### **Expanded View Figures**



#### Figure EV1. Size distribution of MNase-digested fragments.

- A Agarose gel (1%) images showing matched MNase digests from bulk human chromatin from pl-iPSC (left panel) and NPC (right panel), and the subsequent sizeselected DNA fragment range used for paired-end sequencing. Gels were scanned and the mono-nucleosome peak quantified as a fraction of the total chromatin DNA. MNase digestion released near equivalent amounts of mono-nucleosome DNA, pl-iPSC (3% of total DNA) and NPC (2.4% of total DNA). This indicates approximately equal numbers of nucleosomes in both cell types, but we subsequently show that only a small fraction of these are positioned within the chromatin.
- B The size distribution of fragments calculated from the pl-iPSC and NPC paired-end sequencing (from a total of 3.4 and 3.0 billion paired-end reads for pl-iPSC and NPC, respectively). NPC samples had a slightly smaller fragment size distribution, with no evidence for loss of 139–161 fragments (corresponding to core nucleosomes) from pl-iPSC samples.
- C Histogram to compare the key size ranges of 112–137 bp (sub-nucleosome), 138–161 bp (core nucleosome) and 162–188 bp (large nucleosome footprint) for pl-iPSC and NPC samples (delineated by grey lines in B).



#### Figure EV2. Distribution of inter-nucleosome spacing.

The distance between nucleosomes (also known as linker length) was plotted between each adjacent nucleosome for pl-iPSC, NPC and K562 cells. In all three cases, the distribution of inter-nucleosome spacing distances is bimodal, with a small peak at < 50 bp, representing only a small proportion on nucleosomes, with a second peak in the range of 10–20 kb for pl-IPSC or 550–700 bp range for the differentiated NPC and K562 cells, which possess eightfold more positioned nucleosomes.



# Genes expressed only in:

**Figure EV3.** Nucleosome distributions at the TSS of genes uniquely expressed in either pluripotent or NPC in both active and inactive cell states. Global frequency distribution of nucleosome distributions within  $\pm$  300 bp of a TSS of genes selected for expression exclusively in pluripotent (pl-iPSC, n = 3,833) or NPC (n = 2,082), shown for both active and inactive cell states. The features corresponding to the nucleosome-free region (NFR) and -1 to +2 nucleosomes are marked. No correlation between gene activity and positioned nucleosomes was observed.



Average frequency distributions for sequence midpoint data at and surrounding transcription factor binding sites ( $\pm$  600 bp) for nucleosomes at ATF2 (n = 9,881), YY1 (n = 39,945) and PAX6 (n = 1,432) sites.



## Figure EV5. Cluster analysis of CTCF complexes and nucleosome positions.

Cluster analysis of nucleosome positioning centred on the CTCF site  $\pm$  300 bp. CTCF sites were clustered based on the 122–137 bp mid-point sequence read values (CTCF protein complex) from pl-iPSC, shown as a frequency distribution in upper left panel. The frequency distribution data for the same sites were plotted using 122–137 bp data from NPC (upper right panel) and 162–188 bp data (nucleosomes).