0	02F4	14.5	5.27		
HC Ratio:	8	534.202	7 0.00101	C23 H23 N10	F5	15.0	1.89	m.	
E Limit 0.0 - 3.3	4	534.201	4 0.00033	C22 H27 N6 0	04F5	10.0	0.62		
	0	534.202	5 0.00077	C22 H25 N9 0	05F2	13.5	1.45	=	Adducts
	40	F34 994	a	C 222 LUDE 4110	0100	140	0.00	11	moducts

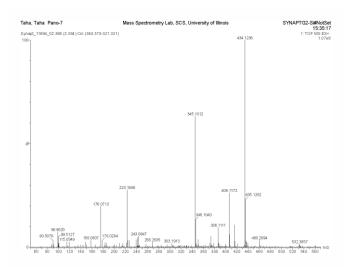
==== Shimadzu LCMSsolution Data Report ====

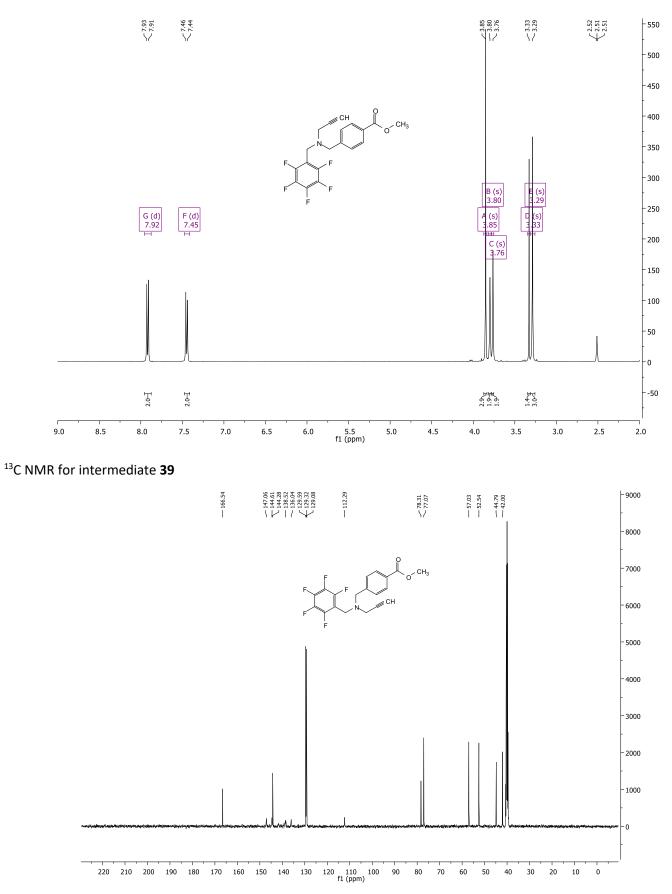


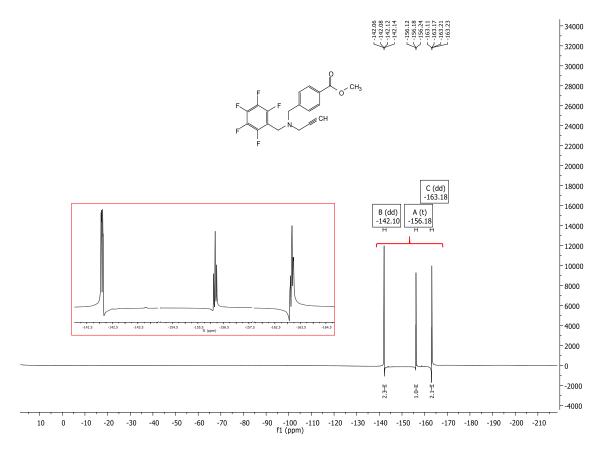

¹³C NMR for intermediate **33**



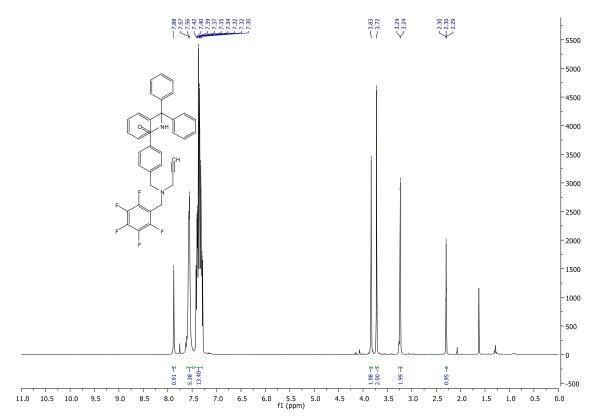

¹³C NMR for intermediate **35**


HPLC analysis of PRP 10

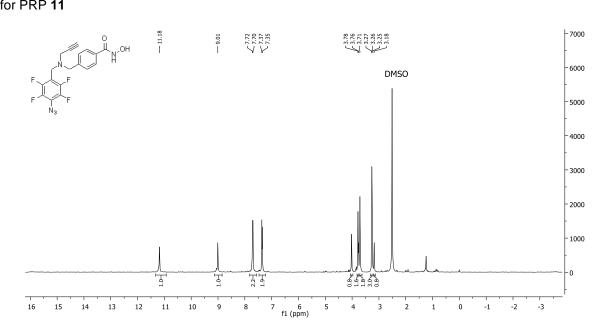


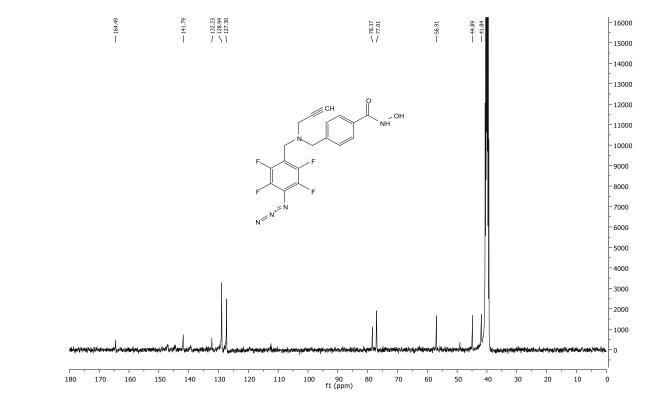

HRMS report for PRP 10

Elemental Composition Report
Single Mass Analysis
Tolerance = 5.0 PPM / DBE: min = -50.0, max = 150.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 9
Monoisotopic Mass, Even Electron Ions
98 formule() evaluated with 1 results within limits (up to 10 closest results for each mass)
Elements Used:
C: 0-100 H: 0-150 N: 4-6 O: 1-3 F: 4-4

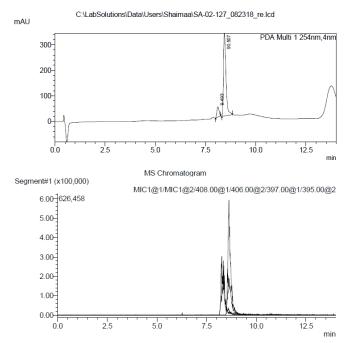

Minimum: Maximum:		5.0	5.0	-50.0 150.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula
434.1236	434.1240	-0.4	-0.9	13.5	668.0	n/a	n/a	C20 H16 N5 O2 F4



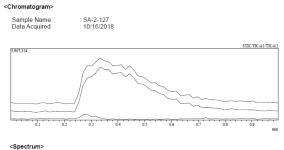



¹H NMR for intermediate **41**

¹H NMR for PRP **11**

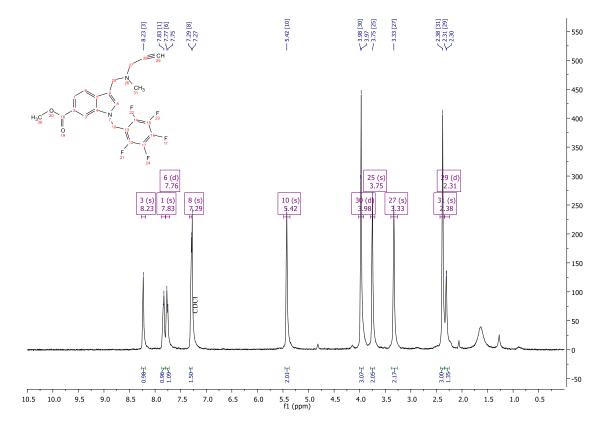


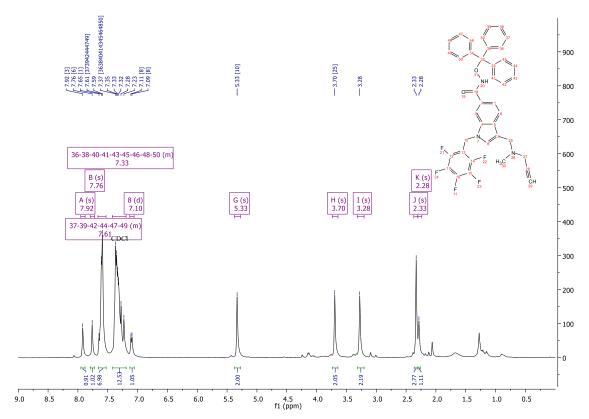
LC-MS analysis for PRP 11

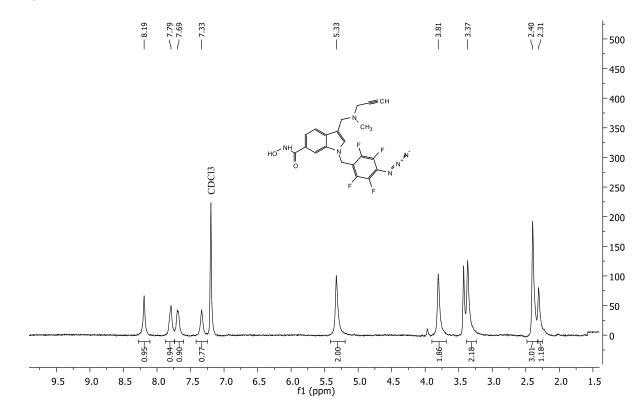

C:\LabSolutions\Data\Users\Sh	aimaa\SA-02-127_082318_re.lcd
Acquired by	: Shaimaa Aboukhatwa
Sample Name	: SA-02-127 082318 re
Method File	: C:\LabSolutions\Data\Users\Shaimaa\Methods\General methods\DUIS Posi Neg 14 I
Month-Day Acquired	: 8/23/2018

<Chromatogram>

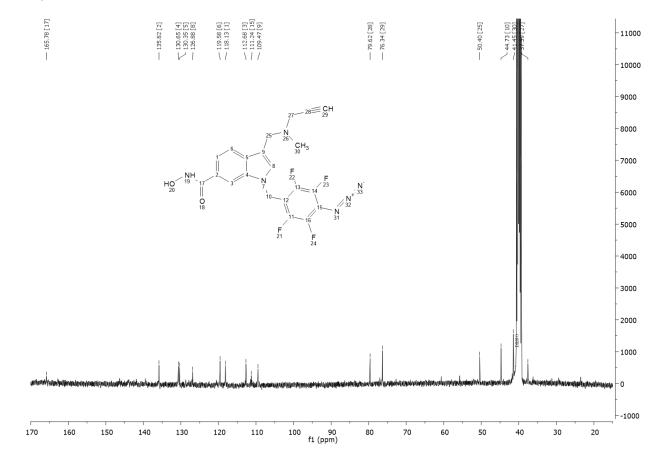
HRMS report for PRP 11


==== Shimadzu LCMSsolution Data Report ====

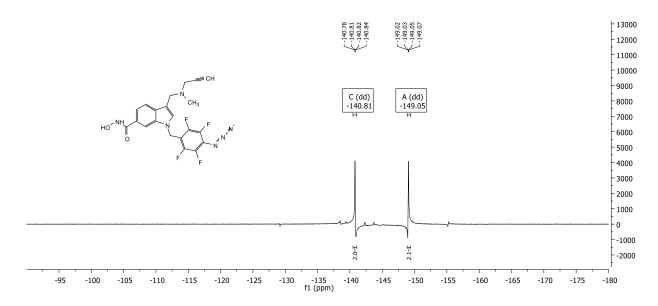

Event#: 1 MS(E+) Ret. Time : 0.333



ass Calculator								*
rmula Calculator								*
408.1091 Mr 407.1018	Ion:	+ • d	narge: 1	Adduct:	н 👻		12 hits:	
Mass Type:	-	Mass	Diff	Formula		DBE	Diff (ppm)	Calc. Formulae
Mono-isotopic 🔹	11	407, 1032	0.00136	C25 H15 N2	04	19.5	3.34	
	6	407,1007	0.00109	C23 H14 N2		16.5	2.67	
Error Margin:	1	407.1018	0.00002	C23 H13 N5	03	20.0	0.04	
5 ppm 👻	10	407.1005	0.00133	C21 H11 N8	02	20.5	3.26	
OBE Range:	2	407, 1019	0.00006	C20 H15 N2	03 F4	12.5	0.14	
Fixed 0.0 - 45.0	7	407.1030	0.00116	C20 H14 N5	04F	16.0	2.85	
	9	407,1005	0.00129	C18 H13 N5		13.0	3.16	
Electron Ions:	4	407.1016	0.00018	C18 H12 N8		16.5	0.45	
Both configurations	8	407.1030	0.00120	C17 H16 N2		8.5	2.95	
	3	407.1017	0.00014	C15 H14 N5		9.0	0.35	
IC Ratio:	5	407.1028	0.00096	C15 H13 N8		12.5	2.36	
Limit 0.0 - 3.3	12	407.1003	0.00149	C13 H12 N8	02F5	9.5	3.65	
								Adducts
Apply Nitrogen Rule								Advanced Settings
1000 Maximum Results								Elements

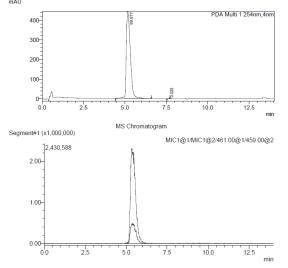


¹H NMR for intermediate **49**



¹³C NMR spectrum for PRP **12**

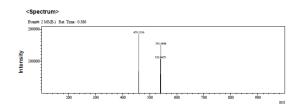
S47

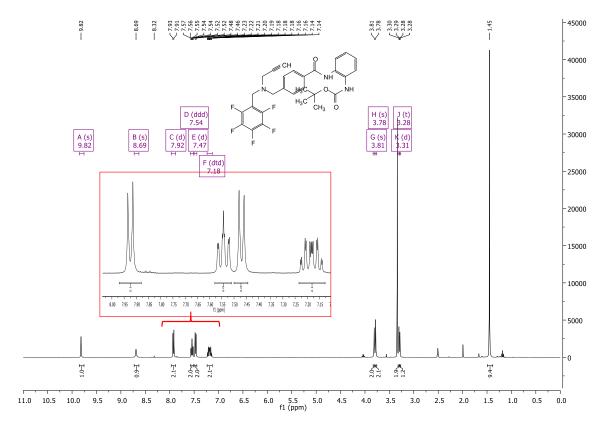

LC-MS analysis of PRP 12

==== Shimadzu LabSolutions Analysis Report ====

C'LabSolutions/Data/Users/Shaimaar/SA-200-HPLC_run3_15min_122218.lcd Acquered by : Shaimaa Aboukhatwa : Sample Name :: SA:200-HPLC_run3_15min_122218 Method File :: CLabSolutions/Data/Users/Shaimaa/Methods/General_methods/DUIS_POs_Neg 14.1 Month-Day Processed :: 122/23/0118

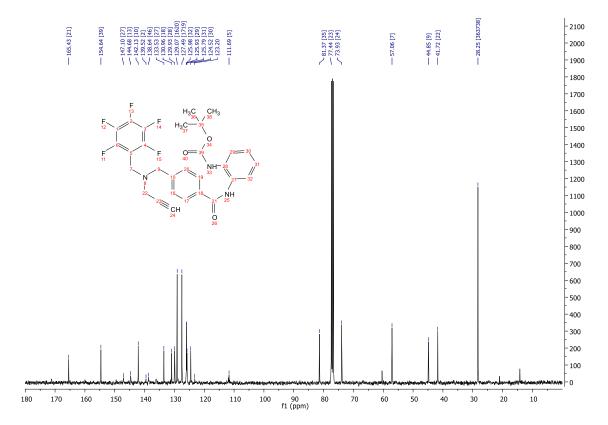
<Chromatogram>

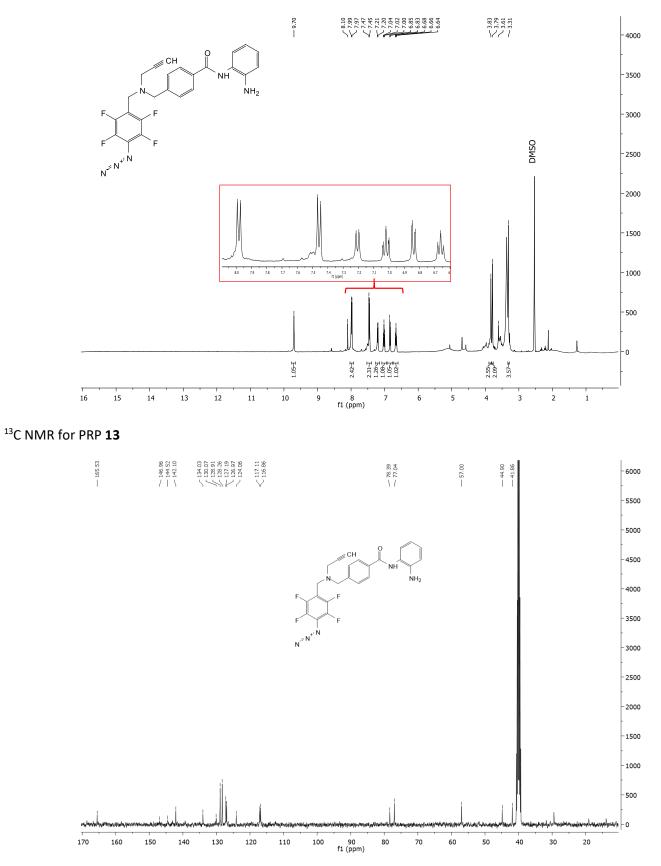


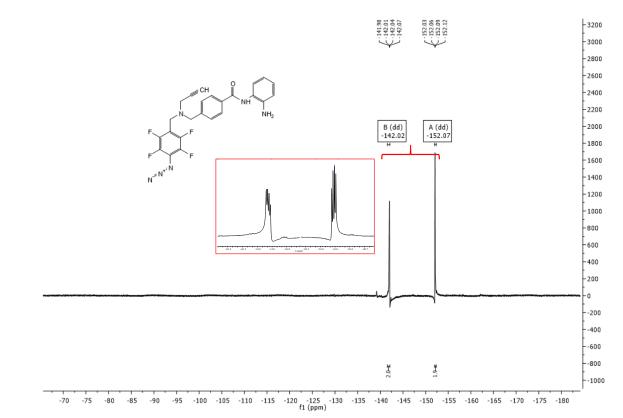

HRMS report for PRP 12

==== Shimadzu LCMSsolution Data Report ====

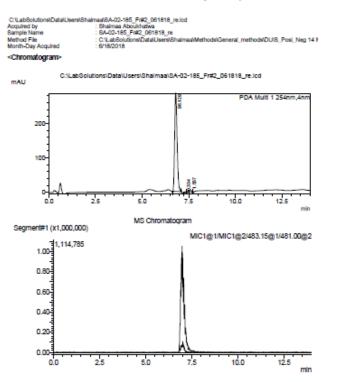

Sample Name : SA-200 Data Acquired : 12/15/2016

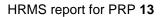

lass Calculator								*
ormula Calculator								
459.1196 Mr 460.1269	Ion:	- • Cł	arge: 1	Adduct: H	•	48	hits:	
Mass Type:	#	Mass	Diff	Formula	DBE	Diff (ppm)		Calc. Formulae
Mono-isotopic -	9	460.1271	0.00021	C21 H16 N6 O2 F4	15.0	0.46		
	28	460, 1282	0.00131	C21 H15 N9 O3 E	18.5	2.85		
Error Margin:	37	460, 1285	0.00159	C20 H20 Q3 E8	7.0	3.46		
5 ppm 👻	21	460, 1257	0.00113	C20 H20 N2 O6 F4	10.0	2.45		
	3	460,1269	0.00003	C20 H19 N5 O7 F	13.5	0.05		
DBE Range:	44	460,1246	0.00223	C19 H15 N6 F7	12.0	4.86		
✓ Fixed 0.0 - 45.0	22	460.1257	0.00113	C19 H14 N9 O F4	15.5	2.46		
Electron Ions:	11	460.1271	0.00025	C18 H18 N3 O2 F8	7.5	0.55		
	32	460.1255	0.00137	C18 H17 N8 O6 F	14.0	2.97	=	
Both configurations	31	460.1282	0.00135	C18 H17 N6 O3 F5	11.0	2.94		
HC Ratio:	2	460.1269	0.00002	C17 H21 N2 O7 F5	6.0	0.03	-	
Limit 0.0 - 3.3	20	460.1280	0.00112	C17 H20 N5 O8 F2	9.5	2.43		
5.0 - 5.5	19	460.1258	0.00109	C16 H16 N6 O F8	8.0	2.37		Adducts
Apply Nitrogen Rule	1	460.1269	0.00001	C16 H15 N9 O2 F5	11.5	0.02		
	30	460, 1255	0.00133	C15 H19 N5 O6 F5	6.5	2.88		Advanced Settings

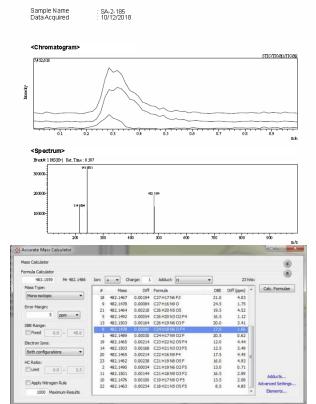


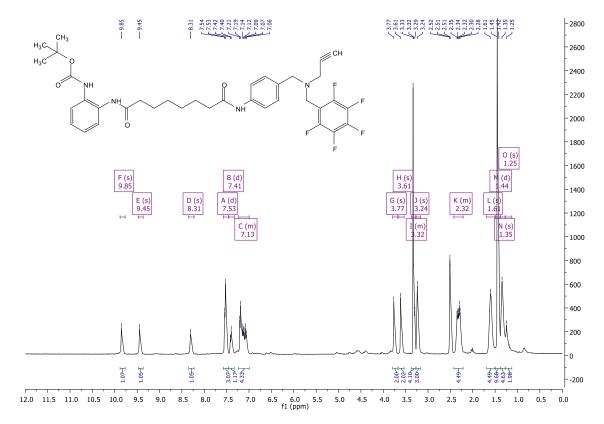

¹⁹F NMR for intermediate **43**

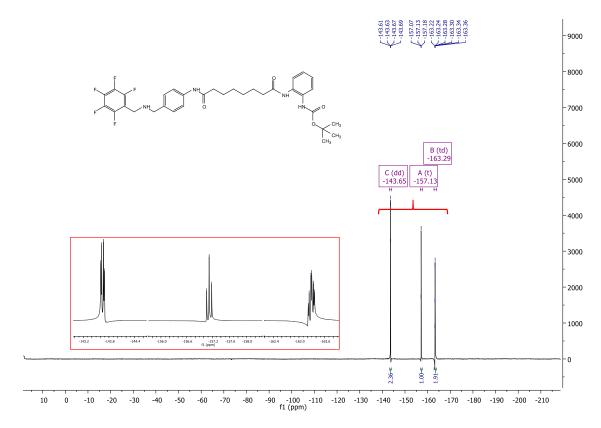
¹³C NMR for intermediate **43**

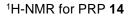


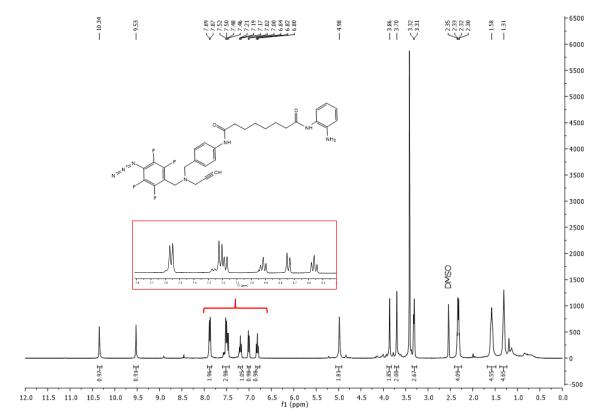


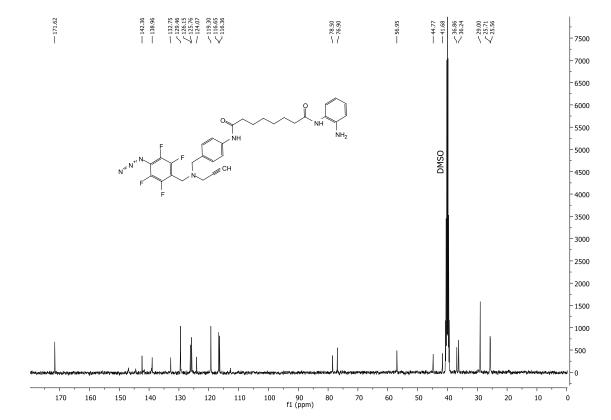

LC-MS analysis of PRP 13

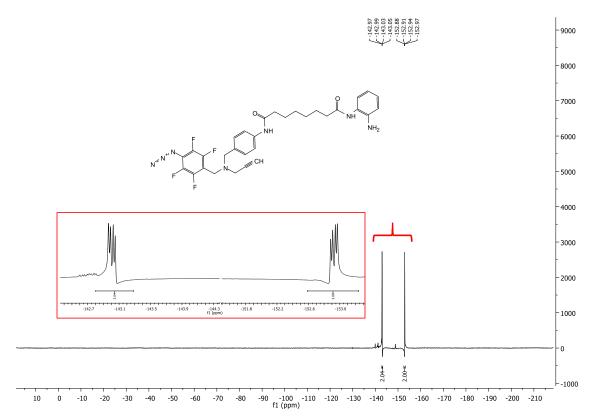

==== Shimadzu LabSolutions Analysis Report ====



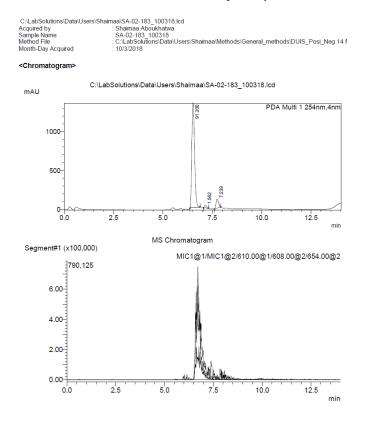

==== Shimadzu LCMSsolution Data Report ====

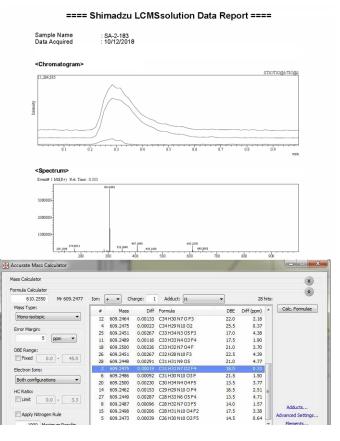


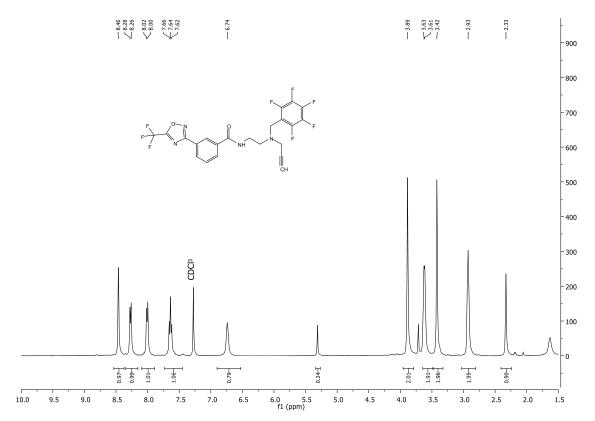

¹⁹F NMR for intermediate **26**



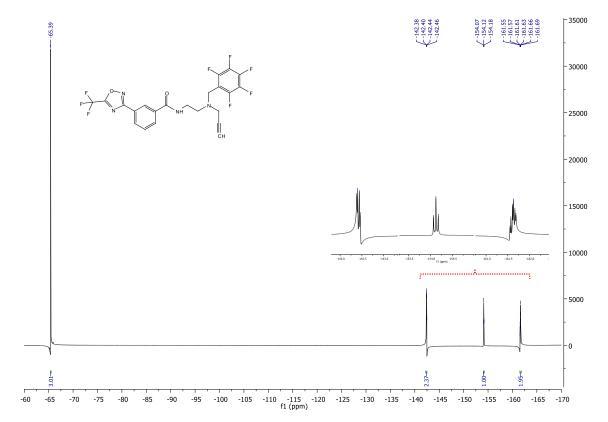
¹³C-NMR for PRP 14

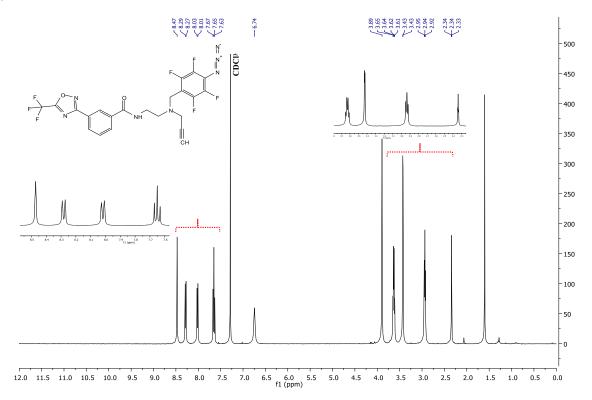


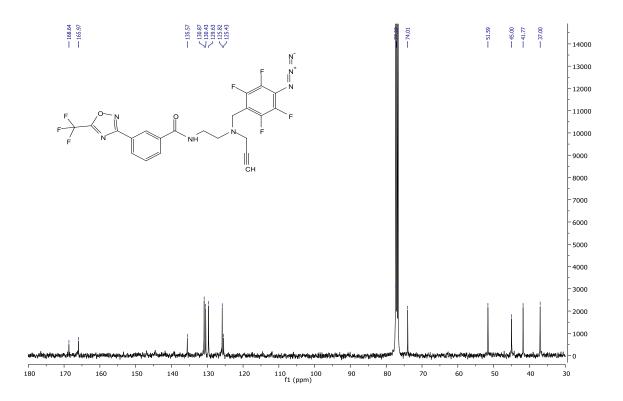


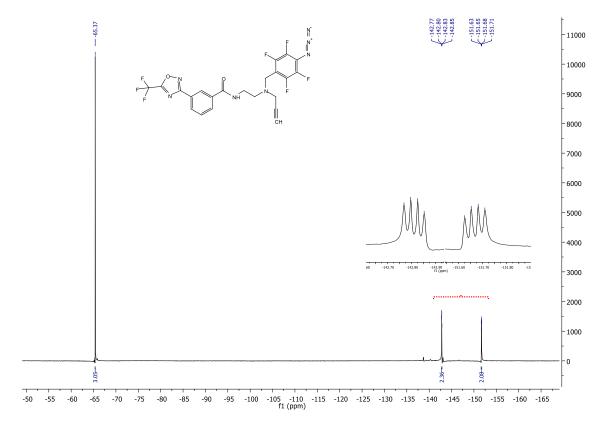

LC-MS analysis of PRP 14

==== Shimadzu LabSolutions Analysis Report ====


HRMS report for PRP 14



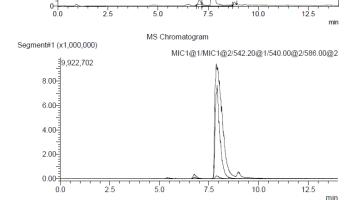


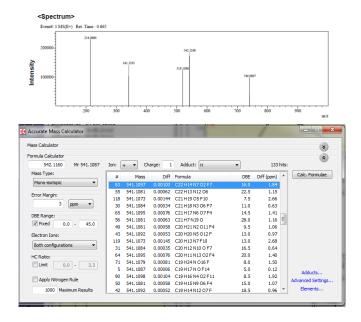


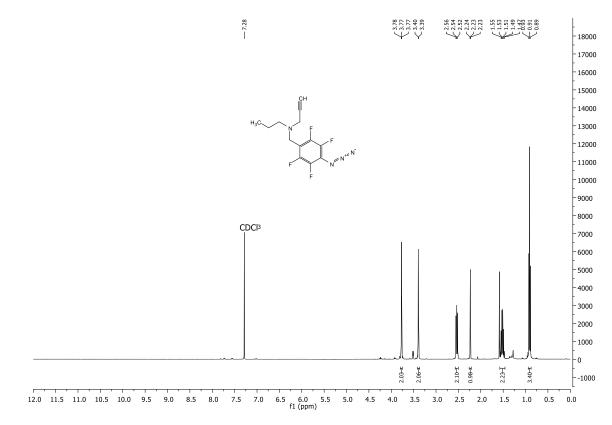
¹³C NMR spectrum for PRP **15**

LCMS PRP 15

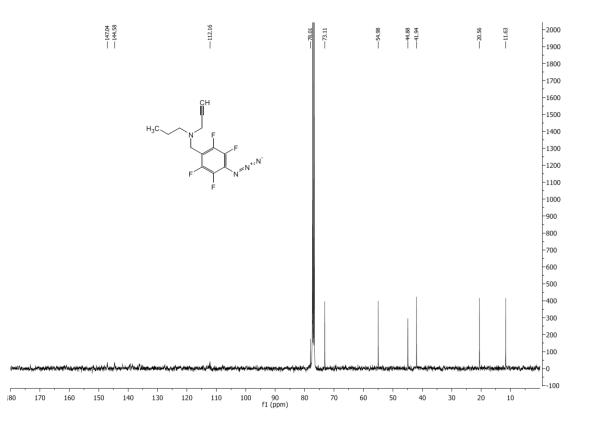
==== Shimadzu LabSolutions Analysis Report ====

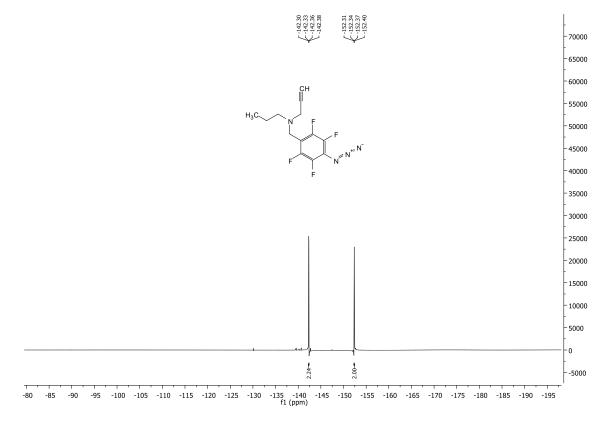

Sample Name Data Acquired


: SA-127 : 12/15/2016



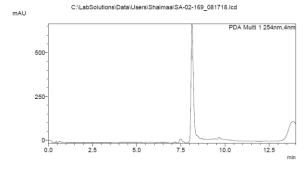
C:\LabSolutions\Data\Users\Shaimaa\SA-127_50%_conc122818.lcd mAU PDA Multi 1 254nm,4nm 400-300-200-100-650 24

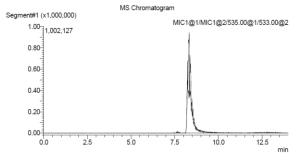




HRMS report for PRP 15 ==== Shimadzu LCMSsolution Data Report ====

¹³C NMR for **16**

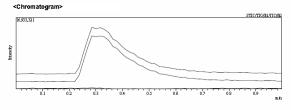



LC-MS analysis of 16

==== Shimadzu LabSolutions Analysis Report ====

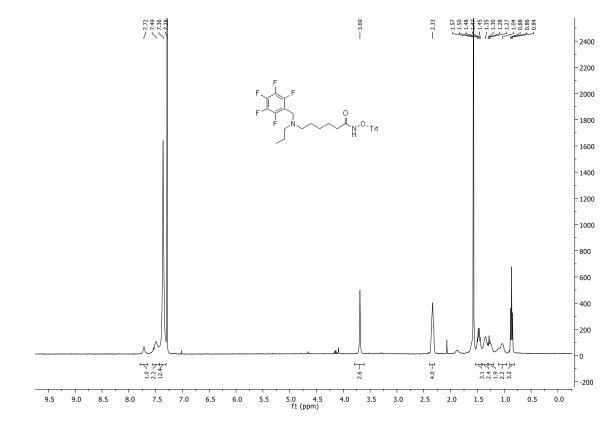
C:\LabSolutions\Data\Users\S	haimaa\SA-02-169_081718.lcd
Acquired by	: Shaimaa Aboukhatwa
Sample Name	SA-02-169 081718
Method File	: C:\LabSolutions\Data\Users\Shaimaa\Methods\General_methods\DUIS_Posi_Neg 14 I
Month-Day Acquired	: 8/17/2018

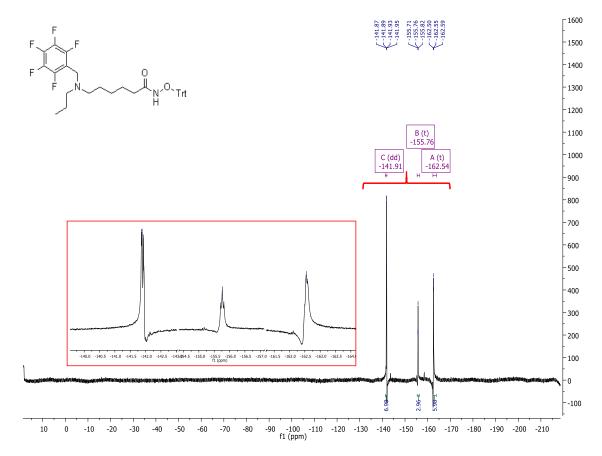
<Chromatogram>

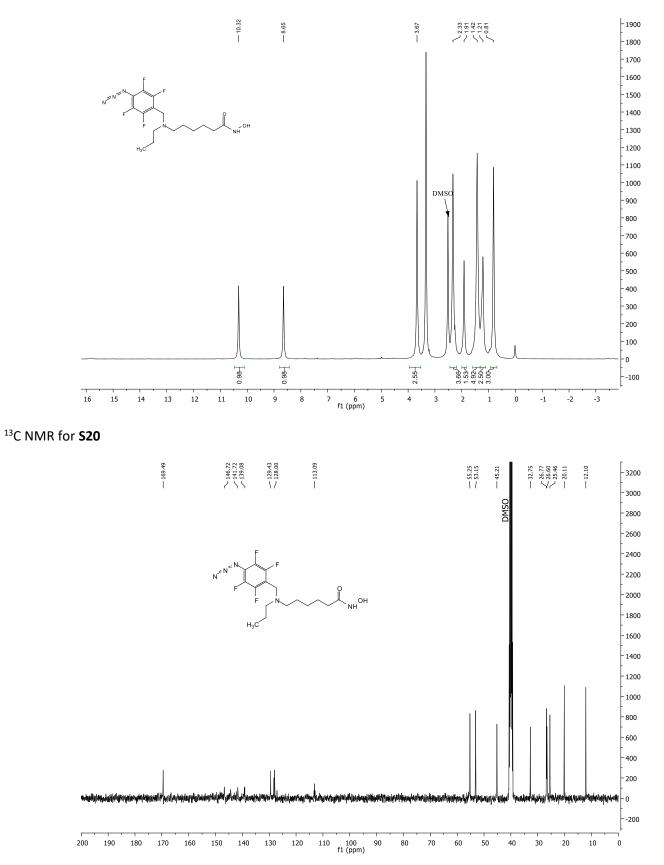


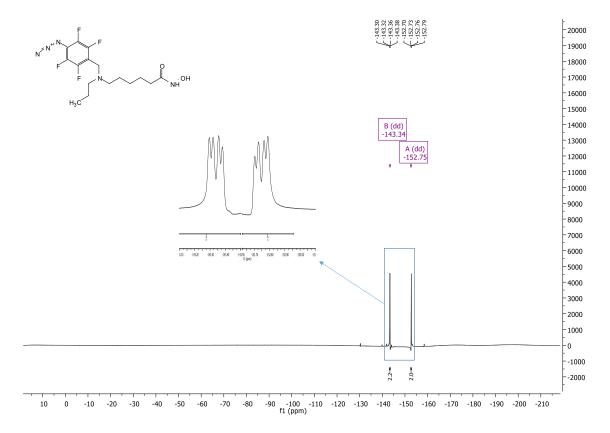

HRMS report for 16

==== Shimadzu LCMSsolution Data Report ====

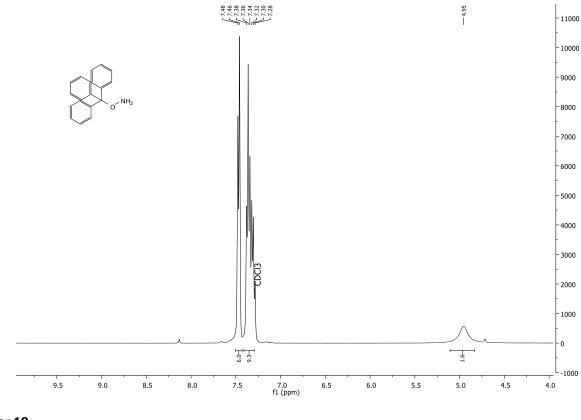


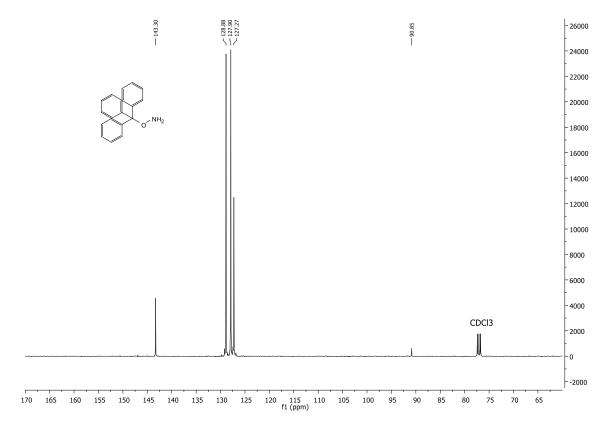

<Spectrum> Bret#1MS(B+)

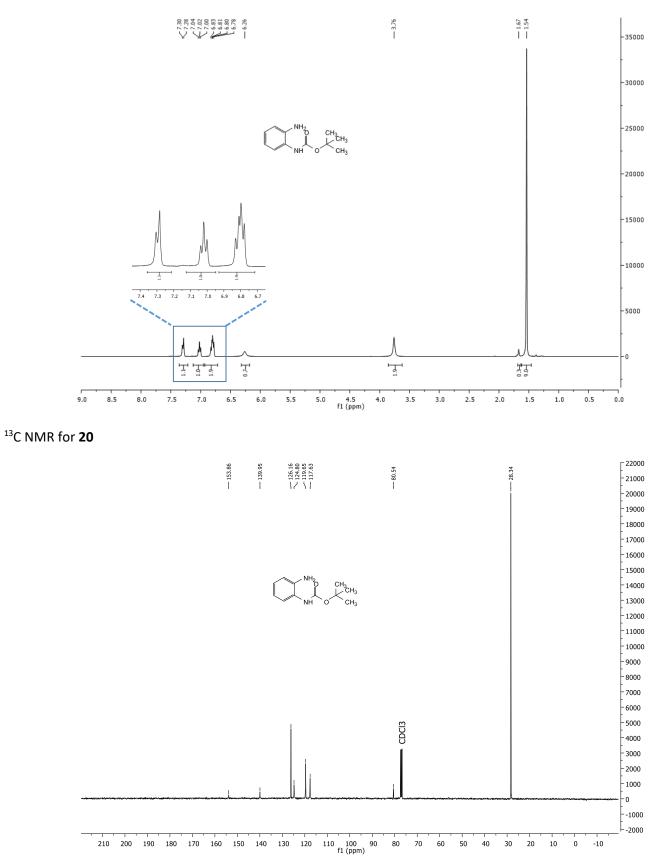



Aass Calculator								*
ormula Calculator								*
301.1065 Mr 300.0992	Ion:	+ - CH	arge: 1	Adduct: H	-	16	hits:	
Mass Type:	#	Mass	Diff	Formula	DBE	Diff (ppm)		Calc. Formulae
Mono-isotopic 💌	8	300,0998	0.00055	C17H16 O5	10.0	1.83		
	7	300,0998	0.00055	C 16 H 10 N7	15.5	1.82	1	
Error Margin:	12	300.0984	0.00079	C15 H14 N3 O4	10.5	2.64		
5 ppm 👻	9	300.0998	0.00059	C13 H12 N4 E4	8.0	1.95		
005.0	10	300.0985	0.00075	C12 H16 O4 F4	3.0	2.50		
DBE Range:	4	300.0996	0.00035	C12 H15 N3 O5F	6.5	1.17		
Fixed 0.0 - 45.0	3	300.0996	0.00034	C11 H9 N10 F	12.0	1.15		
Electron lons:	14	300.0982	0.00099	C10 H13 N6 O4F	7.0	3.31	=	
	6	300.0996	0.00039	C9 H17 O5F5	-1.0	1.30		
Both configurations 🔻	5	300.0996	0.00039	C8 H11 N7F5	4.5	1.29		
HC Ratio:	16	300.1007	0.00149	C8 H10 N10 O F2	8.0	4.96		
Lunit 0.0 - 3.3	13	300.0983	0.00095	C7H15N3O4F5	-0.5	3.17		
0.0 - 0.3	2	300.0994	0.00015	C7 H1+ N6 O5 F2	3.0	0.50		Adducts
Apply Nitrogen Rule	15	300.0980	0.00119	C5 H12 N9 O4 F2	3.5	3.97		
Apply neurogen Rule	1	300.0992	0.00005	C2 H13 N9 O5 F3	-0.5	0.15		Advanced Settings

¹⁹F NMR for intermediate **S18**




HRMS report for S20


==== Shimadzu LCMSsolution Data Report ====

Data Acquired					
<chromatogram></chromatogram>					
11,042,961				S	nc/nc@1/ric@2
htereity					
0.1 02	2 0.3	0.4 0.5 0.6	0.7	0.8	0.9 min
					mat
<spectrum> Even#1MS(E*) Ret.Time:0 00000-1</spectrum>	.649	-			
1	1971 200	B			
.0000					
40000-					
400000-					
400000-					
400000 300000					
400000					
400000		o sto oto .			900
40000- 20000- 20000- 10000- 214681	300 400	oʻ sha oha oha '			900 m/z
400000 300000 200000 100000 200	- i sdo - i i i i i i i i i i i i i i i i i i	oʻ''stoʻ''koʻ'		- alo	900 m/z
400000 30000 20000 100000 2000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 2000 20000 20000 20000 20000 20000 2000000		o' sóo oloo'	ndo	. ado	n/z
400000 30000 20000 100000 2000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 2000 20000 20000 20000 20000 20000 2000000		9	- No	- ado	n/z
400000 20000 2000 20000 20000 20000 2000 2000000		oʻ''sloʻ''doʻ'	70	- alo	n/z
400000 20000 2000 20000 20000 20000 2000 2000000		o slo edo ana		- gdo	n/2
400000 200000 10000 10000 100000 100000 100000 100000 100000 100000 100000 1000000	Ion: + • Ch	arge: 1 Adduct: H	•	11 hits:	n/z
400000 200000 100000 100000 20000 100000 2000 200 20	Ion: + • Ch # Mass	arge: 1 Adduct: H Diff Formula	- DBE	11 hits: Diff (ppm)	n/z
400000 2000000	Ion: + • Ch	arge: 1 Adduct: H	•	11 hits:	n/2
400000 20000 2	Ien: + • Ch # Mass 6 391.1622	arge: 1 Adduct: H Diff Formula 0.00103 C24H21 N2 O F2	• DBE 14.5	11 hits: Diff (ppm) 2.63	n/z
400000 200000 100000 100000 100000 100000 100000 100000 20000 20000 20000 100000 2000 20000 2000 2000 2000 2000 2000 2000 2000 20000 2000 2000 2000 20	Ion: + • Ch # Mass 6 391.1622 2 391.1633 8 391.1644 9 301.1620	arge: 1 Adduct: H Diff Formula 0.00103 C27H121N20F2 0.00011 C21H22N202F3 0.00122 C21H21N503 0.00123 C11H20N50F3	DBE 14.5 10.5 14.0 14.0 11.0	11 hits: Diff (ppm) 2.63 0.29 3.11 3.14	n/z
400000 200000 100000 200000 100000 20000 200000 20000 200000 200000 200000 2000000	Ien: + Ch # Mass 6 391.1622 2 391.1633 8 391.1640 3 391.1631	arge: 1 Adduct: H Off Formala 0.00103 C24H21N2 0 F2 0.00112 C2H2N2 0 OF3 0.00122 C2H21N F0 3 0.00123 C2H2N F0 673 0.0013 C2H3N F0 62	DBE 14.5 10.5 14.0 11.0 14.5	11 hits: Diff (ppm) 2.63 0.29 3.11 3.14 0.32	n/z
400000 200000 200000 10000 100000 100000 100000 100000 100000	Ion: + • Ch # Mass 6 391,1622 2 391,1633 3 391,1644 9 391,1620 3 391,1630 3 391,1631 10 391,1645	arge: 1 Adduct: H Off Formula 0.0010 C24+IZ1N O F2 0.0011 C21+ZN O C2F3 0.00122 C21+ZN O C2F3 0.00122 C21+ZN O C3F4 0.00123 C21+D N G F3 0.00123 C21+D N G F3	 DBE 14.5 10.5 14.0 11.0 14.5 6.5 	11 hits: Diff (ppm) 2.63 0.29 3.11 3.14 0.32 3.21	n/z
400000 2	Ion: + Ch # Nass 6 391.623 2 391.633 3 391.631 0 31.651 1 391.651 1 391.651	arge: 1 Adduct H Diff Formula 0.00103 C2H121N 0 F2 0.00211 C2H122N 02F3 0.00122 C2H121N 03 0.00122 C2H121N 03 0.00123 C2H121N 03 0.00123 C2H121N 03F4 0.00125 C3H123N 03F4	DBE 14.5 10.5 14.0 11.0 14.5 6.5 7.0	11 hits: Diff (ppm) 2.63 0.29 3.11 3.14 0.32 3.21 0.22	n/z
400000 200000 200000 10000 100000 100000 1	Ion: + Ch # Mass 6 391.1622 2 391.1633 3 391.1644 9 391.4645 1 391.1645 1 391.1645	arge: 1 Adduct: H 0.0010 CC4H21N C0 F2 0.0011 C21H2N C0 F2 0.0012 C21H2N C0 F3 0.0012 C21H2N C0 F3 0.0012 C19H F10 F0 C2 0.0013 C19H F10 F0 C2 0.0012 C19H C19H C0 F4 0.0010 C19H C19H C0 F4	 DBE 14.5 10.5 14.0 11.0 14.5 6.5 7.00 10.5 	11 hits: Diff (ppm) 2.63 0.29 3.11 3.14 0.32 3.21 0.22 2.60	n/z
400000 30000 20000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 100000000	Ion: + Ch # Nass 6 391.623 2 391.633 3 391.631 0 31.651 1 391.651 1 391.651	arge: 1 Adduct H Diff Formula 0.00103 C2H121N 0 F2 0.00211 C2H122N 02F3 0.00122 C2H121N 03 0.00122 C2H121N 03 0.00123 C2H121N 03 0.00123 C2H121N 03F4 0.00125 C3H123N 03F4	DBE 14.5 10.5 14.0 11.0 14.5 6.5 7.0	11 hits: Diff (ppm) 2.63 0.29 3.11 3.14 0.32 3.21 0.22	n/2

¹³C NMR for **19**

S65

Supplementary References:

1. Salisbury, C. M.; Cravatt, B. F., Activity-based probes for proteomic profiling of histone deacetylase complexes. *Proc Natl Acad Sci USA* **2007**, *104* (4), 1171-6.

2. He, B.; Velaparthi, S.; Pieffet, G.; Pennington, C.; Mahesh, A.; Holzle, D. L.; Brunsteiner, M.; van Breemen, R.; Blond, S. Y.; Petukhov, P. A., Binding ensemble profiling with photoaffinity labeling (BEProFL) approach: mapping the binding poses of HDAC8 inhibitors. *J Med Chem* **2009**, *52* (22), 7003-13.

3. Fischer, J. J.; Michaelis, S.; Schrey, A. K.; Diehl, A.; Graebner, O. Y.; Ungewiss, J.; Horzowski, S.; Glinski, M.; Kroll, F.; Dreger, M.; Koester, H., SAHA Capture Compound--a novel tool for the profiling of histone deacetylases and the identification of additional vorinostat binders. *Proteomics* **2011**, *11* (20), 4096-104.

4. Shan, B.; Xu, C.; Zhang, Y.; Xu, T.; Gottesfeld, J. M.; Yates, J. R., 3rd, Quantitative proteomic analysis identifies targets and pathways of a 2-aminobenzamide HDAC inhibitor in Friedreich's ataxia patient iPSC-derived neural stem cells. *J Proteome Res* **2014**, *13* (11), 4558-66.

5. Albrow, V. E.; Grimley, R. L.; Clulow, J.; Rose, C. R.; Sun, J.; Warmus, J. S.; Tate, E. W.; Jones, L. H.; Storer, R. I., Design and development of histone deacetylase (HDAC) chemical probes for cell-based profiling. *Mol Biosyst* **2016**, *12* (6), 1781-9.

6. Xu, H.; Roberts, L. R.; Chou, S.; Pierce, B.; Narayanan, A.; Jones, L. H., Quantitative measurement of intracellular HDAC1/2 drug occupancy using a trans-cyclooctene largazole thiol probe. *MedChemComm* **2017**, *8* (4), 767-770.

7. Lauffer, B. E.; Mintzer, R.; Fong, R.; Mukund, S.; Tam, C.; Zilberleyb, I.; Flicke, B.; Ritscher, A.; Fedorowicz, G.; Vallero, R.; Ortwine, D. F.; Gunzner, J.; Modrusan, Z.; Neumann, L.; Koth, C. M.; Lupardus, P. J.; Kaminker, J. S.; Heise, C. E.; Steiner, P., Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. *J Biol Chem* **2013**, *288* (37), 26926-43.

8. Somoza, J. R.; Skene, R. J.; Katz, B. A.; Mol, C.; Ho, J. D.; Jennings, A. J.; Luong, C.; Arvai, A.; Buggy, J. J.; Chi, E.; Tang, J.; Sang, B. C.; Verner, E.; Wynands, R.; Leahy, E. M.; Dougan, D. R.; Snell, G.; Navre, M.; Knuth, M. W.; Swanson, R. V.; McRee, D. E.; Tari, L. W., Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. *Structure* **2004**, *12* (7), 1325-34.

9. Lobera, M.; Madauss, K. P.; Pohlhaus, D. T.; Wright, Q. G.; Trocha, M.; Schmidt, D. R.; Baloglu, E.; Trump, R. P.; Head, M. S.; Hofmann, G. A.; Murray-Thompson, M.; Schwartz, B.; Chakravorty, S.; Wu, Z.; Mander, P. K.; Kruidenier, L.; Reid, R. A.; Burkhart, W.; Turunen, B. J.; Rong, J. X.; Wagner, C.; Moyer, M. B.; Wells, C.; Hong, X.; Moore, J. T.; Williams, J. D.; Soler, D.; Ghosh, S.; Nolan, M. A., Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. *Nat Chem Biol* **2013**, *9* (5), 319-25.

10. (a) D.A. Case, T. A. D., T.E. Cheatham, III, C.L. Simmerling, J. Wang, R.E. Duke, R. Luo, R.C. Walker, W. Zhang, K.M. Merz, B. Roberts, S. Hayik, A. Roitberg, G. Seabra, J. Swails, A.W. Goetz, I. Kolossváry, K.F. Wong, F. Paesani, J. Vanicek, R.M. Wolf, J. Liu, X. Wu, S.R. Brozell, T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M.-J. Hsieh, G. Cui, D.R. Roe, D.H. Mathews, M.G. Seetin, R. Salomon-Ferrer, C. Sagui, V. Babin, T. Luchko, S. Gusarov, A. Kovalenko, and P.A. Kollman *AMBER 12*, University of California, San Francisco, 2012; (b) Gerber, P. R.; Muller, K., Mab, a Generally Applicable Molecular-Force Field for Structure Modeling in Medicinal Chemistry. *J Comput Aid Mol Des* **1995**, *9* (3), 251-268.

11. Lutz, W. B., O-Triphenylmethyl hydroxylamine (Trityloxyamine), a Useful O-Protected Form of Hydroxylamine. *J Org Chem* **1971**, *6* (24), 3835-3836.