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. SINGLE-CELL STOCHASTIC HELMSTETTER-COOPER MODEL

A. Deterministic Helmstetter-Cooper model

Here we model the growth of individual Escherichia coli cells. Based on experimental measurements, we posit that a single-cell
of size S elongates exponentially [S12-S14]:

ds
5 O =450, ey

where A is the growth rate. For rod-shaped bacteria such as E. coli the width is nearly constant, so the size means either the
length or volume of an individual cell (to a proportionality constant). In order to determine the division timing, we adopt the
Helmstetter-Cooper model, which couples the replication of the chromosome to the cell division (see Helmstetter-Cooper
model). This model proposes that cell division occurs after a prescribed time has elapsed since replication initiation. This time
is the duration of the cell cycle, denoted 7y [S14,515]. It comprises the time required to fully replicate the chromosome, known
as the C-period, and the time following replication termination until division, known as the D-period. Hence 7¢ye = C + D.
In other words, an initiation event commits the cell to division after the duration of one cell cycle. In bacteria, multiple
cell cycles can overlap. This occurs when the cell cycle duration is larger than the generation time: 7cye > 7. In order to
maintain its DNA content, a cell still needs to initiate chromosome replication once per generation (see Helmstetter-Cooper
model). At this stage, the problem of division timing is thus transfered to the problem of initiation timing. This is solved by
considering Donachie’s conjecture [S16], which is that a new round of replication initiates at a fixed size per number of origins
of replication (oriC), denoted s;.

In summary, a model for the growth of a single cell is completely parametrized by the following “physiological variables”:

e the growth rate A;
* the cell cycle duration Tcyc;
* the initiation size per oriC s;.
This model predicts that the cell at division is given by:
Sa = si exp (ATeye), @)

which was indeed verified experimentally at the population level [S1]. Single-cell measurement of the initiation timing re-
vealed that the initiation size is indeed tightly regulated. In fact, s; is the physiological variable with the narrowest distribution
(Comparison of experimental measurements with simulations of the Helmstetter-Cooper model (1), Comparison of
experimental measurements with simulations of the Helmstetter-Cooper model (2) Comparison of experimental mea-
surements with simulations of the Helmstetter-Cooper model (3) and Comparison of experimental measurements with
simulations of the Helmstetter-Cooper model (4)).

B. Stochastic Helmstetter-Cooper model

In order to account for the experimental fluctuations in the physiological variables between individual cells, we treat them
as stochastic variables. That is to say, at cell birth, the growth rate, the cell cycle duration and the unit cell are drawn
from independent Gaussian distributions (Stochastic Helmstetter-Cooper model). Once the physiological variables are
determined, a single-cell follows the deterministic growth as described in the previous section.

In reality, we should expect that values taken by the physiological variables are not independent from each other. For
example, the growth rate and the cell cycle duration are anti-correlated [S14]. Another example comes from the observation
that cells growing faster than the average growth rate also tend to produce fast growing daughter cells. We call the former
type of correlation “cross-correlation” and the latter ones “autocorrelation”. In order to take into account those correlations,
we modify the way physiological variables are determined at cell birth. Let us denote the physiological state of a single cell
by the three-dimensional vector X" = (4", 7y, i) At cell birth, the physiological state of cell n + 1 is determined according
to the rule:

y*l=D.y"+A-z where y" =x" — (x"). 3)

Here, D = Diag(ay, as, @3) is a diagonal matrix enforcing mother/daughter correlations, A is a real symmetric matrix enforcing
the cross-correlations (to be determined below) and z is a vector of three independent unit Gaussian variables.
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Helmstetter-Cooper model. In bacteria, several rounds of chromosome replication can overlap when the duration of the cell cycle 7cyc,
including both C- and D-periods, is larger than the generation time.

Equation (3) defines a discrete stochastic process. Being a sum of Gaussian random vectors, y” has a (multivariate)
Gaussian distribution. Furthermore, it can be shown that it converges toward the Gaussian distribution:

P(y") — P(y),

P(y) = S — exp (—lyT -z -y), @
VJ(2r)3 detT 2
whose covariance matrix £ = [07;]; ; has the elements:
1 3
Ul ; aikar;. )

The previous relation can be inverted to express the matrix A as a function of the covariance matrix of the limiting
distribution. We obtain:
A= \/E, with B = [O'ij(l - aiaj)]i,j. 6)

In short, with an appropriate choice of the matrix A, the stochastic process in Equation (3) will sample random physiological
vectors distributed according to a Gaussian distribution with the desired covariance matrix X, in agreement with experimental
measurements. For the stochastic process in Equation (3), the variances of the physiological variables are given by:

(6x7) = i @)
and the cross-correlations between the physiological variables are expressed as:
<(5X,' . 5Xj> = 0ij. (8)

Note that the Pearson correlation coefficients between the physiological variables are expressed as:

Tij
r(xi, xj) = ——. ©))
T
Concerning mother/daughter correlations, it can be shown that:
(6x]" - sx N = qjolt —— @07, (10)
J U nooo

with the corresponding Pearson correlations:

o) = i (x, xj). (11)

r(x}, ;



A growth rate distribution p(A) duration of a complete cell cycle P(T,.) initiation P(s,) C €=-03
d_S —\S O O . &
@ ® T
S(t)I chromosome replication & f A
divisome assembly takes ~ /HUILILLY chromosome replication
Tye=C+D starts when S=# oriC x s,
experimental /
distribution
CV(\) = 14% CV(1yd = 14% QV(s)=11%
B Tcyc
. T,=C+D =05
— slope is randomly initiates at — =5,
g_ 2 drawn from p(A) #o
s \
2 el x
<
32
v
= 8
<}
o

)\n

Stochastic Helmstetter-Cooper model. (A) At each new generation, the physiological variables are drawn from a multivariate Gaussian
distribution with means and variances matching the experimental values. (B) In this example, cell division is coupled to an initiation event
happening in the grandmother cell: there is three overlapping cell cycles. (C) Examples of negative cross-correlation between A and Tcyc
and of positive mother/daughter correlation for A.

In particular, the autocorrelation Pearson coefficients are:
r(x XM = a;. (12)

In summary, we draw the physiological variables at each new generation according to Equation (3). This stochastic process
is parametrized by the experimental values measured for the means, variances, cross-correlations and autocorrelations of the
three physiological variables.

C. Implementation

The implementation used to generate a lineage of cells according to the stochastic Helmstetter-Cooper model is described
in Algorithms 1 to 3. The simulations rely on the following input: (i) the means (1), (7¢yc) and (s;); (ii) the variances
(62%), <(5T02yc> and (65?); (iii) the Pearson cross-correlation coefficients r;; := r(x;, x;) defined above; and (iv) the Pearson
autocorrelation coefficients @; defined above. These inputs can be measured experimentally and were used to set the joint-
probability distribution of the physiological variables. Unless specified otherwise, we generated a single lineage of 10000
cells in one simulation.

D. Comparison with experiments

We performed simulations according to the stochastic Helmstetter-Cooper for several experimental conditions (Comparison
of experimental measurements with simulations of the Helmstetter-Cooper model (1), Comparison of experimental
measurements with simulations of the Helmstetter-Cooper model (2), Comparison of experimental measurements
with simulations of the Helmstetter-Cooper model (3), Comparison of experimental measurements with simulations
of the Helmstetter-Cooper model (4), Comparison of experimental measurements with simulations of the Helmstetter-
Cooper model (4) and Comparison of experimental measurements with simulations of the Helmstetter-Cooper model
(5)). Overall, the agreement between experiments and simulations was good. For non-overlapping cell cycles conditions, most
of the distributions for the cell size at birth Sy, the cell size at division S4, the generation time 7 and the added size between
divisions Aq = Sq — Sp were well reproduced. This observation was less true for overlapping cell cycles. For example in the
latter case, the distribution of division size predicted by stochastic Helmstetter-Cooper model was systematically broader than
the experimental one. In general, we found that the predicted correlations between variables were in good agreement with the
experimental measurements.

The simulations of the stochastic Helmstetter-Cooper model reproduced well the experimental behavior for cell size
homeostasis, namely the adder behavior. In Comparison of the experimental adder behavior with simulation of the



Algorithm 1: Stochastic Helmstetter-Cooper simulation.

Input:
e Means: y; = (x;),i=1,2,3.
» Variances: o-l.2 = (6xi2), i=1,273.
* Pearson cross-correlations: r;;, fori, j = 1,2,3.
¢ Pearson autocorrelations: «;,i = 1,2, 3.
* Number of generations to simulate: N.

Output: Lineage of N cells.
> Initialize model random vector generator
Define the covariance matrix X
fori =1to3do

gj; = (Ti2

for j=1toi—1do

Oij = 0ji = Iij - \Tii * 0jj

end
end
Define the matrix S according to Equation (6)
Define the matrix D = Diag(ay, @p, @3)

Rn =ModelRandomVecGen(y, S, D) > implementation of Equation (3)
> Initialize time, size and physiological variables

t=0,v=1

x = Rn(p)

> Initialize cell cycles

P=0 ., > 10g, (Nori)

Allocate memory for {A;}, "] > array of initiation times
fori=1to Py, do A; = NULL
> Simulate lineage of cells

GenerateLineage(x,t,v,A,P,N,Rn)

stochastic Helmstetter-Cooper model, we illustrate how the adder behavior converges toward the experimental value when
cross-correlations and autocorrelations are added to the model. Clearly, in the absence of cross-correlations and/or autocorre-
lations, the behavior deviates from the experimental measurements. This suggests that such correlations are essential for the
Helmstetter-Cooper model to reproduce the experimental cell size homeostasis behavior.

E. Co-regulation hypothesis of chromosome replication and division

The Helmstetter-Cooper is often interpreted as to impose a fixed cell cycle duration, 7cyc. If in addition the growth rate is fixed,
Equation (2) implies that the cell size at division Sy is proportional to the cell size per origin of replication s; at the initiation
event that led to the division. The response of division sizes is then linked to the response of initiation size to perturbations.
In particular, their Pearson autocorrelation coefficients are equal:

P(SET S5 = p(s, s, (13)

In fact, the Pearson correlation coefficient for the adder at division (resp. at initiation) is uniquely related to the Pearson
autocorrelation coeflicient of the cell size at division (resp. at initiation). Therefore, the previous equality implies:

p(Ag, Sp) = p(6is 5i), (14)

where Aq = 2S£‘+l - S; and 6; = 25{“’1 - s

When relaxing the condition that 7.y is fixed, Equation (14) no longer holds. In Co-regulation between division adder
and initiation adder in the stochastic Helmstetter-Cooper model, we investigated whether the two types of adder are still
equivalent when 7y is allowed to fluctuate. We started from reference values for the parameters and then varied each of the
coeflicient-of-variations (CVs), cross-correlation and autocorrelation away from their reference value. More accurately, the
CVs were varied between 1%-30% and the Pearson correlations between —0.9 and +0.9. However, we did not perturb p(4, s;)

and p(7eye, si) because experimental data indicate that s; should remain very robust to perturbations [S1].
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Comparison of experimental measurements with simulations of the Helmstetter-Cooper model (1). NCM3722 strain with no overlap-
ping cell cycles as in Figure 1D.
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Comparison of experimental measurements with simulations of the Helmstetter-Cooper model (2).

overlapping cell cycles as in Figure 1D.

NCM3722 strain with two
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Comparison of experimental measurements with simulations of the Helmstetter-Cooper model (3). MG1655 strain with no overlapping
cell cycles as in Figure 1D.
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Comparison of experimental measurements with simulations of the Helmstetter-Cooper model (4). MG1655 strain with two overlapping

cell cycles as in Figure 1D.



distributions and correlations of physiological parameters —— simulation
(MG1655 + pLR40, MOPS + 0.4% gycerol + 11 amino acids) experiment
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Algorithm 2: Function GenerateLineage.

Function GenerateLineage (x,t,v,A, P, Nmax, Rn)
Input:
* x: physiological variables A, 7y and s;.
* f: time.
e y: cell size.
. {Ai}l.iml‘“: array holding initiation times of active replication cycles.
» P: number of active replication cycles.
* Nmax: number of generations to simulate.

* Rn: random number generator (defined according to our model)

> Initializations

th=t,vp=v,N=1

> Start loop for cell generations

while N <= Nj.x do

> Name physiological variables

A= X1

> Initiate replications until division occurs
InitiateReplications(x,t,v,A,P,t;)

> Cell division

vg = vp - exp (A(tq — tv))

dump N, ty, t4, Vb, Vd, Ao, 4, Teyes S

> Update variables for next generation
N=N+1,t=tb=td,v=vb=vd/2,P=P—1
fori=1toPdo A; = A;4;

> Draw next physiological variables from random vector generator
x = Rn(x)

end
return

We chose (1) = In2, making the generation time (7) = In2/{1) the unit of time. We chose (s;) = 1 as unit of cell size.
We investigated values of (7¢y) = 0.5, 1.5,2.5, corresponding to non-overlapping, 2 overlapping and 3 overlapping cell cycles,
respectively. The reference values for the CVs were:

CV(1) =10%, CV(s)= 10%. (15)

Note that for 7y, we took different CVs for each scenario so as to keep the same amplitude of fluctuations in the cell cycle
duration. Specifically, we chose a standard deviation o~ = 0.05, defining a CV of 10 % for the non-overlapping cell cycle
scenario but resulting in smaller CVs for the other. The reference matrix of cross-correlations was set to:

A Teye S
A 0 -05 O
Teye (—0.5 0 o), (16)
S 0 0.0 O
and the reference autocorrelations were taken to be:
pL A =05, pitl ti) =0, p(sPt st =0.5. (17)

In Co-regulation between division adder and initiation adder in the stochastic Helmstetter-Cooper model panel A,
the co-regulation hypothesis from Equation (14) holds for non-overlapping cell cycles. For two and three overlapping cell
cycles, deviations from the co-regulation hypothesis are seen. This is due to the sources of noise still present in the system,
which tend to uncouple distant generations. For example, reducing the CV of the growth rate to CV(2) = 1 % dramatically
reduces these deviations (not shown). Similarly, when increasing the noise in 7y to Oreye = 0.1, deviations from the co-
regulation hypothesis are more pronounced (Co-regulation between division adder and initiation adder in the stochastic
Helmstetter-Cooper model panel B). However, despite the fact that other parameters can affect the division adder correlation



Algorithm 3: Function InitiateReplication.

Function InitiateReplications(x,t,v,A,P,tg)
Input:
* x: physiological variables A, 7y and s;.
* f: current time.
* v: current cell size.
. {Ai}l.iml‘“: array holding initiation times of active replication cycles.
» P: number of active replication cycles.

Output:
* t4: next division time.

> Name physiological variables
A= X1, Teye = X2, S§ = X3

> Initializations

tq = oo, initiate = true

> Start loop for replication cycles
while initiate do

> Determine next division time
if P>0thentq = Ay + 7y

> Determine next initiation time

Nori = 2P

Vi = i * Nori

ot = max[% In (:1),0]
ti=t+06t

> Stop initiating if next initiation is after next division
if #; > t; then
| initiate = false

else
dump 4, vi, P
l:ti,VZVi,P=P+1,Ap:l‘i
end
end
return

(especially for overlapping cell cycles), the effect of the unit cell autocorrelation p(si"“, s{') on the value of p(Ag, Sp), was

more systematic than cross-correlations or CVs. Therefore we concluded that even when fluctuations are introduced into the
Helmstetter-Cooper model, altering the homeostasis of s; should affect the cell size homeostasis.

F. Adder properties

The size autocorrelation can be used to characterize the cell size behavior. We focus now on the division size properties, yet
the following development can also be applied to the initiation size.

We denote p(S”, Sc’l”]) the joint probability distribution of cell size at division for a pair of mother/daughter cells. In
the first approximation, we assume it is a Gaussian bivariate distribution with means (S}) = (Sg“) = u(Sq) and covariance
matrix:

o (i ?) , (18)
with oo = u(Sq) - CV(Sq). Consequently, the conditional value of the daughter division size is obtained as (see appendix A):
(S5 85) = vSq + (1= y)u(Sa). (19)
The added size between division for generation 7 is expressed as
Ay =83 -5,

20
=250+t - §p, (20)
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assuming symmetric division. Using the previous equation, one can show that:

CV(Aq) = /5 — 4yCV(Sy),
(AqlSp) = 2y = DSp +2(1 = y)u(Sp).

(6A46Sy) = 2y — 1)(6S2), (21)
2y — 1

N

The last expression is shown in Functional dependence of po(Aq, Sp) on p(S?, Sg”). Therefore, when y = 1/2, the adder
principle holds, meaning that the added size is independent of birth size: (§A46Sy) = 0 (or p(Ag, Sp) = 0).

p(Ag, Sp) =

. THRESHOLD MODELS IN BALANCED GROWTH

A. Control of replication initiation

Replication initiation is influenced by several factors, the most important being probably the DnaA protein [S17-S19]. The
DnaA protein is active when bound to ATP (DnaA-ATP) and inactive when bound to ADP (DnaA-ADP). While both active and
inactive forms can bind the oriC, evidence indicates that only the active form can trigger initiation [S20]. Approximately 10-20
DnaA-ATPs are required at the oriC to form a functional complex that can lead to replication initiation [S21]. Here we neglect
the role of DnaA-ADP, namely as a competitor to oriC binding. We therefore consider that replication initiation is under the
exclusive control of DnaA-ATP. DnaA binds primarily ATP after being synthesized in the cytoplasm [S18, S19], therefore the
DnaA-ATP production coincides with the DnaA production. For these reasons we will abusively denote DnaA-ATP as DnaA,
which we consider as the replication initiator. We also adopt the simple autorepressor model for the dnaA operon [S22], i.e.
the DnaA protein is maintained at a nearly fixed concentration by repressing its own expression.
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B. Control of division

Z-ring formation is the predominant division process prior to constriction [S23]. Once the Z-ring is functional, division and
cell wall machinery proteins bind to this scaffold in order to complete cytokinesis. The Z-ring is made of protofilaments of
the essential protein FtsZ. In our experimental assays, we have adopted a nearly functional FtsZ-mVenus fusion protein [S24]
in order to monitor the assembly of the Z-ring in single-cells. Our observations suggest that FtsZ accumulates to a threshold
at the Z-ring. Indeed, the maximum intensity (in a cell life time) at the Z-ring was found to be independent of the cell size at
division. This means that on average a fixed, critical amount of FtsZ in the Z-ring is required to trigger the assembly of the
division machinery and cell constriction. This threshold mechanism parallels the control of replication initiation by DnaA.

In addition, our experimental assays also suggested that the concentration of FtsZ remains relatively constant during the
division cycle, and across many generations. As far as we know, the FtsZ protein does not repress its own expression, like
DnaA does. However, we explain this fixed concentration at steady state by postulating that FtsZ production is in balanced
growth (see section III).

C. Threshold model

Let us now consider a generic protein responsible for the initiation of cell division (note that the same reasoning applies for
the control of replication initiation). We assume that this protein accumulates and triggers cell division when its copy number
N reaches a fixed threshold:

N(tq) = No. (22)

Following cell division, each daughter cell receives Ny/2 copies of the protein. Under balanced growth (see section III),
the protein copy number increases in proportion to the cell volume:

dN
dt

ds
= =2, 23
¢ dt 23)
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where c* is the steady-state protein concentration. Therefore, one obtains that the added volume from birth to division is given
by:
No

Sd—Sb=§,

(24)

which is the adder principle.

The fixed threshold Ny does not necessarily imply that the cell physically senses the copy number N of proteins in the
cytoplasm. Instead, N can be a proxy for the number of initiators bound to a cell compartment, namely the Z-ring. For
example, let us assume that the binding/unbinding dynamics of the proteins in the cytoplasm (N) with a cell compartment
(with copy number n) can be modeled with the linear system:

? =aN - fn,
d& (25)
i —aN + fn+ Ac*S.

In the previous system, @ and 3 are the rates of binding and unbinding to the cellular compartment, respectively. Ac*S
is the production rate of proteins in the cytoplasm in balanced growth (see section III). Denoting X = n + N, and assuming
exponential growth of the cell volume at the rate A, we immediately have:

X(7) = X(0) + ¢* (S(¢) — 5(0)). (26)
———
AS(t)

Using the previous equation, we obtain:

n(t) = n(0)e™ @ 1+ —L_(x(0) = ¢*S(0))(1 — e~ @By
a+p

" * _ ~(a+p)t
+ a/+,8+/lc (8(¢) — S(0)e ),
_a N a+pf 27
~ P (X(t)—c S(t)(l— —a+,8+/l))’
o' N A
~ P (X(t)—c S(t)a+,8)’

where in the first approximation we assumed that (a + 8)~' < ¢, and in the second approximation that 1 < « + 8. Therefore,
as long as the elongation rate is much smaller than the binding/unbinding rates, the copy number of proteins bound to the cell
compartment can be seen as a fixed fraction of the total copy number: n = a/(a + )X, and similarly N = 8/(a + 8)X. In other
words, the protein dynamics is fast compared to growth of the cell, therefore the cytoplasm reservoir and the cell compartment



are always at equilibrium. When A becomes comparable to @ + 3, deviations from this equilibrium appear. Namely, the
number of proteins bound to the cell compartment is below its equilibrium value: n < a/(a + )X, meaning that some delay is
observed for the cell compartment to reach its threshold. For simplicity, we have considered here that the cytoplasm reservoir
and cell compartment are at equilibrium. Eventually, a threshold ng to be reached in the cell compartment translates into a
threshold Ny to be reached in the cell cytoplasm, and in a global threshold X to be reached for the total protein copy number.

D. Relation to cell size homeostasis

We now consider the general case where c* is subject to fluctuations, and focus on the division size homeostasis. The same
reasoning applies to the initiation size homeostasis. Using the definition c(#q) = Ny/S(#4), the Pearson correlation coefficient
for division size between consecutive generations is:

n gon+l 1 1
_ ([ 2
p(sist) p(c(tg)’ c(zg“))’ 29

where 7} and tg‘“ are the times at division for generations n and n + 1. Provided that the fluctuations in concentration are not
too large, the previous expression can be approximated to (see appendix A):

0 (S;’, Sg'”) ~p (c(zg), (! ) (29)

Therefore, cell size homeostasis appears to be linked to the initiator concentration homeostasis. In particular, if fluctuations
in the protein concentration occur on time scales much shorter than the generation time, the division size correlation between
consecutive generations should vanish, resulting in a “sizer”” behavior.

We now relate the mother/daughter division concentrations correlation from Equation (29) to the time autocorrelation of
the protein concentration. Let us consider L lineages of cells in a time interval [0, W]. Let us denote by ¢, ; the concentration
at division for the cell corresponding to generation i of lineage a. The mother/daughter concentration correlation is computed
as:

wW-1 L
1 1
(CDe™) = = > = > caicain. (30)
w i= L a=1

The previous average should converge to a fixed value for large W and large L. We now assume ergodicity. Specifically,
the average in the previous equation with W — oo and L = 1 is equal the average with W = 1 and L — oo:

w-1
(Ceg™) = Jim o > cicin,

i=0
. 3D

1
= lim — Z Ca.0Cal-
Leo L a,0Ca,l

a=1

Let us introduce the conditional probability distribution p(¢’|¢) that a daughter cell divides at times ¢’ given that its mother
cell divided at time #. We rewrite the last expression as:

L& T

(c)e(y™) = Jim > / di plto + tlto)ca(to)calto + 1),
a=17

L (32)

. 1
ngrgo 7 Z ca(to)calto + 7),

a=1

Q

(c(to)c(to + 7)),

where in the approximation, we assumed p(¢’|t) = 6(¢' — t — 7). This approximation is valid as long as the fluctuations of
the concentration are small in an interval [T — o, T + 0] centered around the average generation time 7, with o being the
width of its distribution (the typical fluctuations of the generation time). In the last expression, the concentration c(¢) should
be understood as a continuous stochastic process. Therefore, to a particular lineage of cells a corresponds one stochastic



continuous process c,(t). The brackets means that an average is taken over all the realizations of {c,(f)},=1.... The previous
equation is also valid for the centered concentration §c(t) = ¢(t) — {c). As a result, we obtain:

1 1
S”, Sn+l) - — —,
p( d>*~d p Cg C:le

) (33)

~ n n+l
X p (Cd,Cd

~ plc](7),
where:
(0c(tg)dc(ty + 1))
oc? '

plel@) = (34)

E. Adder property

In the next section, we will show that under balanced growth, p[c](t) = 1/2. From Equation (33), and using the relations from
Equation (21), we conclude that:
p(Ad, Sb) =0, (35)

which is an other formulation of the adder principle.

. REPROGRAMMING CELL SIZE HOMEOSTASIS BY BREAKING BALANCED GROWTH

A. Balanced growth

Consider a type of protein whose mass fraction in the cell is ¢* at steady state. If we denote by m the mass of these proteins,
and M the total dry mass of the cell, we have in balanced growth [S25, S26]:
dm dM
— = —. 36
dr ¢ dr (36)
To reformulate the previous equation in terms of the protein copy number N in the cell, we introduce the mass of one
protein mp, the cell volumic mass p. and the cell size or volume S. A simple rewriting leads to:
dN ds
— - 37
a Car 37)
where ¢* = ¢*p./mp is the protein concentration at steady state. The protein concentration is ¢ = N/S, thus satisfies the first

order differential equation:

dc
— +dc = Ac". 38
ar TreTe (38)
In Equation (38), steady state is achieved when the protein synthesis rate per unit of volume, Ac*, balances the decrease in

protein concentration due to dilution, Ac.

B. Time-dependent production rate

Let us suppose now that the production rate in Equation (38) is not constant. Instead, the protein synthesis allocation is a
time-dependent function p(z). The protein concentration obeys the differential equation:

dc
— +Ac = Ap(t 3
q HAe p(t), (39

The solution of this ODE is:

t

c(t) = c(0)e™ + 2 / ds e~ =) p(s). (40)
0

When the production rate is a periodic function of time, the steady state solution for the protein concentration will also be a
periodic function with same period. For example, we give c(¢) for the cases of cosine and periodic square production rates
in Protein concentration for a cosine production rate and Protein concentration for a periodic production rate with
pulses. In practice, a time-dependent production rate can be achieved by imposing a time-dependent induction of a promoter.
In particular, a periodic square production is obtained by switching between a medium without the inducer and a medium with
the inducer every half-period.
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Protein concentration for a periodic production rate with pulses. The periodic square function is obtained when a = 1/2.

C. Stochastic production rate

Here we consider that the protein synthesis allocation undergoes stochastic fluctuations. The protein concentration obeys the
differential equation:

d
é + e = Ap(t) + n(0)), (41)

where 7(¢) is a Gaussian white noise such that (n(¢)) = 0 and {(n(t)n(¢")) = 2I'6(¢t — t’). The brackets denote an average over
different realizations of the noise, for example over many different cells subject to the same production rate (e.g. through
the same induction). We may decompose the deterministic and stochastic contributions by writing c(¢) = {c(¢)) + y(¢). The
average concentration {c(¢)) follows the deterministic ODE in Equation (39) while the fluctuations around the average are

expressed as:
t

y(t) = 4 / ds e~ =)p(s). (42)
0
Being a sum of Gaussian random variables y(¢) is also a Gaussian random variable, with mean (y(¢)) = 0, and variance:

t t

Py = 2 / ds / ds’ 2= (e (),

0 0
-T2 (1 _efuz), (43)
P ra.
Similarly, the two-point correlation is:
(y(to)y(to + 1)) =TAe ™™ (1 - 6_2/UO) — TAe . (44)

D. Concentration autocorrelation

In section II we have presented a model in which cell size homeostasis is driven by the autocorrelation function of division
proteins concentration. Here we first give this time autocorrelation function in balanced growth, when the production rate of
these protein is fixed. We then show how the autocorrelation function is modified when the production rate oscillates.

D1) Fixed production rate

In balanced growth, the production rate of proteins is fixed, namely p(¢) = ¢*. Thus (c¢) = ¢*. The Pearson time autocorrelation
coeflicient for protein concentration is defined as:

(6c(ty + t)dc(ty))

(6c2) ’ 45)

plel@) =



where dc(t) = ¢(t) — (c) and the brackets denote an average over different realizations of the stochastic process in Equation (41)
(i.e. different lineages). Using Equation (44), we obtain

plel(r) = e~ 4. (46)

In particular, for t = 7 = In2/(2), we have p[c](t) = 1/2, which together with Equation (33) ensures the adder behavior for
cell size homeostasis in balanced growth.

D2) Time-dependent production rate

For a time-dependent production rate, the expression in Equation (45) must be revised because time translational invariance is
broken, and it is necessary to take into account variations in time for the production rate. In particular, the average concentration
{c(t)) is a function of time. For a periodic production rate with period T, ergodicity can still be assumed, but Equation (31) is
modified to:

Il
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where c,,0(f9) and c4,1(tp) denote the concentrations of division proteins at division for a pair of mother/daughter cells such
that the mother divides at #p. We used a bar symbol for this average to make a distinction from the previous average with
brackets. Thus, Equation (32) becomes:

T
— 1
e = 7 [ dotetwreto + o) @8)
0
where the brackets as before denote an average over different lineages. The average concentration now reads:
T

= %/dt (c(2)). (49)

0

o

We rewrite the connected correlation for mother/daughter concentrations at division:

se(ty oe(ty) = (™) = et - 2,
. (50)
= % /dt() (8c(tg + 1)dc(tp)),

0

where 6c(t) = c¢(t) — ¢ and 7 is the mean generation time.

The last expression in Equation (50) is the two-point correlation evaluated at t = 7. It can be decomposed as a sum of a
deterministic contribution due to the time variations of the production rate, and a stochastic contribution due to the stochasticity
in Equation (41):

T
S(r) = %/dt() (8c(tg + 1)bc(ty)),
0
[ r s1)
= % / dro ({c(t0)) =) ({c(to + 1)) =€) + % / dro (y(t0)y(10 + 1)),
0 0

deterministic stochastic

where as before y(f) = c(t) — {(c(t)). Finally, the Pearson time autocorrelation coefficient is expressed as:

plel(o) = % (52)



For example, for a cosine production rate (Protein concentration for a cosine production rate), we find:

S(t) = % (gc* cos 50)2 cos (wt) + (5c2ye . (53)

[ S —
A

There are two contributions in the two-point correlation from the previous expression. The second is due to the inherent
stochasticity in the protein production, while the first is imposed by the specific shape of the production rate function. We see
that a careful choice of the amplitude of the oscillations y, and of the period of the oscillations 7 (which determines the value
of cos @), can lead to S(7) < 0. For example, taking 7" = 27 leads to:

1 (6c) —2A
. —— iy 54
AlAM = 5 ey (54)
which can be made negative by increasing u. Similarly, taking T = 47 leads to:
1 (6c3)
=7 55
A = 3 5o (55)

which is smaller than the value of 1/2 from balanced growth and converges to zero when increasing y. As can be seen,
the adjustable parameter to tune the autocorrelation coefficient is the ratio (5c?)/A which essentially quantifies the stochastic
fluctuations of protein concentration versus the amplitude of the induced oscillations of mean protein concentration. In
particular when (§c?) > A, one retrieves the static result: p(r) — 1/2. On the contrary in the limit of vanishing noise
(6¢?) < A, one obtains as expected p[c](t) = —1 when T = 27 and p[c](r) = 0 when T = 4r.

An undesired property of the time-autocorrelation function obtained from Equation (53) is that for a period T > 7, it does
not converge to the exponential function from balanced growth. This comes from the fact that deviations in the concentration
are taken with respect to the total average defined in Equation (49). However, when T > 7, the concentration is approximately
constant in time intervals of length 7. Namely, when analyzing fluctuations, deviations should be considered around the
average concentration in this interval, say [z, + 7], rather than the average in Equation (53). To circumvent this problem, we
define the concentration average in a window of size T, :

T,
1
E,(c)t) = — / ds {(c(t + s)). (56)
T
*Tw
Substituting ¢ < E,,(c)(t) in Equation (51), we obtain for the cosine induction:
1 T, 2
S(r) = 3 (gc* cos ¢ (1 — sinc (Tw))) cos (wr) + (6c)ye™ M, (57)
A

where sinc(x) = sin (x)/x. Effectively, this corresponds to rescaling the amplitude by a factor (1 — sinc(wT,, /2)). Considering
that the generation time is the relevant time-scale for studying protein concentration fluctuations, we may take for simplicity
T,, = 27. Therefore wTy, /2 = 2n7/T, and for T > 7, we retrieve the exponential function in Equation (46) corresponding to
a fixed induction, namely balanced growth. With such a definition, we show in Concentration autocorrelation function for
a cosine induction or for a square induction how the concentration time-autocorrelation function varies when the induction
amplitude p and the period of oscillations 7" are changed for both cosine and square inductions.

E. Simulations of the combined thresholds model

We used simulations to generate lineages of cells according to the combined thresholds model. Here we start considering
the growth rate is time-dependent, as discussed in appendix B. Following Equation (94), we assume that each cell grows

exponentially its size according to:
ds
— = A)S(1). 58
o = A0S0 (58)
To describe the time-evolution of the instantaneous growth rate A(¢), we linearized Equation (97) around the steady state
growth rate 1¥, and introduced stochastic fluctuations:

i—f = 152" = A1) + V2 (0), (59)
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the unit of concentration so that the lower steady state value is ¢* = 1. The level of noise was set by taking VI'A = 0.1, so that the CV of
the concentration for a constant induction is 10 %. To compute the autocorrelation we used the running window average from Equation (56)
with T, = 27 instead of the total average from Equation (49). The autocorrelation function for a constant production rate, i.e. 27* 7, is

denoted by a black line.

where 1(¢) is a Gaussian white noise with correlator (n(¢) - n(¢')) = 6(t’ — t). The normalization ensures that the linearized
process (Ornstein-Uhlenbeck type) is such that the growth rate fluctuations at steady-state are (512) = 0'/21' Similarly to

describe the time-evolution of the concentration of initiation proteins, cy, and of the concentration of division proteins, cp, we
linearized Equation (100) around the steady states ¢{ and ¢}, and introduced stochastic fluctuations:

% = (] —al) + U'IWTI(I)’
d(cjt (60)
d—;) = /l*(CI*) —cp(?)) + U'D‘/ﬁg(tl



where (n(¢) - n(t’)) = 6(t’ —t) and (£(¢) - £(t")) = 6(t" — t). Again, the normalizations ensure that the fluctuations of protein
concentrations at steady state are such that (5c7) = o7 and (6c3) = 0. Note that in our implementation, the steady state
concentrations ¢{ and cj) are time-dependent too since they vary with the induction level of the protein of interest. However,
due to the periodic square induction, they remain constant between switches.

Initiation occurred when the total copy number of of initiation proteins per origin reached a fixed threshold: c1-S = ng) XNoric.
Similarly, division occurred when the total copy number reached a fixed threshold: ¢p - S = n([)). The practical implementation
is described in Algorithms 4 to 6.

We have applied this method to simulate oscillation experiments performed in the laboratory. In Overlay of experimental
results and simulation of the combined threshold model, we used A* = 0.57h™!, o2/A* = 25%, nj, = 200, ny = 1000,
ng/cl =2 um, op/cf = 10 %, n(]))/cD = 4.5 um, op/cfy = 20 %, a C period of 40 min. Note that for simplicity, we expressed
concentrations per unit of length since the cell width is constant. We generated 100 lineages of 100 cells. As can be seen in
Overlay of experimental results and simulation of the combined threshold model panel A, the experimental distributions
are well reproduced in our simulations. Similarly the adder plot is consistent with experimental data (Overlay of experimental
results and simulation of the combined threshold model panel B). The autocorrelation function for the concentration
of division proteins is well reproduced for short times, however some discrepancies arise from intermediate to long times
(Overlay of experimental results and simulation of the combined threshold model panel C). We suspect this is due to
some uncontrolled noise in our experimental readout for division protein concentration, because we use a fluorescent signal
as a proxy. Similarly the autocorrelation function for division proteins is in good agreement with experimental data for short
lags and more discrepancy arise for long lags (Overlay of experimental results and simulation of the combined threshold
model panel D). Finally note the agreement between our model and the experimental measurements for protein concentration
dynamics is very good (Overlay of experimental results and simulation of the combined threshold model panel E). The
second plot emphasizes that our model for protein concentration dynamics based on balanced growth (Equations (97) and (100))
and instantaneous change in the fixed protein allocation ¢* is accurate. The third plot in Overlay of experimental results and
simulation of the combined threshold model panel E uses the threshold model assumption cp(29) - S(tq) = n(l)) . Despite some
discrepancy, probably due to the simplicity of this model, we note a good agreement with the observed oscillations of cell size.

Algorithm 4: Combined threshold models simulation.

Input:
* Mean growth rate (1).
* Steady state concentration of replication initiators ¢} (¢) (can be time-dependent).
* Steady state concentration of division initiators cfy(¢) (can be time-dependent).
e CV for growth rate: CV(Q).
 CV for concentration of replication initiators: CV(cy).
 CV for concentration of division initiators: CV(cp).
* Threshold for replication initiators, n{).
¢ Threshold for division initiators, nOD.
* Number of generations to simulate per lineage: N.
* Number of lineages to simulate: L.
* Time resolution: At.
e C-period: C.

Output: L lineages of N cells.
> Initial time and size
t=0,v=1
> Initialize array of steady state functions
Allocate memory for {x; }?:1 > array of steady state functions
x1 = NULL, x = (4), x3 = ¢{, X4 = ¢}
> Initialize array of CVs
Allocate memory for {7]1-}?:1 > array of CVs
m = NULL, 2 = CV(2), n3 = CV(c1), 14 = CV(cp)
> Simulate lineages of cells
for [ =1to Ldo
GenerateLineage (7,v,x*,n,ny, ny, N, At,C)
end
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Algorithm 5: GenerateLineage function for threshold models simulation.

Function GenerateLineage (7,v,x*,1,m, ng, Nmax, Az, C)
Input:

e Initial time ¢.

e Initial volume v.

* Array of steady state functions x™.

* Array of CVs 7.

* Threshold for replication initiators, né.

* Threshold for division initiators, n.
* Number of generations to simulate: Npjx-
e Time resolution: At.
* C-period: C.

> Initialize state vector

Allocate memory for {x;}}_|

x1 =V, xp = x3(1), x3 = x5(1), x4 = x;(1)
> Initialize replication cycles

P = O, Nori =1

Allocate memory for {A,-}l.}; o

fori =1to Py,x do A; = NULL

> Start loop on cell generations

N=1

while N <= N;.x do

> Write birth state

dump ¢, x, Noyi,x*,N

while true do

> Deterministic integration

' =t+ At

dx = dxDeterministic(t, x, ¢/, x*)
> Stochastic integration

dx = dx + dxStochastic(s, x, t/, x*, n, At)
> Update values
t=t',x=x+dx

> Track cellular events
Initiate(t,x, Ny, P, A)
Terminate(t,x, Nosi, P, A,C)
mustDivide = Divide (¢,x,n)
if mustDivide then break

> Write

dump ¢, x, Noyi,x*,N

end
> Symmetrical division
X1 = x1/2, Nori = max(Neyi/2,1), N =N+ 1

end

> array of variables

> array of initiation times

> initiation
> termination
> division




Algorithm 6: Functions for threshold models simulation.

Function dxDeterministic(s, x, t/, x*, At)
Allocate memory for {dxi};‘zl
dx| = xo - x1 - At
dxy = x5(t) - (x3(1) — x2) - At
dxz = x5(t) - (x5(1) — x3) - At
dxy = x5(t) - (x;(t) — x4) - At
return
Function dxStochastic(s, x, t/, x*, 1)
Allocate memory for {dx;}}_|
Draw 4 random unit Gaussian variables {§i}?:1
dxl = 0
dxy =1y x5(1) - 50 - V2A1 - &
dxs =13 - x5(1) - 5 (0) - V241 - &
dxy =14 x5(1) - 50 - V2A1 - &
return
Function Initiate(t, x, Nos, P, A, n)
if x1 - x3/Noyj > I’Z(I) then

‘ P=P+1,Nori =2'Nori,Ap =1
end
return
Function Terminate(t, x, Ny, P, A, C)
if P > 0 then

ift—A; > Cthen fori =1toPdo A; = A;4;
P=P-1

end
return
Function Divide(, x, ng)
if x1 - x4 > n then

| return true
else

| return false
end

> array of displacements
> exponential volume growth

> array of displacements




Parameter Campos ef al. | Notation
Growth rate a A

Size at birth Ly Sb

Size at division Ly Sd
Added size from birth to division AL Ad
Added size between X-events AL* Ag
Elapsed time between birth and division T T
Elapsed time between X-event and division | ot X

Correspondence with notations in Campos et al. [S12].

IV. DISCUSSION ON THE PHASE-SHIFTED MODEL PREVIOUSLY REPORTED

A. Overview

In their paper [S12], Campos and colleagues presented experimental evidences of a “constant elongation model”, stating that
each individual cell grows in average of a constant mass between birth and division. This result is also known today as the
adder principle [S13]. Comparison of the distributions of the added size and of the birth size between experimental data and
simulations served to validate this model.

They also used their results to discredit the conjecture that replication initiation and division are coupled. Specifically,
they considered the alternative hypothesis that instead cells would add a constant mass between specific events (“X-events”)
of the cell cycle, such as chromosome replication initiation. This defined a “phase-shifted model”. By comparison with
their experimental results, they rejected such as model and concluded that the “constant elongation model” must hold and
that division is therefore not coupled to a replication initiation event. In this comparative analysis, two main points were put
forward. (i) The distribution of the added size between cell birth and cell division, AL, and the distribution of the cell size
at birth, Ly, were aberrantly broad in simulations of the phase-shifted model. These wide fluctuations were attributed by the
authors to the fact that the number of X-events per generation could fluctuate a lot. (ii) The phase-shifted model resulted in
correlations between mother/daughter cells for AL, in contradiction with the absence of correlations seen in experimental data.
The authors argued that this is because the added size between X-events can overlap several generations in the phase-shifted
model, resulting in correlation in AL.

In this section, we will show instead that the wide fluctuations obtained result from the choice of parameters for the
phase-shifted model. Actually, it will appear that the cell size convergence in the phase-shifted model critically depends on
the value of the phase shift. Specifically, it can deviate significantly from the adder convergence, and even become an unstable
model. We conclude this discussion by suggesting an alternative model for the cell cycle. This model relies on an adder
principle holding between replication initiation events, and assume that division and replication initiation are coupled. Yet for
this model, cell size convergence is consistent with adder and the simulated data would be consistent with the experimental data
from Campos and colleagues [S12]. Altogether, this suggests that discarding the co-regulation hypothesis between replication
initiation and division based on the simulation results of the phase-shifted model is not reasonable.

B. Cell size convergence with the phase-shifted model

To be consistent with our manuscript we adopt notations different from Campos and colleagues. The correspondence between
their and our notations are summarized in Correspondence with notations in Campos et al..

B1) Model

We now describe the phase-shifted model proposed by Campos and colleagues [S12]. First, they assumed that cells elongate
their size exponentially according to Equation (1). Second, they introduced a cellular event, denoted by the lower script X,
which determines division timing. Specifically, provided that a cellular event occured at time rx, cell division is bound to
happen at time #3 = #x + 7x. Such an event does not necessarily coicinde with cell birth. Instead, it will typically represent
chromosome replication initiation. Also, the cellular event triggering cell division may occur in the mother cell or other
ancestors. In this model, cell division timing is therefore related to the timing of these specific cellular events, or “X-events”.
Third, they proposed that an X-event occurs when a fixed size Aq has been added since the last X-event. More accurately, we
introduce the quantity AxS which is reset to AxS = 0 when an X-event occurs, and otherwise increases according to:

dAxS  dS
dr  dr’

(61)



In particular, if the last X-event happened in the current generation, then:
AxS =S - Sx (62)
Yet if the last X-event happened in the previous generation (say with index n — 1), then:
AxS = (S = Sp) + (sy7 — s, (63)

Whenever the added size since the last X-event reaches a fixed quantity, AxS = Ax, an X-event occurs and AxS is reset to
Zero.

B2) Cell size convergence for small perturbations

We now investigate the convergence of cell size from a perturbed initial value in the phase shifted model. We distinguish
two cases, depending on the value of 7x compared to the generation time 7 = In2/A. Note that the results below are derived
assuming that there is exactly one X-event per generation. In order for this assumption to hold, we restrain ourselves to small
perturbations around the steady state cell size value. For larger perturbations, multiple X-events may occur in one generation,
which will be dealt with numererically in the next section.

B3) Case1:0<71x<T

In this scenario, the X-event leading to cell division occurs in the same generation. As such the division size is expressed as:

S = 50 oA (64)
——

Therefore the convergence in cell size at division, is determined by the convergence of S;n ). We now express the cell size
at the X-event:

1

S = 5 S(n—l) 1 g

d 2 d ’

@Y ) (65)
= Ax + (1 -3) s,
where we used that S)((" ) _ S((in_l)/ 2=Ax— (Sé"_l) - S§(" _1)). This is a first order recurrent series. We obtain:
) _ (60 _ (o) (), S =24,
S¢ = (S5 = S5 e S5, with (66)
r =1-a/2.

Note that Equation (65) holds only when there is one X-event per generation. Namely, if S(g"_l) — S;(" RIS Ax, then

S(") S(" Y} Ay instead. In Equation (66), we see that cell size converges exponentially to the steady state value S)((m). When

7x = 0, we obtain » = 1/2 which is the adder convergence. Indeed, in the latter case, the phase-shifted model reduces to the
adder principle [S13]. However, when 7x > 0, then r < 1/2 and the convergence is faster than adder.

B4) Case2: 7 <71x <27

In this scenario, the X-event leading to cell division occurs in the previous cell generation because tx > 7. As such, the
division size is expressed as:

(n) At (n—1)

SV ==e"XS . 67
d £ (67)
a

| =

Similarly as before, we express the cell size at the X-event as:

) _ g0 _ Lgm-n 1o
S¢) = st~ 2sd 2sd :

= Ax + S0 - ng“ 2, (69)

(68)



Therefore, the series S((j") satisfies the second order recurrence relation:

S¢S+ 250 = Sax. (70)

Equation (70) is solved using standard results on series. The homogeneous solution is obtained by considering the
characteristics equation:

2 a
—u+ - = ()’ 71
w—ut g (71)
with imaginary solutions (because @ > 1):
1 Va-1
Uy = E +1 2 . (72)

The general solution must be a linear combination of the series [u'] and [} ]. Using the particular solution S((]") = 2Ax to
Equation (70) and the fact that the solution must be real, we finally find the solution:

Sy =24k,
S = Ar'cos(nf + @) + S5, with {r = +a/2, (73)
tang = Va -1,

where A and ¢ are two constants determined by the initial condition (Sgo), S((jl)). Equation (73) defines a regime in which the
convergence is slower than for adder since r > 1/2. In addition, the presence of oscillations in the response to perturbations
to cell size suggests that in the presence of stochastic fluctuations the distribution of cell size would be quite large.

B5) Cell size convergence for general perturbations

As emphasized earlier, the analytical expressions Equations (66) and (73) are only valid for small perturbations. For larger
perturbations, more than one X-event may occur per cell cycle. The actual generation time of individual cells during convergence
may then vary significantly, resulting in the cell size convergence to be a combination of the scenari discussed previously.
We investigated numerically cell size relaxation from a perturbed initial condition (Deterministic cell size relaxation in the
phase-shifted model). We defined 7 = In2/A = 1 as unit of time and Ag = 1 as unit of size. We took the initial condition
S§? ) = 4. We observed cell size convergence in agreement with the analytical cases discussed above. In particular, for 7x = 0
the cell size convergence is like adder. For 7x = 0.57 we find that the cell size converges faster than adder. Gradually as 7x
increases, the cell size convergence becomes slower than adder, and even oscillations appear.

B6) Comments

In summary, both analytical expressions and numerical simulations indicate that the cell size convergence in the phase-shifted
model can deviate significantly from adder. This stems from the very definition of the phase-shifted model. In particular, for
the values tested by Campos and colleagues [S12], 7x = 1.37 and 7x = 2.27, cell size convergence not only is slower than
adder but also exhibits an oscillatory response to perturbations. As such, it is expected that the distribution of cell size in a
stochastic implementation of this model will be very broad, which is one of the reasons invoked to reject the phase-shifted
model and consequently refute the idea that division is controlled by chromosome replication initiation. However, this feels
somehow excessive since there are other models implementing a control of division by initiation that would not lead to such
an aberrant convergence property for cell size.

C. Alternative adder model for cell cycle based on replication initiation control

In this section, we present an alternative model for the cell cycle controlled by initiation events, yet satisfying the adder
convergence for cell size and the absence of correlations for the added size. Namely, we consider that chromosome replication
initiates after a fixed volume per origin of replication has been added since the last replication initiation. Since at division, the
number of origins of replication is divided by two, Equations (65) and (69) become:

s =5V v s, (74)

where s; = Sj/Nq;j is the volume per origin of replication at initiation and 6; = Aq/Noyi. This ensures that:

m _ 0 _ 1.
5" = (s, —51)2—n+6,, (75)
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Deterministic cell size relaxation in the phase-shifted model [S12]. (A) Simulated lineages with different values of the phase shift 7x.
(B) Overlay of cell size convergence for the simulated lineages.

which is the adder convergence.

We now consider that each initiation event leads to a cell division event after a time equal to 7.y has elapsed, hence
assuming that division is regulated by chromosome replication initiation. In general, 7cyc may be larger than the generation
time 7 = A/In 2. Therefore, the size at cell division is given by:

Sén) =P si(nfp)e/h'cyc’ (76)

where p is the integer part of 7., /7. Note that the number of origin of replication is Ny = 2P. For simplicity, here we assume
that p is fixed, meaning that the replication initiation event leading to the cell division of the current generation always occurs



in the same relative ancestor (e.g. mother, grand-mother, efc.). The added size between division events is then expressed as:

(n) _ o) (n-1)
Ad _Sd _Sd ’

= 2P Toe 5 (77)
——
A

We thus obtain that the mother/daughter correlation for the division adder is related to the mother/daughter correlation for
the initiation adder:

<Afjn+1)A((in)> (A = A2 (<5i(n+1)6i(n)> _ <5i>2), (78)

Provided that the added size per origin of replication in Equation (74) is uncorrelated to the next, we retrieve that the added
size between divisions is uncorrelated from mother to daughter cells.



APPENDICES

Appendix A: Properties of Gaussian bivariate distributions

A1) Conditional probability

Let us consider two stochastic variables X and Y distributed according to a Gaussian bivariate distribution. We shall consider
for simplicity that both X and Y are centered:

(X) =0, Yy =0. (79
The distribution of a random Gaussian vector R = (X, Y) is characterized by the covariance matrix:
_ [Oxx Oxy
Ky = . 80
0 ( Ty O_yy) (80)

The variance of X (resp. Y) is o« (resp. oy,) and the covariance between variables X and Y is given by cov(X,Y) = 07y,.
The Pearson correlation coefficient between variables X and Y is expressed as:

p= —2F 81
N
The probability distribution of the random vector R = (X,Y) is given by:
1 | S—
p(r) = —————exp (——r -Ky - r). (82)
(27)y/det(Ko) 22 0
Denoting p(x, y) = p(r), and using the definition for conditional probabilities: p(x|y) = p(x, y)/p(y), we obtain:
pxly) = = EXpl=—5 ———— > [U'yyx + Oxx) — Zo_xyxy] s (83)
z 2 0xxOyy = Oy

where Z is a normalization constant depending on y. This normalization is obtained by ensuring that / dx p(x|y) = 1. We
finally obtain:

(84)

_ 2
ol = R E&W)u

1
Varo bR ( 2 oxhy)?

E(xly) = p, /?y, (85)
yy

o (xly) = ol = p7). (86)
When p = 0, we find that this Gaussian distribution does not depends on y. When p = +1, the variance o(x|y)> — 0, i.e. x
becomes a deterministic variable, with value y (or —y) if oy = 0y,y.

which is a Gaussian distribution with mean:

and variance:

A2) Correlation of the inverse

We first consider the random vector f(R) = (f(X), f(Y)), where f is a quadratic function:
1
f(x) = §a2x2 +ax+ap. (87)

We now ask what is the Pearson correlation between variables f(X) and f(Y) given the correlation between variables X and
Y. Introducing the vector A = (4, 77), one can for instance consider the characteristic function:

o(A) = < e/lf(X)+nf(Y)> ,

- [ axdyplxnens (A7)

1
—ZR'K'R+aATR), (88)

1
— (/l-H])ao/dZR (
e ——F——¢&Xp
2m+/det (Ko) 2

det (Kp) 1
— (/1+I7)a() A _ ZATK A
¢ det(Ko) P (2“1 AR



where we introduced the matrix:

~ 1 - p? Txx8(A, Txx) Txy 89
A= 2 ( )]’ =
8(A, oxx)g(, 0-)’)’) - P Txy Txy8WUD Tyy

and the function g(1, 0?) = 1—A0%as(1 — p?). We then obtain the desired correlations by taking the derivative of the logarithm

of the characteristic function:

g
0% |1zop=0

(6f(X)%)

)

1
2 2 2
ajoxx + 3 Txx )

8%1
@fy) = a_nch ,
n A=0,n=0 (90)
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’Ing
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04 A=0,n=0

(6f(X)ef(Y))

1
_ 2 2 2
= a\0xy + 5 O0xxTyya;0°.

2

We therefore obtain for the Pearson correlation coefficient:
(0f(X)o f(Y))
p(f(X), f(Y)) = ,
VLDV (X))

2
0 (] + % TaxOyy (Z—f) p)
= . 92)

2 2
1 o () 1+ o (2)

Equation (92) is an exact result. We see that when \/oxx < |ai/az| and /oy, < |ai/az|, the correlation between the
transformed variables is equal to the correlation between the two variables: p(f(X), f(Y)) = p(X,Y).
Let us consider now the case where the function of interest is the inverse function:

F) = —

I+x
The result in Equation (92) does not strictly hold because Equation (93) is not a quadratic form. However, if the fluctuations
in X are not too large, one might expect that the fluctuations of f(X) around 1 are not too large either. In this case, one might
approximate f(x) to a Taylor expansion. We thus obtain a quadratic form as in Equation (87), witha; = 2,a; = -1 and ag = 1.
Considering that the two variables have the same variance oy, = oy, = o2, we show in Pearson correlation between f(X)
and f(Y) that when o < |a;/az| = 0.5, the Pearson correlation of the transformed variables is approximately equal to the
Pearson correlation between the two variables: p(f(X), f(Y)) = p(X,Y) as long as ¢ is not too large.

€2y

(93)

Appendix B: Time-dependent growth rate in balanced growth

In this section, we derive the equation describing the time evolution of the instantaneous growth rate in single cells (i.e.
the elongation rate for rod-shaped bacteria). We then generalize the equation describing concentration dynamics, namely
Equation (39).

Let us denote M the dry mass of an individual cell. We assume that the total mass increase is directly proportional to the
number of ribosomes in the cytoplasm. Thus we have:

dmM
(0 = TMr (1) ©4)

where o corresponds to the amount of new biomass produced per ribosome and Mp, is the mass of ribosomes in the cell. Note
that we assume that o is constant, that is to say that the translation load of ribosomes is invariant through time. Furthermore,
in balanced growth, a fixed fraction of the mass increase is allocated to ribosome synthesis:

e L)

T(f) = ¢r ar 95)
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Pearson correlation between f(X) and f(Y) when f(x) is the function in Equation (93). (X, Y) is a random vector distributed according
to a Gaussian bivariate distribution, with means (X) = (¥) = 1, variances oxx = oyy = o2 and covariance oxy = p(x, y)o. In this case,
the coefficient-of-variation is CV = o.

where ¢y, is the fixed fraction of the mass flux allocated to ribosome synthesis. Introducing the instantaneous mass fraction of
ribosomes ¢ (1) = Mg(t)/M(t), we obtain from Equation (94) the equation for exponential growth:

dd—At/I(t)z/l(t)M(t), with  A(t) = oo pr(?). (96)

Using Equations (94) and (95), we obtain the equation describing the time-evolution of the instantaneous growth rate:

da .
7 =A@ -A0), (97)
t
where 4" = 0 ¢}, is the steady-state growth rate.
Let us now consider a generic protein with instantaneous mass Mp in the cell. Again we assume that this protein is

produced under balanced growth:
dMp . dM
(0= $p 1) 98)

where ¢7, is the fixed fraction of the mass flux allocated to the biosynthesis of protein P. Using Equation (96), we find that the
instantaneous mass fraction ¢p(¢t) = Mp(t)/ M(t) satisfies:

%L (1) = 206}~ op (1) ©9)

or in terms of concentrations: d
C *
(0= 20)(cp = cp(0). (100)
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