
 
Reviewers' comments:  
 
Reviewer #1 - expert in EWAS (Remarks to the Author): 

 
 
Kidney functional decline is a frequent disease sequela of diabetes and leads 

to significant morbidity and mortality. However, after diagnosis due to poor 
metabolic indices, robust long-term glycaemic control does not appreciably reduce 
the risk of renal disease.  

Gluck et al. have proposed that the initial metabolic abnormities impact 
epigenetically to maintain this pathogenic trajectory. In this study they have 
analysed the DNA methylation and gene expression of micro-dissected human 
kidney tubule epithelial cells derived from 91 subjects with Illumina 450k DNA 
methylation arrays and Affymetrix U133 RNA microarrays, respectively. This study 
set included 45% with diabetes, 71% with hypertension, and with varying degrees of 
kidney disease. In this set they initially identified 518 cytosines with Bonferroni 
significant DNA methylation changes associated with interstitial fibrosis. These 
results were replicated in a further 85 samples with chronic kidney disease in 459 
cytosines with nominal significance and directional consistency. When combined, 
279 cytosines were identified to be significant with respect to interstitial fibrosis and 
these loci were enriched within kidney enhancer regions from ChromHMM 
Segmentation data.  

In a model of renal functional decline (adjusted eGFR slope), 1,131 cytosines 
captured kidney deterioration, which they found was not possible with either 
histological or gene expression data. 73 of these cytosines were replicated in 
peripheral blood derived DNA from an American Indian cohort, being nominally 
significant with consistent directional change. These CKD progression model fit 
cytosines were also compared with a recent study in blood from diabetes and 2 
cytosines were also differentially methylated.  

This study overall has significant strengths, particularly due to its direct 
exploration of the disease-relevant kidney cells and not a surrogate tissue, as well 
as additional replication/validation analyses. However, there are several points 
below that I would like the authors to address to further substantiate their claims. 

 

Major 
 

1) The numbers analysed are small by array standards, although, this is obviously 

restricted by the ability to access kidney tissue samples. Yet, this will still impact 

on the power of this genome-wide study. The use of a multi- ethnic sample 

group will also significantly increase the potential of genetic heterogeneity to 

confound or inflate results. The authors have incorporated a race category into 

their linear regression model; however, common genetic background is difficult 

to correct for using only broad racial/ethnic groups. Genetic and cell-type 

heterogeneity can drive significant variation and, for example, minimal DMPs are 

identified when genetics and cell-type is controlled for in isolated cell-type 

monozygotic twin studies (1). Did the authors attempt any further exploration of 

potential genetic effects, such as “gap hunting” (2), incorporating any genetic 



information on these individuals, or else? The authors indicate that CpG probes 

“near” common SNPs were removed – can they state this more precisely: was it 

10 bp or else? The Manhattan plot (Fig. 1a) does appear inflated for low p-

values - see Figure 1e 

in Lunnon et al. (2014) (3) for an EWAS in Cortex tissue for comparison. Did 
the authors assess potential inflation by a qqplot?  

2) Can the authors comment further on cell type heterogeneity issues with 
respect to the analysis within the kidney samples – inflammatory cell 
infiltration etc.  

3) Replication is supportive, however, for those results identified in whole blood 

(American Indian and Chen et al.) - what is the pathophysiological mechanism 

to explain the commonality between tissues beyond genetic confounding? Was 

the number of overlapping probes above expected randomly?  
4) The authors propose a hypothesis whereby the epigenetic state of the kidney 

cells acts as a metabolic memory primed by the early adverse metabolic 
effects. Another further explanation is the impact of ageing on these initial 
metabolically-driven epigenomic abnormalities, as the epigenome changes 
with age, both stochastically (4), but also directionally within certain 
functional loci (5, 6). The authors have excluded ageing change, but this may 
further perturb these abnormalities. As well, other age-related epigenetic 
changes related to kidney disease may exist, perhaps in conjugation with 
genetic disease susceptibilities. This could be attempted to be explored in 
these data as there is an S.D. of 11.5 in age. Are there any significant age- 
related DNA methylation changes in epigenetically defined kidney regulatory 
regions? Or Diabetic kidney disease GWAS loci?  

5) Could the authors provide more details as to how the enrichment within 
enhancers was calculated? Low levels of variation in promoters is expected as 
these CpG-dense regions are predominately non-variant (7) – was this 
accounted for?  

6) 279 probes were identified as enriched for kidney enhancer regions. Whilst 
enhancers are significantly more tissue-specific than promoters, was this 
result definitively specific to kidney tissue? - or are these probes also 
enriched for tissue common enhancer regions - as can be evaluated in the 
other available Encode ChromHMM Segmentation data, for example?  

7) Can the authors include more details as to the expression analysis and how 
multiple testing was accounted for? If a random permutation of these data is 
performed, how many significant associated expression results are 
identified? 

 

 

Minor 

 

1) Introduction pg 4: Sentence “since the epigenome is under… “ – requires 
re- writing  

2) Introduction pg 5: missing “to” - “…failed to pass…” 
3) Results pg 6/7: “bisuphite conversion efficient” not “methylation 

conversion efficiency” as it is unmethylated cytosines that are converted  



4) Results pg 7: “… histone tail modifications …” 
5) Methods pg 16: “bisulphite” not “bisulphate” 
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Reviewer #2 - expert in DNA methylation and diabetes (Remarks to the Author):  

 

Clearly a study that embarks on distinguishing molecular signatures from human kidney tubule 

tissues is to be applauded. Rather than focus on single genes the authors discuss in the introduction 

the multifactorial contribution of environment and genes working in pathological states. This paper 

is the beginnings of a significant study that contributes to the establishment of molecular diagnostic 

criteria for the classification of diabetic kidney disease (DKD). Kidney function decline constitute a 

major proportion of intractable diabetic complications and the classification and diagnosis of DKD 

remains a clinical challenge. Gluck et al use array-based technologies to derive DNA methylation and 

gene expression using surgically resected kidney tubule tissue from human subjects with and 

without diabetes. Replication cohorts include kidney tubule tissues as well as blood derived 

methylation assessments. The major finding of this paper is the identification of specific DNA 

methylation signatures that could be used to predict kidney function decline. In striking contrast, 

differences in gene expression did not match with DKD subtypes and were likely driven by unknown 

factors that are not explored in any detail. DNA methylation is unsurprisingly a stable biological mark 

when compared to mRNA derived assays. The implications of these findings are unclear. The paper 

begins to add differential DNA methylation signatures as a potential molecular classification for DKD.  

 

From a technical point of view the study was performed using 450K array and is limited to 

predetermined probe sets as discussed by the authors. More significant here and a point of 

confusion for the Nature Commun readership is the approach used is not “genome wide” 

methylation assessment. There is also confusion and lack in clarity in the analytical approaches used 

which are of concern. And while my enthusiasm is high for the article there is a paucity in 

mechanistic discovery. The methylomes assessments are observational and descriptive. And while 

there is appreciation that gene contribution is likely to be multifactorial few genes standout as 

strong methyl-biomarkers of the study.  

 

The paper could further be strengthened by considering the following:  

 

1. While it is helpful to discuss potential mechanisms implicated in DKD that may translate into 

differential DNA methylation changes, what are the factors that influence DNA methylation in kidney 

disease? This is central to this study. Could DNA methylation be regulating pathways central to 

kidney disease and how could this information be used to improve predictive utility?  

 

2. The authors are encouraged to examine whether differential DNA methylation patterns 

could also be used as a biomarker for the predictive classification of DKD (i.e. tubules) and from 

blood samples. Are the mechanisms that drive DNA methylation in kidney and blood generalizable? 

The current study does not address mechanism which would be a significant advance in the field. 



However, this is not the only major criticism of the study and the comments below address some of 

the issues.  

 

Abstract:  

Authors describe “genome wide methylation” in methods, this examination is by array, which is not 

described and the Illumina 450 array is not considered “genome wide” which is usually reserved for 

CpG methylation sequencing or whole genome bisulfite seq WGBS based methods. The article 

requires clarity on the actual DNA methylation method used, as readers will be confused throughout 

the manuscript.  

 

Methods abstract, the authors describe gene expression and histone maps for functional integration, 

this requires a cleaner description, as it does refer to ENCODE datasets assessed for epigenetic 

changes, not necessarily derived from the study. This description needs to read more accurate as it 

implies further epigenetic assessments and analyses were derived from the tissues.  

 

Introduction:  

Page 4 in the 3rd paragraph, the authors discuss intrauterine exposure and kidney disease 

development. The link here with development is unconvincing. Are the authors implying intrauterine 

DNA methylation is associated with DKD? The articles cited do not conclusively illustrate this point.  

 

Methods/Design:  

 

How were the independent cohort selected? were they from different centres? and how many years 

apart? How is the blood replication cohort relevant when considering these samples are from 

American Indians? This is not only confusing but also raises other salient questions regarding the 

generalizability of the DKD methylation marks from the different cohorts.  

 

Is there any genetic data available for the samples used in this study? Is it possible that genetic 

heterogeneity due to population genetic variation in CpG-SNPs could be driving methylation 

differences? 

 

A combination of Bonferroni and FDR correction was used for Multiple comparisons throughout the 

study. For consistency in statistics can the authors use one or the other? The paper does not 

estimate what statistics were used for correction.  



 

Did the authors perform any power analysis prior to the DNA methylation analysis?  

 

No methyl-validation of probes were attempted and the study requires stronger assessment of 

methylation difference using an independent assay. The differences in the methylation levels of the 

CG probes could be a function of the array.  

 

Results:  

 

The main research question for this manuscript is to identify cytosine methylation difference in 

patients with diabetic kidney disease, how did the authors adjust for diabetes?  

 

Could the authors assess the effect of gender, age and race on the differentially methylated probes?  

 

Odds ratio analysis was used to define functional importance of methylation differences. 

ChromHMM uses background data to calculate overrepresented in differential data, can the authors 

give details on the background dataset used?  

 

Gene expression was also performed in (n=58), however the results are not shown. One of the aims 

of the study was integrated methylation changes with regulatory and gene expression changes, yet 

there are no results shown. Authors only show gene expression of a few selected genes. If this was 

not the aim of the study than it remains confusing what hypothesis the authors are assessing.  

 

Page 7, how was linear regression adjustments made for age, sex, race, diabetes, hypertension and 

batch effect? Description of the methylation conversion efficiency is also warranted showing how 

this was performed.  

 

Page 7, “to better control for batch effect” this is unusual and it’s unclear why this was not 

performed earlier in the paper.  

 

Page 7, ChromHMM integration performed on datasets derived for the histone modifications in 

“human kidney” presumably they mean non-DKD tissue? If so, how are the epigenetic comparisons 

made for diabetic and non-diabetic kidneys?  



 

Page 7, the first description of the array is in the results section of the paper.  

 

Page 8, the paper needs to define the “stringent statistical criteria” used for methylation and gene 

expression changes. What are they and better descriptions required to justify methylation 

differences.  

 

Page 8, methylation is inversely correlated for HOPX gene expression. The importance of this finding 

in the paper is not strong. What available data is there that HOPX is regulated by DNA methylation 

driving gene expression?  

 

Page 9, “the methylation level of 1,131 probes was significantly associated with renal function 

decline…” unclear in which cohort the result is observed.  

 

Discussion:  

 

Page 12, “robustness including blood sample from the DCCT study” … Yet the overlap between data 

generated in this study and DCCT is limited to 2 CpG sites (page 11). The paper does not illustrate 

robustness of the association, rather, observation the 450K array identifies methylation differences 

at probes that might be considered passing statistical testing.  

 

Page 12, it remains unclear how the methylation changes for the genes screened for methylation 

difference, such as HOPX are functionally important.  

 

Figures/Tables:  

 

Table 1, Diabetes duration not shown. Over how many years and measurements was eGFR 

assessed?  

 

Table 3, can authors report effect size of methylation change for the probes shown?  

 



Figure 3a and 4a, can authors show confidence intervals on plots?  

 

No description table for gene expression cohort is shown.  

 

Suppl. Information:  

 

The paper should show methylation data from all samples using PCA plots in order for the reader to 

visualize the variability in methyl-signals.  

 

 

 

Reviewer #3 - expert in diabetic nephropathy (Remarks to the Author):  

 

In this retrospective, observational analysis Gluck and coworkers tried to define the wide cytosine 

methylation differences in microdissected human kidney tubule epithelial cells of patients with 

diabetes and kidney disease and to evaluate whether and to what extent analysis of cytosine 

methylation levels can improve the predictive value of current models of renal function decline. The 

issue is of potential methodological and clinical interest. Unfortunately, the study is flawed by major 

limitations in patient selection and outcome analyses, the analyses fail to address the primary 

question of the paper, data are unclear and their presentation is confusing and potentially 

misleading.  

 

More specifically:  

 

1. The study population is poorly characterized. Main clinical and laboratory characteristics at 

the time the kidney tissue was sampled should be provided in Table 1, including detailed information 

about factors that may affect renal disease outcome such as blood pressure and metabolic control, 

serum lipids, underlying histological diagnosis of kidney disease, concomitant treatment with drugs 

such as ACE inhibitors, ARBs, HMGCoA inhibitors, blood glucose and blood pressure lowering agents 

and others that may affect GFR decline over time (the primary outcome of the study). All these 

parameters should be considered in the univariable and multivariable models used by the Authors.  

 



2. The title and data presentation throughout the text are misleading. Why the Authors focus 

the attention on diabetic kidney disease when only 41 of the 91 study patients were diabetics?  

 

3. Again, the Authors state that methylation differences with genome wide significance can be 

detected in kidney tubule samples of patients with diabetic kidney disease. Thus, why data on 50 

non-diabetic patients are reported in Table 1? Information about non diabetic patients should be 

deleted.  

 

4. Independent of the above, the Authors should acknowledge that the study population is 

small, which may affect the power of the analyses and the robustness of the findings. In this context, 

a justification for the sample size should be provided to ensure that study findings are not casual.  

 

5. The authors do not take into consideration that type 1 and type 2 diabetes are two different 

disease entities, with different etiologies, phenotypes, outcomes and treatment. In type 1 diabetes 

hyperglycemia is the direct consequence of impaired insulin production, in type 2 diabetes 

hyperglycemia is just one of the several manifestations of the metabolic syndrome, including 

hypertension, dyslipidemia, obesity, insulin resistance and other. Thus, the Authors should clarify 

how many of their patients had type 1 or type 2 diabetes and should consider them separately.  

 

6. The definition of diabetic kidney disease is also nebulous. In patients with type 2 diabetes, 

kidney changes may include typical focal glomerular sclerosis (in a minority of cases), 

nephroangiosclerosis, ischemic kidney disease, tubule-interstitial disease, concomitant primary 

glomerular diseases, ageing-related changes and other changes that can be observed in different 

combinations in different patients. Probably these different hystological patterns reflect different 

pathogenic mechanisms. Thus it is hard to believe that a single predictive model may predict disease 

outcome to a similar extent in such a heterogeneous population of patients. This is an issue that 

should be taken in due consideration by the Authors and should be adequately discussed. In table 2 

the authors should report the histological diagnosis of the study patients.  

 

7. More in general no information is provided about the selection criteria for study 

participation. According to data in Table 1 it is conceivable that a subgroup of “healthy“ subjects 

without diabetes, hypertension or proteinuria was also included. This should be clarified. How can 

methylation changes in “healthy” subjects predict the outcome of diabetic kidney disease? 

Incidentally, reasons for nephrectomy should be reported.  

 

8. More detailed information should be provided about outcome analyses. How eGFR slopes 

were calculated? Did the authors account for the acute changes associated with nephrectomy (sharp 



GFR reduction after nephrectomy followed by compensatory hyperfiltration of residual tissue) and 

may be subsequent decline due to exhaustion of surviving nephrons? Which was the minimum 

number of GFR estimations and the minimum follow up required for slope calculations?  

 

9. The study design should be described in title and abstract; study setting, participating 

centers, recruitment period, data monitoring should be described in detail in the text. A justification 

of the sample size should be provided. Was an informed consent required for the use of kidney 

tissue for the purposes of the study? Was the protocol approved by an ethical committee?  

 

10. Although I recognize the difficulty in finding biopsy samples, the validation step for the 

methylation changes that predict kidney function decline in peripheral blood mononuclear cells 

(PBMCs), instead of microdissected tubules, is not fully convincing. Indeed, one of the first 

assumptions is that methylation is cell type-specific. What is more, one of the top probes found to 

correlate with kidney function decline is not confirmed by results published by Chen et al. on whole 

blood from patients treated with conventional glycemic therapy and diabetic complications. To use 

PBMCs in the validation step, the authors should confirm that microdissected tubule methylomes 

match (fit) with the PBMCs ones in the primary and replication cohorts.  

 

11. Locus specific validation of kidney cytosine methylation and gene expression changes for the 

top replicated probes associated with interstitial fibrosis and kidney function decline are lacking and 

should be provided through bisulfite sequencing and real time qPCR experiments, respectively.  

 

12. The authors identified 7 probes associated with interstitial fibrosis, but described only the 

one correlated with HOPX transcript level. It is not clear why they omitted the other descriptions. 

The authors should discuss the possible involvement of all the differentially methylated and 

expressed genes (listed in Table 3) in the progression of interstitial fibrosis in DKD. Moreover, in vitro 

experiments in proximal tubule cells exposed to high glucose or silencing/overexpressing HOPX are 

needed to elucidate the involvement of HOPX in interstitial fibrosis.  

 

13. Similarly to point 2, the authors should describe other possible candidates (besides EGF) as 

predictors/biomarkers for renal function decline, focusing on those that are known to play a role in 

kidney patho-physiology (for example collagen, as shown in Supplementary Table 6).  

 

14. The abstract results are misleading. It seems like methylation changes in the kidney 

promoter regions next to EGF were validated in blood samples of the independent cohort, while 

they were not.  



 

Minor points:  

 

a) Several inaccuracies occur throughout the text:  

- Is the replication cohort left with 416354 CpG probes (as stated in the Procedures section) or 

406354 (as stated in Figure 2)  

- In the last paragraph on page 13, the authors first assert that subjects underwent full/partial 

nephrectomy, but then that all subjects underwent partial nephrectomy. Please correct accordingly.  

- In the abstract, the authors should substitute diabetes with diabetic kidney disease (page 2, line 9)  

- On page 10, line 24, the authors reported 73 CpG probes, while in Figure 5 and its legend, 76 

are reported. Please correct accordingly.  

 

b) Results and Procedures should be divided into paragraphs and titled in order to facilitate reading 

of the paper.  

 

c) The authors should specify in greater detail which Affymetrix microarray they used.  
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Reviewer #1 – expert in EWAS (Remarks to the Author): 
  
Kidney functional decline is a frequent disease sequela of diabetes and leads to 
significant morbidity and mortality. However, after diagnosis due to poor metabolic 
indices, robust long-term glycaemic control does not appreciably reduce the risk of renal 
disease. 
Gluck et al. have proposed that the initial metabolic abnormities impact epigenetically to 
maintain this pathogenic trajectory. In this study they have analysed the DNA 
methylation and gene expression of micro-dissected human kidney tubule epithelial 
cells derived from 91 subjects with Illumina 450k DNA methylation arrays and Affymetrix 
U133 RNA microarrays, respectively. This study set included 45% with diabetes, 71% 
with hypertension, and with varying degrees of kidney disease. In this set they initially 
identified 518 cytosines with Bonferroni significant DNA methylation changes associated 
with interstitial fibrosis. These results were replicated in a further 85 samples with 
chronic kidney disease in 459 cytosines with nominal significance and directional 
consistency. When combined, 279 cytosines were identified to be significant with 
respect to interstitial fibrosis and these loci were enriched within kidney enhancer 
regions from ChromHMM Segmentation data. 
In a model of renal functional decline (adjusted eGFR slope), 1,131 cytosines captured 
kidney deterioration, which they found was not possible with either histological or gene 
expression data. 73 of these cytosines were replicated in peripheral blood derived DNA 
from an American Indian cohort, being nominally significant with consistent directional 
change. These CKD progression model fit cytosines were also compared with a recent 
study in blood from diabetes and 2 cytosines were also differentially methylated. 
This study overall has significant strengths, particularly due to its direct exploration of 
the disease-relevant kidney cells and not a surrogate tissue, as well as additional 
replication/validation analyses. However, there are several points below that I would like 
the authors to address to further substantiate their claims. 
 
We would like to thank the reviewer for his/her positive comments. 
  
Major 
  
1) The numbers analysed are small by array standards, although, this is obviously 
restricted by the ability to access kidney tissue samples. Yet, this will still impact on the 
power of this genome-wide study. The use of a multiethnic sample group will also 
significantly increase the potential of genetic heterogeneity to confound or inflate 
results. The authors have incorporated a race category into their linear regression 
model; however, common genetic background is difficult to correct for using only broad 
racial/ethnic groups. Genetic and cell-type heterogeneity can drive significant variation 
and, for example, minimal DMPs are identified when genetics and cell-type is controlled 
for in isolated cell-type monozygotic twin studies (1). Did the authors attempt any further 
exploration of potential genetic effects, such as “gap hunting” (2), incorporating any 
genetic information on these individuals, or else? The authors indicate that CpG probes 
“near” common SNPs were removed – can they state this more precisely: was it 10 bp 
or else? The Manhattan plot (Fig. 1a) does appear inflated for low p-values - see Figure 
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1e in Lunnon et al. (2014) (3) for an EWAS in Cortex tissue for comparison. Did the 
authors assess potential inflation by a qqplot? 
 
Thank you for pointing this out. As the reviewer notes, it is exceedingly difficult to obtain 
human kidney biopsy samples for epigenetic studies. Indeed, we are not aware of any 
other cohorts or publications that used the direct tissue of interest for their analyses. We 
have tried our best to have the largest possible sample size. This sample size is 
comparable to other tissue based EWAS studies, but indeed lower than surrogate cell-
type (blood) EWAS publications. Regardless of these issues we believe that tissue 
based analyses are essential and complementary to large surrogate cell type analysis. 
Our initial goal was to identify methylation markers for disease (fibrosis) regardless of 
race or cell types, however the reviewer is making an excellent point about inflation. The 
original analysis qqplot indicates significant inflation (lambda = 2.73).  

 
  
 
 
 
 
 
 
 
 
 
 
 
 

To assess the cause of the inflation, first we used the gap hunter program (as 
suggested) to remove probes that might be identified as differentially methylated in 
fibrosis due to differences in genetic background. In our dataset the gap hunter program 
identified 110,599 “gap signal” probes for removal. Removing these probes, however, 
this did not improve the qqplot for the association of methylation changes with degree of 
kidney interstitial fibrosis, indicating that genetic background was not the main 
determinant of the inflation.  
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As also suggested by the reviewer, we next hypothesized that cell type heterogeneity 
could contribute to this inflation, despite our efforts to use microdissected human kidney 
tubule samples. Specifically, we noted that in lymphocytic infiltrate could be a major 
contributor of cell heterogeneity. Therefore, we included degree of lymphocytic infiltrate 
in our regression and found it had dramatically reduced the inflation (lamda = 1.70). 
Therefore, we re-analyzed our entire dataset by including lymphocytic infiltrate into our 
model. 

 
Our final model included the 
following covariates: age, sex, 
race, hypertension, diabetes, 
bisulfite conversion efficiency, 
batch, and lymphocytic infiltrate. 
Using this improved model, we 
correlated the degree of interstitial 
fibrosis with methylation level (M 
value) by analyzing the 
methylation of remaining 321,473 
probes, after “gap probe” removal. 
We found that in our primary data 
set, the methylation level of 203 
probes were still significantly 
associated with interstitial fibrosis 
(FDR< 0.05).  

 
We applied this improved model to our replication kidney cohort and well as our 
combined cohort. When examining only the 203 significant probes from our primary 
cohort analysis, we found that 65 probes were also associated with interstitial fibrosis in 
our secondary cohort (p-value < 0.05 with consistent direction of methylation change) as 
well as our combined cohort (FDR< 0.05). We then continued the downstream analysis 
of these 65 replicated probes.  
 
Next, the same approach was used to identify probes those methylation correlates with 
kidney function decline. We again removed probes that might have been related to 
genetic background, using the Gap Hunter method. We found that this improved our 
qqplot (lambda decreased from 2.02 (left) to 1.85 (right)). 
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We did not, however, include lymphocytic infiltrate as a covariate since the goal of our 
analysis was to identify biomarkers of progression. While both interstitial fibrosis and 
lymphocytic infiltrate were associated with progression (adjusted eGFR slope) by 
univariate analysis, when we applied the machine learning method (LASSO) to choose 
variables associated with progression, these variables were not selected. We had 
originally identified 1,131 methylation probes that improved our progression model 
(AIC< 206 and FDR< 0.05). However, a significant number of these probes (406) were 
removed by the gap hunter program due to potential genetic variance. When we re-ran 
the analysis without these “gap probes”, we found 471 probes that improved our model 
(AIC< 206 and FDR< 0.05), including the probe associated with epidermal growth factor 
(EGF) expression changes.  
 
2) Can the authors comment further on cell type heterogeneity issues with respect to 
the analysis within the kidney samples – inflammatory cell infiltration etc. 
 
We appreciate this comment. We hypothesized that lymphocytes potentially 
“contaminated” the microdissected tubule cell data since degree of lymphocytic infiltrate 
correlates with percent interstitial fibrosis on histology (cor = 0.723, p-value = 1.092 E -
14). We therefore included lymphocytic infiltrate in our regression analysis. Please see 
our response above as we re-ran the analysis to include cell type heterogeneity in our 
model. We narrowed our top probes by those located in active kidney gene regulatory 
regions. We discuss the issue of cell type heterogeneity and its role in the dataset.  
 
3) Replication is supportive, however, for those results identified in whole blood 
(American Indian and Chen et al.) - what is the pathophysiological mechanism to 
explain the commonality between tissues beyond genetic confounding? Was the 
number of overlapping probes above expected randomly? 
 
Thank you for pointing this out. There is a large body of literature on using surrogate cell 
types to define epigenetic changes that are observed in disease relevant cell types. For 
example, in the Alzheimer literature some methylation changes observed in blood 
samples correlate with brain specific changes1,2. Similar observations have been 
published in the obesity literature3. It seems that changes observed in surrogate cell 
types are less pronounced, similar to our observations. One possible hypothesis could 
be that the changes are caused by specific transcription factors that are independent of 
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cell types. 
 
Was the number of overlapping probes above expected randomly? 
Our original analysis identified 1131 probes that improved our CKD progression model. 
Out of these 1131 probes, 135 probes were similarly associated with CKD progression 
in the replication cohort analyzing blood samples. If we randomly selected 1131 probes 
from the entire array ten thousand times, the likelihood of replicating 135 probes in the 
blood replication cohort was low (permutation p- value = 0.011).  
 
4) The authors propose a hypothesis whereby the epigenetic state of the kidney cells 
acts as a metabolic memory primed by the early adverse metabolic effects. Another 
further explanation is the impact of ageing on these initial metabolically-driven 
epigenomic abnormalities, as the epigenome changes with age, both stochastically (4), 
but also directionally within certain functional loci (5, 6). The authors have excluded 
ageing change, but this may further perturb these abnormalities. As well, other age-
related epigenetic changes related to kidney disease may exist, perhaps in conjugation 
with genetic disease susceptibilities. This could be attempted to be explored in these 
data as there is an S.D. of 11.5 in age. Are there any significant age related DNA 
methylation changes in epigenetically defined kidney regulatory regions? Or Diabetic 
kidney disease GWAS loci? 
 
Thank you for this important question. To understand age associated methylation 
changes in kidney samples we performed analysis on healthy controls samples (defined 
as GFR>60). We used a linear regression model and controlled for batch, bisulfite 
conversion efficiency, gender, race, diabetes, and hypertension. This model only 
identified 2 probes passing Bonferroni correction (p-value < 1.19e-7) and 8 significant 
probes using a FDR< 0.05 cutoff for significance. We attempted to replicate the 8 
significant probes in our replication dataset and were able to replicate six probes with 
directional consistency of the methylation change. None of these six probes were 
included in our original analysis top probes or the improved analysis top probes (65 
probes associated with fibrosis, or the 471 probes that improved the CKD progression 
model). This may be due to the fact that we used age as a co-variate in the regression 
model. Given that age associated probes did not overlap with the fibrosis associated 
probes we did not think age was a major contributor of methylation changes.  
 
We would like to point out that the current study cannot address the origin of 
methylation changes. We provided several alternative hypotheses, such as 
developmental and environmental origin based on clinical observational study. Our work 
is simply wanted to understand whether significant methylation differences can be 
observed in control and CKD samples. Future studies shall define origin and the 
consequence of methylation differences.  
  
5) Could the authors provide more details as to how the enrichment within enhancers 
was calculated? Low levels of variation in promoters is expected as these CpG-dense 
regions are predominately non-variant (7) – was this accounted for? 
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Enrichment was calculated as an odds ratio. We evaluated the location of our top 
probes (either probes that significantly associated with fibrosis or improved the CKD 
progression model). We compared the number of top probes located in the kidney 
enhancer region vs. all 450k array probes located in the kidney enhancer region. For 
example, in evaluating the 279 top probes associated with interstitial fibrosis, we found 
46 probes were located in the kidney enhancer region. We compared this to all probes 
on the 450K array that were used in the analysis (418339 in our original analysis). Of 
the 418339 probes used in the analysis, 18844 probes were located in the kidney 
enhancer region. In comparing this we calculated an Odds ratio 3.66 (95% confidence 
interval 2.62-5.02) with a p value of 2.23E-12.  We compared with the background 
probes in order to account for the design of the 450K array probe locations.  
In the revised manuscript, we recalculated the odds ratios by adjusting to the reduction 
of the number of analyzed proves after using the Gap Hunter program (original 418,339 
to 321,473).  
 
  
6) 279 probes were identified as enriched for kidney enhancer regions. Whilst 
enhancers are significantly more tissue-specific than promoters, was this result 
definitively specific to kidney tissue? - or are these probes also enriched for tissue 
common enhancer regions - as can be evaluated in the other available Encode 
ChromHMM Segmentation data, for example? 
 

To address this issue, we have 
downloaded regulatory annotation data 
for other cell types and organs from the 
Roadmap Epigenomics dataset. The 65 
probes that associated with kidney 
disease development and were 
replicated in the second dataset, showed 
strong enrichment for kidney specific 
enhancer regions. Median fold change 
was 4.5 (permutation p-value 0.000299). 
While these probes were significantly 
enriched on kidney enhancers, the 
enrichment on other tissue enhancer 

regions was lower (Supplementary Figure 
4).  
 
The results were similar when 471 probes 
that show association with CKD 
progression are analyzed. Our 471 probes 
showed strong enrichment for kidney 
specific enhancer regions (median fold 
change was 2.47, pvalue = 9.999e-05). 
(Figure 4d). 
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7) Can the authors include more details as to the expression analysis and how multiple 
testing was accounted for? If a random permutation of these data is performed, how 
many significant associated expression results are identified? 
 
We used a random permutation method in order to determine the p-value cut-off for 
CpG methylation probes nearby (within 500kb) genes. We used a modified method 
previously described by Shi et al in determining cis-meQTL4. We determined the p-value 
= 8e-5. Using this p-value cutoff in our sample size, beta>0.5075 is required to detect 
"methylation-expression pairs" with power>0.8. We identified 2798 significant 
“methylation-expression pairs”. After removal of probes affected by genetic variation 
(“gap probes”), we were left with 1791 “methylation-expression pairs”. Of note, a 
methylation probe may be nearby more than one gene (Supplementary Table 6).  
 
  
Minor 
  
1) Introduction pg 4: Sentence “since the epigenome is under… “ – requires rewriting 
2) Introduction pg 5: missing “to” - “…failed to pass…” 
3) Results pg 6/7: “bisuphite conversion efficient” not “methylation conversion efficiency” 
as it is unmethylated cytosines that are converted 
4) Results pg 7: “… histone tail modifications …” 
5) Methods pg 16: “bisulphite” not “bisulphate” 
 
Thank you. We will correct these oversights as advised.  
 
1. Paul DS, Teschendorff AE, Dang MA, Lowe R, Hawa MI, Ecker S, et al. Increased 
DNA methylation variability in type 1 diabetes across three immune effector cell types. 
Nat Commun. 2016;7:13555. 
2. Andrews SV, Ladd-Acosta C, Feinberg AP, Hansen KD, Fallin MD. "Gap hunting" to 
characterize clustered probe signals in Illumina methylation array data. Epigenetics & 
chromatin. 2016;9:56. 
3. Lunnon K, Smith R, Hannon E, De Jager PL, Srivastava G, Volta M, et al. Methylomic 
profiling implicates cortical deregulation of ANK1 in Alzheimer's disease. Nat Neurosci. 
2014;17(9):1164-70. 
4. Issa JP. Aging and epigenetic drift: a vicious cycle. J Clin Invest. 2014;124(1):24-9. 
5. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen 
H, et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is 
a hallmark of cancer. Genome Res. 2010;20(4):440-6. 
6. Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H, et al. Human aging-
associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. 
Genome Res. 2010;20(4):434-9. 
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7. Ziller MJ, Gu H, Muller F, Donaghey J, Tsai LT, Kohlbacher O, et al. Charting a 
dynamic DNA methylation landscape of the human genome. Nature. 
2013;500(7463):477-81. 
  
 
�� Reviewer #2 - expert in DNA methylation and diabetes (Remarks to the 
Author):��Clearly a study that embarks on distinguishing molecular signatures from 
human kidney tubule tissues is to be applauded. Rather than focus on single genes the 
authors discuss in the introduction the multifactorial contribution of environment and 
genes working in pathological states. This paper is the beginnings of a significant study 
that contributes to the establishment of molecular diagnostic criteria for the classification 
of diabetic kidney disease (DKD). Kidney function decline constitute a major proportion 
of intractable diabetic complications and the classification and diagnosis of DKD 
remains a clinical challenge. Gluck et al use array-based technologies to derive DNA 
methylation and gene expression using surgically resected kidney tubule tissue from 
human subjects with and without diabetes. Replication cohorts include kidney tubule 
tissues as well as blood derived methylation assessments. The major finding of this 
paper is the identification of specific DNA methylation�signatures that could be used to 
predict kidney function decline. In striking contrast, differences in gene expression did 
not match with DKD subtypes and were likely driven by unknown factors that are not 
explored in any detail. DNA methylation is unsurprisingly a stable biological mark when 
compared to mRNA derived assays. The implications of these findings are unclear. The 
paper begins to add differential DNA methylation signatures as a potential molecular 
classification for DKD.��From a technical point of view the study was performed using 
450K array and is limited to predetermined probe sets as discussed by the authors. 
More significant here and a point of confusion for the Nature Commun readership is the 
approach used is not “genome wide” methylation assessment. There is also confusion 
and lack in clarity in the analytical approaches used which are of concern. And while my 
enthusiasm is high for the article there is a paucity in mechanistic discovery. The 
methylomes assessments are observational and descriptive. And while there is 
appreciation that gene contribution is likely to be multifactorial few genes standout as 
strong methyl-biomarkers of the study.�� 
 
The paper could further be strengthened by considering the following:�� 
 
1. While it is helpful to discuss potential mechanisms implicated in DKD that may 
translate into differential DNA methylation changes, what are the factors that influence 
DNA methylation in kidney disease? This is central to this study. Could DNA 
methylation be regulating pathways central to kidney disease and how could this 
information be used to improve predictive utility?   
 
We would like to thank the reviewer for this important question. The goal of the study 
was to understand whether we can identify epigenetic changes in microdissected tubule 
samples in patients with diabetic kidney disease. Clinical and epidemiological studies 
provide a strong rationale for us to believe that epigenetic changes could be observed 
and contribute to disease development. A large body of literature suggests that in utero 
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programming could be important for kidney disease and hypertension development5-9, 
furthermore studies from the DCCT indicate that poor glycemic control could play 
important role in diabetic kidney disease development10-12. Epigenetic changes have 
been reported in surrogate cell types but not in disease relevant tissue, such as human 
kidney samples. Defining methylation differences in kidney samples have been the 
central goal of the current work. Once epigenetic changes are reliable and reproducibly 
defined in human kidney tissue samples future studies can be developed to understand 
these important questions, but these studies are clearly beyond the current manuscript. 
A key finding of the work is that methylation can improve the precision of the prediction 
of kidney function decline, indicating that methylation could play important functional 
role in disease development. Methylation changes associated with genes of multiple 
pathway (Supplementary table 9) proposed to play important role in disease 
development, including development, signaling adhesion and immune system 
processes. Establishing disease causality is again beyond the scope of the current 
manuscript. We are in the process of establishing a CrisprCas9 system fused with Dnmt 
or Tet proteins that will allow us to perform site specific cytosine modification studies to 
define the role of specific cytosine methylation changes. 
 
2. The authors are encouraged to examine whether differential DNA methylation 
patterns could also be used as a biomarker for the predictive classification of DKD (i.e. 
tubules) and from blood samples. Are the mechanisms that drive DNA methylation in 
kidney and blood generalizable? The current study does not address mechanism which 
would be a significant advance in the field. However, this is not the only major criticism 
of the study and the comments below address some of the issues.�� 
 
DNA cytosine methylation did improve our model for CKD progression. In this sense, 
methylation levels at these locations can be used as a biomarker of CKD progression 
(the slope of GFR decline). It is possible that there are shared mechanisms that drive 
DNA cytosine methylation changes in multiple cell types. Shared cell type specific and 
cell type independent methylation changes have also been identified in other disease 
conditions such as obesity and Alzheimer’s disease etc1-3. It seems that changes in 
disease relevant tissue types are more pronounced compared to surrogate cell types 
such as blood, but we did not perform detailed side by side comparisons. We plan to 
perform such studies in the future.  
 
 
Abstract:�Authors describe “genome wide methylation” in methods, this examination is 
by array, which is not described and the Illumina 450 array is not considered “genome 
wide” which is usually reserved for CpG methylation sequencing or whole genome 
bisulfite seq WGBS based methods. The article requires clarity on the actual DNA 
methylation method used, as readers will be confused throughout the manuscript.�� 
 
We have clarified in the abstract as well as the body of the article that this study utilized 
the Illumina 450K array to examine cytosine methylation across the genome at 
approximately 450,000 locations. In our reading of the literature genome-wide is used 
for studies that cover the entire genome (such as these arrays) and whole genome 
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covering is used for methods such as WBGS. This is similar to genetic studies where 
genotyping arrays are also called genome wide whole WGS is whole genome covering.    
 
Methods abstract, the authors describe gene expression and histone maps for 
functional integration, this requires a cleaner description, as it does refer to ENCODE 
datasets assessed for epigenetic changes, not necessarily derived from the study. This 
description needs to read more accurate as it implies further epigenetic assessments 
and analyses were derived from the tissues.� 
 
Thank you we have clarified that the human kidney data was from the Roadmap 
epigenetics project.  
 
Introduction:�Page 4 in the 3rd paragraph, the authors discuss intrauterine exposure 
and kidney disease development. The link here with development is unconvincing. Are 
the authors implying intrauterine DNA methylation is associated with DKD? The articles 
cited do not conclusively illustrate this point.� 
 
Thank you for the note. As we discussed above, the goal of this study was to identify 
methylation difference in DKD/CKD samples. We cited references that potentially 
support this notion. Once we identify significant and consistent epigenetic changes we 
will have the opportunity to understand the origin of these changes such developmental 
or hyperglycemia induced.  
 
Methods/Design:�� 
How were the independent cohort selected? were they from different centres? and how 
many years apart? How is the blood replication cohort relevant when considering these 
samples are from American Indians? This is not only confusing but also raises other 
salient questions regarding the generalizability of the DKD methylation marks from the 
different cohorts. 
 
This was a community based study. Participants were not selected based on exclusion 
or inclusion criteria but rather samples were collected during partial/full nephrectomy in 
accordance with protocols set forth by the TCGA. The primary and secondary kidney 
cohorts were selected from these samples with special attention to have a mixture of 
controls and cases based on GFR cutoff of 60ml/min/1.73m2. The ratio of disease to 
control (approximately 1:3) was designed to increase the power to detect differential 
methylation. In the primary cohort, subjects with GFR < 60 were confirmed to have DKD 
on histological analysis. There was otherwise no a priori selection criteria for these 
samples. The secondary cohort, was designed to be a mixed etiology CKD cohort. The 
primary cohort was run at a separate facility than the secondary cohort, in order to 
control for the batch effects inherent to running the Illumina Infinium 450K array, we 
analyzed and normalized these cohorts separately. In addition, we ran 23 technical 
replicates between the primary and secondary cohorts to better assess this batch effect.  
 
The blood replication cohort is the only available cohort from patients with diabetic 
kidney disease with both 450K methylation data and longitudinal eGFR data. It is true 
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that this is a different population with a different genetic background than ours. 
However, these issues should have biased us towards the null. In contrast, despite this 
unlikely overlap, we were able to replicate the correlation between methylation changes 
and kidney disease.  
 
Is there any genetic data available for the samples used in this study? Is it possible that 
genetic heterogeneity due to population genetic variation in CpG-SNPs could be driving 
methylation differences?� 
 
We took several steps to remove genetic heterogeneity. Originally, we removed 
methylation probes at the location of SNPs (dbSNP137) or within 1 bp extension in our 
original analysis. In our revised analysis, as suggested by reviewer 1, we have applied 
the Gap Hunter method to remove any potential probes influenced by genetic variation. 
Please see above discussion.  
 
A combination of Bonferroni and FDR correction was used for Multiple comparisons 
throughout the study. For consistency in statistics can the authors use one or the other? 
The paper does not estimate what statistics were used for correction.�� 
 
Thank you for pointing this out. In the revised manuscript, we consistently used the false 
discovery rate method (FDR< 0.05) to define statistical significance.  
 
Did the authors perform any power analysis prior to the DNA methylation analysis?�� 
 
Power analysis for EWAS projects are difficult. We used methods described by Tsai et 
al. for power calculation (utilizing both t-tests and Wilcoxon signed rank test) taking the 
distribution of Beta into account and using case/control analysis for various sample 
sizes. Based on their estimations, for our sample size (22 pairs of case/control in our 
primary data set and 37 pairs of case/controls in our replication data set), we have 80% 
power to determine an approximately 20-25% mean difference in methylation at 
genome-wide significance. In addition, our power is increased because we have >3:1 
ratio of controls to cases. 
  
No methyl-validation of probes were attempted and the study requires stronger 
assessment of methylation difference using an independent assay. The differences in 
the methylation levels of the CG probes could be a function of the array.�� 
 
For one top probe, we completed experiments to validate the methylation changes as 
measured by the Illumina Infinium 450K arrays. For 3 samples with DKD and 4 control 
samples, we microdissected the human kidney samples and isolated the tubule 
compartment DNA. DNA was bisulfite converted, amplified with PCR, and transformed 
into bacteria. 15 colonies were selected per sample and the PCR segment was 
sequenced. Bisulfite converted sequences were compared with genomic DNA 
sequence using QUMA: quantification tool for methylation analysis13. Correlation 
coefficient between Illumina Infinium 450k array beta value and percent measured 
methylation for this locus was 0.88 (p-value = 0.0083).  
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However, it is worth noting that for samples with a smaller degree of methylation 
change, this sample size is insufficiently powered to assess this change. Others have 
shown that the Illumina Infinium 450k arrays have good technical replications14.   
 
Results:�� 
The main research question for this manuscript is to identify cytosine methylation 
difference in patients with diabetic kidney disease, how did the authors adjust for 
diabetes?�� 
 
Diabetes at the time of human kidney sample collection was included in our data set. In 
all linear regression analysis, diabetes status (yes or no) was included as a factor 
variable.  
  
Could the authors assess the effect of gender, age and race on the differentially 
methylated probes?�� 
 
The data was adjusted for gender, age and race. As detailed above, we ran a linear 
regression to identify age associated probes. Please see description above. In 
summary, few probes showed statistically significant association with age and they were 
different from the fibrosis associated probes. Sex chromosome specific probes were 
removed from the analysis. Overall our dataset is too small to identify secondary 
outcomes such as race, age and gender.  
 
Odds ratio analysis was used to define functional importance of methylation differences. 
ChromHMM uses background data to calculate overrepresented in differential data, can 
the authors give details on the background dataset used? �� 
 
As described above, enrichment was calculated as an odds ratio. We evaluated the 
location of our top probes (either probes that significantly associated with fibrosis or 
improved the CKD progression model). We compared the number of top probes located 
in the kidney enhancer region vs. all 450k array probes located in the kidney enhancer 
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region. For example, in evaluating the 279 top probes associated with interstitial 
fibrosis, we found 46 probes were located in the kidney enhancer region. We compared 
with will all probes on the 450K array that were used in the analysis (418,339 in our 
original analysis). Of the 418,339 probes used in the analysis, 18,844 probes were 
located in the kidney enhancer region. In comparing this we calculated an Odds ratio 
3.66 (95% confidence interval 2.62-5.02) with a p value of 2.23E-12.  We compared with 
the background probes in order to account for the design of the 450K array probe 
locations.  
 
In the revised manuscript, we also applied the Gap Hunter method to account for 
genetic variation and large number of probes were removed. The odds ratios were 
recalculated for the revised manuscript.  
 
Gene expression was also performed in (n=58), however the results are not shown. 
One of the aims of the study was integrated methylation changes with regulatory and 
gene expression changes, yet there are no results shown. Authors only show gene 
expression of a few selected genes. If this was not the aim of the study than it remains 
confusing what hypothesis the authors are assessing.�� 
 
Differential gene expression analysis was not the main goal of this work. The Susztak 
group has extensively published on differential gene expression in human diabetic and 
CKD samples (Beckerman eBioMedicine 2017, Kang et al Nature Medicine 2015)15,16.  
In this study, gene expression data was used to understand whether methylation 
changes correlate with gene expression changes, such correlation in our view could 
highlight functionally important methylation changes. We had 77 samples with both 
methylation and gene expression data. We used a random permutation method in order 
to determine the p-value cut-off for CpG methylation probes nearby (within 500kb) 
genes. We used a modified method previously described by Shi et al in determining cis-
meQTL4. We determined the p-value = 8e-5. Using this p-value cutoff in our sample 
size, beta>0.5075 is required to detect "methylation-expression pairs" with power>0.8. 
We identified 2,798 significant “methylation-expression pairs”. After removal of probes 
affected by genetic variation (“gap probes”), we were left with 1791 “methylation-
expression pairs”. Of note, a methylation probe may be nearby more than one gene 
(Supplementary Table 6). Since we were interested in methylation-expression pairs 
where the methylation occurred in kidney gene regulatory region, we narrowed our 
results to these “pairs”. This data was presented in table 3, table 5 and supplementary 
table 10.). We have also included as supplementary table 5 and supplementary table 9, 
respectively, the DAVID pathway analysis for the top methylation probes associated 
with degree of interstitial fibrosis and top methylation probes that improve our model for 
CKD progression. 
  
Page 7, how was linear regression adjustments made for age, sex, race, diabetes, 
hypertension and batch effect? Description of the methylation conversion efficiency is 
also warranted showing how this was performed.� 
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Using the linear regression function in R, we compared methylation level (M value) of 
each probe to the outcome of interest (for example, interstitial fibrosis) while adjusting 
for age, sex, race, diabetes, hypertension, batch effect, bisulfite conversion efficiency, 
and lymphocytic infiltrate (sex, race, diabetes, hypertension, and batch were all treated 
as factor variables). The bisulfite conversion efficiency was calculated using the 
bisulfite conversion control probes, based on Illumina guidelines. Ten CpG sites 
designated by Illumina as control sites (6 CpGs targeted by type I probes and 4 CpGs 
targeted by type II probes), where we expect each CpG to be 100% methylated, are 
used to control for non-complete bisulfite conversion. The bisulfite conversion 
efficiency was used in the primary analysis is the median methylation estimate from 
the ten control sites. The bisulfite conversion was calculated by taking the median 
value of the probes that Illumina provides to estimate bisulfite conversion efficiency17.  
 
 
Page 7, “to better control for batch effect” this is unusual and it’s unclear why this was 
not performed earlier in the paper.��Page 7, ChromHMM integration performed on 
datasets derived for the histone modifications in “human kidney” presumably they mean 
non-DKD tissue? If so, how are the epigenetic comparisons made for diabetic and non-
diabetic kidneys?� 
 
Thank you for pointing this out, we have clarified this statement. All regression analysis 
was controlled for batch effect as defined by the Illumina slide (Sentrix ID). However, 
our primary kidney cohort and secondary kidney cohort were run at different locations at 
different times. Since we were unsure how location and time would affect our samples, 
we first ran the primary and secondary cohort separately and normalized these results 
separately. However, we then combined the primary and secondary cohorts (and 
normalized them together). Since we were able to replicate the 65 significant probes, 
we felt that these probes were most reliably associated with interstitial fibrosis.  
 
Yes, the ChromHMM integration was performed on non-DKD tissue. The diabetic and 
fibrosis state affects the cell composition of the kidney and will also likely influence the 
histone modification epigenome maps.  
 
Page 7, the first description of the array is in the results section of the paper.�� 
 
Thank you for bringing this to our attention, we have described the array in the abstract 
and introduction. 
 
Page 8, the paper needs to define the “stringent statistical criteria” used for methylation 
and gene expression changes. What are they and better descriptions required to justify 
methylation differences.�� 
 
We used a random permutation method in order to determine the p-value cut-off for 
CpG methylation probes nearby (within 500kb) genes. We used a modified method 
previously described by Shi et al in determining cis-meQTL4. We determined the p-value 
= 8e-5. Using this p-value cutoff in our sample size, beta>0.5075 is required to detect 
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"methylation-expression pairs" with power>0.8. We identified 2798 significant 
“methylation-expression pairs”. After removal of probes affected by genetic variation 
(“gap probes”), we were left with 1791 “methylation-expression pairs”. Of note, a 
methylation probe may be nearby more than one gene (Supplementary Table 6).  
We added this description to the manuscript. 
 
Page 8, methylation is inversely correlated for HOPX gene expression. The importance 
of this finding in the paper is not strong. What available data is there that HOPX is 
regulated by DNA methylation driving gene expression? 
 
Understanding the functional role of methylation changes was not the primary goal of 
the current study. We correlated the methylation changes with gene expression 
changes to highlight likely causal methylation changes. We identified methylation and 
gene expression changes in the HOPX gene, but establishing the role of HOPX in 
kidney disease development is clearly beyond the scope of the current manuscript. Of 
note, after controlling for probes under genetic influence (“gap probes”) the methylation 
probe associated with HOPX expression changes was removed from our analysis and 
therefore this is no longer presented as a top methylation locus. 
 
Page 9, “the methylation level of 1,131 probes was significantly associated with renal 
function decline…” unclear in which cohort the result is observed. �� 
 
This was observed in the subset of the primary cohort with longitudinal eGFR 
measurements (n=69). We have clarified this in the manuscript. 
 
 
 
Discussion:�� 
Page 12, “robustness including blood sample from the DCCT study” … Yet the overlap 
between data generated in this study and DCCT is limited to 2 CpG sites (page 11). The 
paper does not illustrate robustness of the association, rather, observation the 450K 
array identifies methylation differences at probes that might be considered passing 
statistical testing.� 
 
Thank you for this comment. We have appropriately qualified this replication. � 
 
Page 12, it remains unclear how the methylation changes for the genes screened for 
methylation difference, such as HOPX are functionally important.�� 
 
We hypothesize that methylation changes, especially those located in organ specific 
active gene regulatory regions (such as promoters and enhancers) are functionally 
important in altering gene expression patterns. This is an exploratory data set, further 
testing would be needed to establish causality, for example in a mouse model. We have 
clarified this in our conclusion.  
 
Figures/Tables:�� 
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Table 1, Diabetes duration not shown. Over how many years and measurements was 
eGFR assessed?�� 
 
Our cases were mostly from patients with type2 diabetes as this was a community 
cohort study. As with most subjects the duration of type2 diabetes is less clear. 
Longitudinal eGFR data was available for 69 subjects. Mean timespan was 2.4 years, 
median timespan was 2 years, and standard deviation was 1.5 years. We have added 
this to table 1. 
 
Table 3, can authors report effect size of methylation change for the probes shown?  
We have added the coefficient estimates from the linear regression for each methylation 
probe shown.  
 
Figure 3a and 4a, can authors show confidence intervals on plots?�� 
OR with 95% confidence intervals were shown. However, this may be better displayed 
as a Forrest plot therefore we changed the figure to better depict this information.  
 
No description table for gene expression cohort is shown. �� 
We have provided a supplementary table 3 with demographic and clinical 
characteristics of the sub-cohorts (sub-cohort with gene expression data and sub-cohort 
with longitudinal eGFR data. 
 
Suppl. Information:�� 
The paper should show methylation data from all samples using PCA plots in order for 
the reader to visualize the variability in methyl-signals.  
 
We have included a PCA plot for each cohort as supplementary figures 1, 3, and 10.    
 
 
 
����Reviewer #3 - expert in diabetic nephropathy (Remarks to the Author):� 
�In this retrospective, observational analysis Gluck and coworkers tried to define the 
wide cytosine methylation differences in microdissected human kidney tubule epithelial 
cells of patients with diabetes and kidney disease and to evaluate whether and to what 
extent analysis of cytosine methylation levels can improve the predictive value of 
current models of renal function decline. The issue is of potential methodological and 
clinical interest. Unfortunately, the study is flawed by major limitations in patient 
selection and outcome analyses, the analyses fail to address the primary question of 
the paper, data are unclear and their presentation is confusing and potentially 
misleading.�� 
 
More specifically:�� 
 
1. The study population is poorly characterized. Main clinical and laboratory 
characteristics at the time the kidney tissue was sampled should be provided in Table 1, 
including detailed information about factors that may affect renal disease outcome such 
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as blood pressure and metabolic control, serum lipids, underlying histological diagnosis 
of kidney disease, concomitant treatment with drugs such as ACE inhibitors, ARBs, 
HMGCoA inhibitors, blood glucose and blood pressure lowering agents and others that 
may affect GFR decline over time (the primary outcome of the study). All these 
parameters should be considered in the univariable and multivariable models used by 
the Authors.�� 
Thank you for pointing this out. We provide a comprehensive clinical and 
histopathological information for the samples. We have additional clinical information for 
some of the samples. However, in our review the literature the role of lipids in DKD 
development is less well established. We did not have reliable time adjusted information 
available for all our samples. Our sample size of 69 (for the longitudinal analysis) would 
also not allow adequately powered subgroup analysis for such factors. In general, these 
factors have not been shown to improve GFR decline models in the past.  
 
2. The title and data presentation throughout the text are misleading. Why the Authors 
focus the attention on diabetic kidney disease when only 41 of the 91 study patients 
were diabetics? �� 
 
We needed to use control samples for the analysis. Having non-diabetic samples 
allowed us to control for the effect of diabetes. Differentially methylated loci can only be 
ascertained by comparison of disease to controls (if we only examined disease then we 
would have no reference for comparison). Therefore, the main outcome of our analysis 
was comparing patients with diabetic kidney disease with controls and differences 
between these populations may point to underlying pathophysiologic mechanisms or 
biomarkers of disease.  
 
3. Again, the Authors state that methylation differences with genome wide significance 
can be detected in kidney tubule samples of patients with diabetic kidney disease. Thus, 
why data on 50 non-diabetic patients are reported in Table 1? Information about non 
diabetic patients should be deleted. 
�� 
Since there is no universal reference for normal kidney methylome, we would be unable 
to detect differences in methylation without these control samples for comparison. By 
using approximately 3:1 control to disease population we also increase our power to 
detect differences in methylation patterns.  
 
 
4. Independent of the above, the Authors should acknowledge that the study population 
is small, which may affect the power of the analyses and the robustness of the findings. 
In this context, a justification for the sample size should be provided to ensure that study 
findings are not casual.� 
 
The sample size is as large or larger than other sample sizes used to analyze 
methylome data (specifically using the Illumina Infinium 450k BeadChip) in patients with 
kidney disease. By using 3:1 control to disease we also increase our power to detect 
changes. Power analysis for EWAS projects are difficult to perform. We used methods 
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described by Tsai et al. estimate power utilizing both t-tests and Wilcoxon signed rank 
test and taking the distribution of Beta into account and using case/control analysis for 
various sample sizes. Based on their estimations, for our sample size (22 pairs of 
case/control in our primary data set and 37 pairs of case/controls in our replication data 
set), we have 80% power to identify an approximately 20-25% mean difference in 
methylation at genome-wide significance.  
 
5. The authors do not take into consideration that type 1 and type 2 diabetes are two 
different disease entities, with different etiologies, phenotypes, outcomes and treatment. 
In type 1 diabetes hyperglycemia is the direct consequence of impaired insulin 
production, in type 2 diabetes hyperglycemia is just one of the several manifestations of 
the metabolic syndrome, including hypertension, dyslipidemia, obesity, insulin 
resistance and other. Thus, the Authors should clarify how many of their patients had 
type 1 or type 2 diabetes and should consider them separately.� 
 
We appreciate and agree with the comment however, we are not aware of clinical 
studies that would have been able to differentiate diabetic kidney disease in patients 
with type1 from type 2 diabetic patients. The gold standard histological diagnosis of 
DKD is basement membrane thickening, mesangial expansion, nodular sclerosis and 
interstitial fibrosis is used for both type1 and type2 subjects. While we did not have very 
clear information on the type of diabetes, almost all of our subjects were presumed to 
have type2 diabetes as this was a community-based cohort. Determining the type of 
diabetes an exceedingly difficult task that requires special antibody detection for type1 
diabetes amongst other parameters.  
 
�6. The definition of diabetic kidney disease is also nebulous. In patients with type 2 
diabetes, kidney changes may include typical focal glomerular sclerosis (in a minority of 
cases), nephroangiosclerosis, ischemic kidney disease, tubule-interstitial disease, 
concomitant primary glomerular diseases, ageing-related changes and other changes 
that can be observed in different combinations in different patients. Probably these 
different histological patterns reflect different pathogenic mechanisms. Thus it is hard to 
believe that a single predictive model may predict disease outcome to a similar extent in 
such a heterogeneous population of patients. This is an issue that should be taken in 
due consideration by the Authors and should be adequately discussed. In table 2 the 
authors should report the histological diagnosis of the study patients.�� 
 
The pathomechanism of DKD is not fully understood. We used the gold standard 
diagnosis for DKD, which is based on histological evaluation of the kidney.  
Our study aimed to identify consistent methylation changes in patients with DKD. We 
correlated the degree of tubulointerstitial fibrosis with methylation changes to account 
for disease severity. Fibrosis as a common mechanism of kidney disease and strong 
factor determining progression was a primary outcome of the study.  
 
7. More in general no information is provided about the selection criteria for study 
participation. According to data in Table 1 it is conceivable that a subgroup of “healthy"  
subjects without diabetes, hypertension or proteinuria was also included. This should be 
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clarified. How can methylation changes in “healthy” subjects predict the outcome of 
diabetic kidney disease? Incidentally, reasons for nephrectomy should be reported. 
�� 
Thank you for the note. Our study was a community-based study, we included everyone 
who had undergone nephrectomy for renal cell cancer in our institution. This was a 
community based study. Participants were not selected based on exclusion or inclusion 
criteria but rather samples were collected during partial/full nephrectomy in accordance 
with protocols set forth by the TCGA. The primary and secondary kidney cohorts were 
selected from these samples with special attention to have a mixture of controls and 
cases based on GFR cutoff of 60ml/min/1.73m2. As discussed above control (healthy) 
subjects were used to define differences between control and DKD subjects. The ratio 
of disease to control (approximately 1:3) was designed to increase the power to detect 
differential methylation. In the primary cohort, subjects with GFR < 60 were confirmed to 
have DKD on histological analysis. There was otherwise no a priori selection criteria for 
these samples.   
 
8. More detailed information should be provided about outcome analyses. How eGFR 
slopes were calculated? Did the authors account for the acute changes associated with 
nephrectomy (sharp GFR reduction after nephrectomy followed by compensatory 
hyperfiltration of residual tissue) and may be subsequent decline due to exhaustion of 
surviving nephrons? Which was the minimum number of GFR estimations and the 
minimum follow up required for slope calculations?� 
 
Thank you for asking this important question. Subject specific unadjusted eGFR slopes 
were determined by linear regression across all available eGFR measures. Only 
subjects with a minimum of 3 eGFR estimations and longitudinal eGFR measurements 
for at least three months post nephrectomy were included for the analysis. Three 
months post-nephrectomy was chosen as a minimum as a way to minimize the acute 
changes peri-nephrectomy. The mean timespan of follow-up was 2.4years (standard 
deviation =1.5 years). Subjects with unadjusted eGFR slope < -40 or > 40 
ml/min/1.73m2/year were excluded.  
 
In order to account for random variation as well as non-normal distribution of the data, 
subject specific eGFR slope was adjusted using a form of mixed effect model, best 
linear unbiased predictor (BLUP). Subject specific adjusted eGFR slope and variance 
were used in weighted regression analysis (weight = inverse of the variance of the 
slope) such that subjects with increased variability to their eGFR slope were weighted 
less in the analysis.  
 
The rate of GFR decline in our cohort was similar to other studies reported for the 
degree of kidney fibrosis. Most cases are obtained from partial nephrectomies as total 
nephrectomy is hardly ever performed for renal cell cancer. In addition, changes 
observed in the kidney cohort were confirmed in the Pima cohort that is an extremely 
well phenotyped diabetic cohort, without cancer or partial nephrectomy. 
 
9. The study design should be described in title and abstract; study setting, participating 
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centers, recruitment period, data monitoring should be described in detail in the text. A 
justification of the sample size should be provided. Was an informed consent required 
for the use of kidney tissue for the purposes of the study? Was the protocol approved by 
an ethical committee?  
 
We have clarified the study design in the abstract. This study utilized the healthy portion 
of full/partial nephrectomy samples that were collected in accordance with protocols 
established and standardized by The Cancer Genome Atlas (TCGA) project. This 
project was deemed exempt by the Internal Review Board at the University of 
Pennsylvania as only de-identified kidney samples were used for the analysis. IRB 
approval was obtained both at University of Pennsylvania and at the Albert Einstein 
College of Medicine. 
 
10. Although I recognize the difficulty in finding biopsy samples, the validation step for 
the methylation changes that predict kidney function decline in peripheral blood 
mononuclear cells (PBMCs), instead of microdissected tubules, is not fully convincing. 
Indeed, one of the first assumptions is that methylation is cell type-specific. What is 
more, one of the top probes found to correlate with kidney function decline is not 
confirmed by results published by Chen et al. on whole blood from patients treated with 
conventional glycemic therapy and diabetic complications. To use PBMCs in the 
validation step, the authors should confirm that microdissected tubule methylomes 
match (fit) with the PBMCs ones in the primary and replication cohorts.  
 
Thank you for pointing this out. There is a large body of literature on using surrogate cell 
types to define epigenetic changes that are observed in disease relevant cell types. For 
example, in the Alzheimer literature some methylation changes observed in blood 
samples correlate with brain specific changes1,2. Similar observations have been 
published in the obesity literature3. It seems that changes on surrogate cell types are 
less pronounced, similar to our observations. We did not have matching blood samples 
from our study to perform a paired kidney, PBMC analysis. We also would like to point 
out that the Chen dataset obtained from PBMCs is very small (n= 63). Upon adjusting 
for multiple comparisons (the way we did in the current project) no probe passed 
genome wide significance in the publication by Chen at al. Rather, the work used fold 
changes (FCs) ≥1.3 between cases and controls and nominal P < 0.005 for outcome. 
For this reason, we are less surprised that we were unable to validate our results in this 
dataset. The two probes that we had originally replicated in this cohort were removed by 
the “gap hunter” program that removes probes with likely variation due to genetic 
background. We have delete this section from the revised manuscript. 

 
 
11. Locus specific validation of kidney cytosine methylation and gene expression 
changes for the top replicated probes associated with interstitial fibrosis and kidney 
function decline are lacking and should be provided through bisulfite sequencing and 
real time qPCR experiments, respectively.  
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As described above, for one top probe, we completed experiments to validate the 
methylation changes as measured by the Illumina Infinium 450K arrays. For 3 samples 
with DKD and 4 control samples, we microdissected the human kidney samples and 
isolated the tubule compartment DNA. DNA was bisulfite converted, amplified with PCR, 
and transformed into bacteria. 15 colonies were selected per sample and the PCR 
segment was sequenced. Bisulfite converted sequences were compared with genomic 
DNA sequence using QUMA: quantification tool for methylation analysis13. Correlation 
coefficient between Illumina Infinium 450k array beta value and percent measure 
methylation for this loci was 0.88 (p-value = 0.0083).  
  

 
 
However, it is worth noting that for samples with a smaller degree of methylation 
change, this sample size is insufficiently powered to assess this change. Others have 
shown that the Illumina Infinium 450k arrays have good technical replications14.  
 
 
 
12. The authors identified 7 probes associated with interstitial fibrosis, but described 
only the one correlated with HOPX transcript level. It is not clear why they omitted the 
other descriptions. The authors should discuss the possible involvement of all the 
differentially methylated and expressed genes (listed in Table 3) in the progression of 
interstitial fibrosis in DKD. Moreover, in vitro experiments in proximal tubule cells 
exposed to high glucose or silencing/overexpressing HOPX are needed to elucidate the 
involvement of HOPX in interstitial fibrosis. �� 
 
We included in our discussion a description of all top methylation-expression pairs 
identified. We would like to emphasize that the goal of the current study was to identify 
consistent and reproducible methylation changes in patients with kidney disease. 
Further research is needed to investigate the role of cytosine methylation changes and 
specific gene expression changes in diabetic kidney disease.  
 
13. Similarly to point 2, the authors should describe other possible candidates (besides 
EGF) as predictors/biomarkers for renal function decline, focusing on those that are 
known to play a role in kidney patho-physiology (for example collagen, as shown in 
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Supplementary Table 6). �� 
 
We included a broader discussion of other methylation-expression pairs that improved 
our progression model as well as gene ontology (supplementary table 9).  
 
14. The abstract results are misleading. It seems like methylation changes in the kidney 
promoter regions next to EGF were validated in blood samples of the independent 
cohort, while they were not. �� 
 
We clarified that only a subset of probes that improved the progression model were 
replicated in the blood replication cohort.  
 
Minor points:�� 

a) Several inaccuracies occur throughout the text: - Is the replication cohort left with 
416354 CpG probes (as stated in the Procedures section) or 406354 (correct) 
(as stated in Figure 2)  .  

We apologize for this typo. Indeed 406,354 was correct, however this number is now 
different in the updated analysis, due to removal of the probes recommended by the 
Gap Hunter method.  
 
- In the last paragraph on page 13, the authors first assert that subjects underwent 
full/partial nephrectomy, but then that all subjects underwent partial nephrectomy. 
Please correct accordingly. � 
We have clarified this.  
 
- In the abstract, the authors should substitute diabetes with diabetic kidney disease 
(page 2, line 9)�.  
We left this as is since we also had control patients with diabetes but no kidney disease. 
 
- On page 10, line 24, the authors reported 73 CpG probes, while in Figure 5 and its 
legend, 76 are reported (correct). Please correct accordingly.��  
We apologize for this typo. Indeed 76 was correct, however this number is now different 
in the updated analysis. 
 
b) Results and Procedures should be divided into paragraphs and titled in order to 
facilitate reading of the paper. � 
Thank you for this suggestion, we have added titles to help guide the reader. � 
 
c) The authors should specify in greater detail which Affymetrix microarray they used.  
Affymetrix U133A arrays – we have added this detail to the manuscript.   
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Reviewers' comments:  

 

 

Reviewer #1 (Remarks to the Author): 

 

 

Gluck et al. have comprehensively reviewed their manuscript on Kidney DNA 

methylation assessment in regard to renal function decline in diabetic kidney 

disease. The authors are to be commended for taking on board the issues raised 

and rigorously reanalysing their data in this light. Comments on their responses to 

my previous review points are below, including a couple of remaining issues which, if 

the authors could address, I think would further improve the manuscript. 

 
1) As suspected, due to cell type and genetic heterogeneity, the authors have 

identified very significant inflation in their previously presented results. ~20% 

of the probes were shown to have potential genetic influence via Gap Hunting. 

Furthermore, inflammatory infiltration to cell type proportions was shown to be 

the strongest contributor. Therefore, the inclusion of a measure of lymphocytic 

infiltrate into the analysis model has led to a strong reduction in this inflation. 

Inflammatory cells must be accounted for in many tissue samples and this 

was also recently dissected within saliva/buccal samples by Zheng et al.1 

There may be some benefit in utilising an adaptation of this paper’s 

methodology to further improve their correction for this confounding biological 

factor. The QQ-plots, whilst significantly improved, are still inflated post this 

reanalysis. This remains one of my two main concerns, that further cell-type 

heterogeneity, perhaps additional uncounted inflammatory or the mixture of 

other non-inflammatory cells in the biopsy, may still be contributing to the 

result. This could be further explored, as above, or at least acknowledged in 

the manuscript. 

2) Yes, as detailed the authors have discussed this, as above.  
3) The common Transcription Factors explanation detailed here does not appear 

to be included in the revised manuscript, unless I missed it? Furthermore, as 

the authors state “Our difficulty in replicating results in surrogate cell types 

after removal of underlying genetic variability is in keeping with observations 

from other diseases.” Therefore, that the previous positive blood tissue 

results, prior to Gap Hunting probe exclusion, were enriched for confounded 

genetic effects. This is my second issue, in that these caveats should be 

directly declared. It should be stated in the paper that these surrogate tissue 

results were previously strongly confounded by genetic effects and that a 

minority of undetected genetic effects could still be present. Also, as well that 

common inflammatory cell changes could be contributing to the signal seen 

across both different tissue type samples.  



4) Good to have explored the potential for ageing-related epigenetic changes to 

be contributing to this signal and excluding this possibility.  
5) Additional details on the enrichment analysis have been provided.  
6) Again, good to explore and define that these are explicitly kidney-specific 

enhancers. 



7) Thanks to the authors for providing this additional detail regarding the 

expression analysis – and the use of the Shi et al. method is appropriate for 

this. 

 

1.  Zheng et al. (2018) Epigenomics 10.2217/epi-2018-0037 



Reviewer #2 (Remarks to the Author):  

 

Point 1. While it is appreciated that mechanisms underpinning DNA methylation might be beyond 

the scope of the study, the illumina 450k array allows the investigators to expand on the CG 

methylation from the signatures on the array to implicate genes and pathways that contribute to 

DKD. Defining the probes on the array is an important first step to the study and extending the 

analysis to identify hypermethylation and hypomethylation groups should identify genes containing 

differentially methylated sites in promoters or gene bodies using analyses such as IPA as recently 

shown by Chen et al (Proc Natl Acad Sci U S A. 2016 May 24;113(21):E3002-11). Therefore, based on 

the original review points raised, understanding what methylation connections with regulatory 

pathways are not necessarily outside the scope of the current study. With this information the 

authors should be able to assign what methylation sites and states (reduced or increased or 

unchanged) can be used to improve predictive utility for DKD. This is an important consideration that 

was not addressed and should receive more attention for the readers of this journal. In addition, 

Chen et al were able to show the functional control of methylation using cells in experiments 

exposed to low-high glucose showing gene expression was inversely correlated with changes in DNA 

methylation. An important note here is the methylation datasets from both monocytes and whole 

blood cells by Chen are informative to the 115 blood samples derived from subjects examined in the 

replication cohort by Gluck et al. An assessment would have been informative. 

 

Point 2. Methylation in tubules and blood samples. The authors discuss this important pitfall in the 

discussion on page 15, however, readers of this journal need to see possible shared mechanisms 

that drive methylation in the multiple cell types. Describing what methylation states is only the 

beginning and the general feeling by the authors is this is beyond the study scope but should not be. 

Indeed, there are experiments that assess the functionality of methylation states and sites that are 

important in providing knowledge showing methylation is not an epiphenomenon. Chen et al 

provide examples of methylation changes in both WB and monocytes associated with gene 

expression changes.  

 

Point 3. Given that small numbers of individuals are studied and present with varying degrees of DKD 

and the methylation probe cg21048700 is identified in a kidney inactive region which is thought to 

be "associated" with COL3A1. The link between the methylated probes and genes implicated with 

DKD is not strong and raises questions as to whether the methylation is beyond chance? Additional 

data is necessary to address this.  

 

Abstract: the contemporary use of the terms "genome wide cytosine methylation" is confusing when 

attached to 450K array and this will be noticed by the broad Nature Comm readership, furthermore, 

this is highlighted with the technological advances of the 850k array which many do not attach 

"genome wide cytosine methylation". Whilst it is understood that the 450K array is a cursory 



assessment of methylation, it by no means would be referred to as "genome wide" and this appears 

to be a misunderstood here. It is simpler and more accurate to use "Illumina Infinium 450K arrays".  

 

Methods/Design: The authors concede the replication cohort using blood samples is likely to be 

different from the kidney tissues and this could be the case for methylation. The article by Chen et al 

(Proc Natl Acad Sci U S A. 2016 May 24;113(21):E3002-11) show dramatic changes in DNA 

methylation including a range of genes and probes using the Illumina 450k array, the same method 

used in this article. Infact, that article is important, not only because of the relevant experimental 

design and 450 array approaches, but is relevant because they also identified probes from the 450k 

array associated with genes including TXNIP, CYB5b and many others. The dataset by Chen et al is 

rich with valuable information that could have strengthened the Gluck et al article. It is unclear why 

this relevant dataset that shows methylation in monocytes and whole blood was not carefully 

explored in relation to the current article. Any analysis and comparison would be useful, comparing 

similar technologies (450k array) and disease (diabetic complications).  

 

Power calculations: 80% is too low for a study of the size and what appears to be replicated between 

blood and kidney tissue may very well reflect probe bias. This is why an independent method is 

useful.  

 

 

 

Reviewer #3 (Remarks to the Author):  

 

 

1. Patient groups are still poorly characterized, despite the authors' claim that they have provided a 

comprehensive clinical and histopathological information.  

 

2. The authors claim that they have clarified the study design in the abstract. This is simply not true. 

Moreover, they did not provide any information about study setting, participating centers, 

recruitment period and data monitoring, as requested.  

 

3. The authors asserted that in the primary cohort they included controls (non-diabetic CKD 

patients). However, this has not been specified in the manuscript, but, more importantly, no clinical 

data on diabetic and non-diabetic CKD patients (controls) have been provided. Data of the two 



patient populations should be shown. The choice of non-diabetic CKD patients is crucial, as they 

must have the same degree of renal insufficiency and proteinuria as diabetic patients.  

 

4. I recognize the step forward upon filtering out with Gap Hunter method. However, this new 

approach has not confirmed some probes associated with interstitial fibrosis found in the original 

paper’s analysis, in particular as regards the one correlated with the stem cell transcription factor 

HOPX (Hop homeobox) levels that, according to the authors, could have a pivotal role in disease 

development.  

 

5. The authors didn’t specify whether the degree of cg24818418 methylation associated with EGF 

(Epidermal Growth Factor) transcript level, and able to predict kidney function decline, was validated 

in the independent cohort. This should be the most important confirmation finding of their study.  

 

6. The authors did not provide a convincing answer about the use of surrogate cells to define 

epigenetic changes observed in the kidney. Two of three papers cited by the authors in their defense 

actually do not support their claims. Indeed, Hannon et al. found that for the majority of DNA 

methylation sites, interindividual variation in whole blood is not a strong predictor of interindividual 

variation in the brain, while Klein and co-authors asserted that “it is unlikely that there is a strong, 

direct correlation between the epigenomes of the brain and blood such that measuring a given 

epigenomic feature in blood offers a reasonable proxy for the same feature in the brain for most 

genomic loci”.  

 

7. The authors should properly cite the method they used to estimate the power of their sample size 

(Tsai et al., ?) in the main text.  

 

Minor points:  

- Supplementary tables are erroneously named. Please check and correct.  

- The authors should re-write the sentence on page 8, lines 14-17 “Fold change...analysis”.  

 



Gluck et al. have comprehensively reviewed their manuscript on Kidney DNA methylation assessment in 
regard to renal function decline in diabetic kidney disease. The authors are to be commended for taking 
on board the issues raised and rigorously reanalysing their data in this light. Comments on their responses 
to my previous review points are below, including a couple of remaining issues which, if the authors 
could address, I think would further improve the manuscript. 
 
1) As suspected, due to cell type and genetic heterogeneity, the authors have identified very significant 
inflation in their previously presented results. ~20% of the probes were shown to have potential genetic 
influence via Gap Hunting. Furthermore, inflammatory infiltration to cell type proportions was shown to 
be the strongest contributor. Therefore, the inclusion of a measure of lymphocytic infiltrate into the 
analysis model has led to a strong reduction in this inflation. Inflammatory cells must be accounted for in 
many tissue samples and this was also recently dissected within saliva/buccal samples by Zheng et al.1 
There may be some benefit in utilising an adaptation of this paper’s methodology to further improve their 
correction for this confounding biological factor. The QQ-plots, whilst significantly improved, are still 
inflated post this reanalysis. This remains one of my two main concerns, that further cell-type 
heterogeneity, perhaps additional uncounted inflammatory or the mixture of other non-inflammatory cells 
in the biopsy, may still be contributing to the result. This could be further explored, as above, or at least 
acknowledged in the manuscript. 
 
Yes, we agree with the reviewer. We discuss this limitation in the discussion section (pages 16-17) as 
it is difficult to adopt a “perfect method” for these issues.  
 
2) Yes, as detailed the authors have discussed this, as above. 
 
Thank you 
 
3) The common Transcription Factors explanation detailed here does not appear to be included in the 
revised manuscript, unless I missed it? Furthermore, as the authors state “Our difficulty in replicating 
results in surrogate cell types after removal of underlying genetic variability is in keeping with 
observations from other diseases.” Therefore, that the previous positive blood tissue results, prior to Gap 
Hunting probe exclusion, were enriched for confounded genetic effects. 
  
This is my second issue, in that these caveats should be directly declared. It should be stated in the paper 
that these surrogate tissue results were previously strongly confounded by genetic effects and that a 
minority of undetected genetic effects could still be present. Also, as well that common inflammatory cell 
changes could be contributing to the signal seen across both different tissue type samples. 

We agree with the reviewer therefore we specifically included a statement “Multi tissue 
transcription factors could explain the replication of differentially methylated loci in multiple cell 
types. On the other hand, our difficulties in replicating results in surrogate cell types after removal 
of underlying genetic variability indicate that sequence variations could also drive cell type 
independent methylation changes which is in keeping with observations from other diseases 54-57. 
Future studies shall aim to dissect the direct contribution of environmental factors and sequence 
variations in cytosine methylation in the kidney.” (pages 16-17).  

In addition, to acknowledging the effect of cell type heterogeneity. “Despite all our efforts we cannot 
exclude the contribution of cell heterogeneity to the observed methylation changes.” (page 16) 

4) Good to have explored the potential for ageing-related epigenetic changes to be contributing to this 
signal and excluding this possibility. 



Thank you. 
 
5) Additional details on the enrichment analysis have been provided. 
Thank you. 
 
6) Again, good to explore and define that these are explicitly kidney-specific enhancers. 
Thank you. 
 
7) Thanks to the authors for providing this additional detail regarding the expression analysis – and the 
use of the Shi et al. method is appropriate for this. 
Thank you. 
 

1. Zheng et al. (2018) Epigenomics 10.2217/epi-2018-0037 
 
Reviewer #2 (Remarks to the Author): 
 
Point 1. While it is appreciated that mechanisms underpinning DNA methylation might be beyond the 
scope of the study, the illumina 450k array allows the investigators to expand on the CG methylation 
from the signatures on the array to implicate genes and pathways that contribute to DKD. Defining the 
probes on the array is an important first step to the study and extending the analysis to identify 
hypermethylation and hypomethylation groups should identify genes containing differentially methylated 
sites in promoters or gene bodies using analyses such as IPA as recently shown by Chen et al (Proc Natl 
Acad Sci U S A. 2016 May 24;113(21):E3002-11).  
 
 
Therefore, based on the original review points raised, understanding what methylation connections with 
regulatory pathways are not necessarily outside the scope of the current study. With this information the 
authors should be able to assign what methylation sites and states (reduced or increased or unchanged) 
can be used to improve predictive utility for DKD. This is an important consideration that was not 
addressed and should receive more attention for the readers of this journal. In addition, Chen et al were 
able to show the functional control of methylation using cells in experiments exposed to low-high glucose 
showing gene expression was inversely correlated with changes in DNA methylation. An important note 
here is the methylation datasets from both monocytes and whole blood cells by Chen are informative to 
the 115 blood samples derived from subjects examined in the replication cohort by Gluck et al. An 
assessment would have been informative. 
 
Thank you for this suggestion. We have expanded our work beyond just simply reporting 
methylation differences. 

1. We report the magnitude and direction of methylation differences on Figure 1.  
2. We report the nearest (and likely affected) gene on Tables 3 and 5.  
3. We used human kidney ChIP-Seq data to functionally annotate the differentially 

methylated regions. We listed the functional annotation of these probes in Supplementary 
Tables 4 and 8. Probes on regulatory regions are more likely to be functionally important. 

4. We have performed pathway analysis (suggested by the reviewer), using the Ingenuity 
Pathway analysis (IPA) and DAVID tools. These results are reported in Supplementary 
Table 5 and IPA analysis is shown in Supplementary Figure 4. For top probes that improve 
our progression model, DAVID analysis is shown in supplementary table 9 and IPA analysis 
is shown in Supplementary Figure 10. 

5. To understand the potential functionality of the methylation changes, we examined the 
correlation between methylation and gene expression changes in the human kidney, by 
simultaneously analyzing gene expression and methylation changes in the same samples. We 



report loci where methylation changes in the kidney were associated with gene expression 
changes in the same samples (Table 3 and 5 and Supplementary Tables 6 and 11). 

6. Finally, to show that methylation levels directly influence gene expression we have treated 
kidney tubule cells with Dnmt1 inhibitor 5AZA and analyzed methylation and gene 
expression changes. We focused on examining probes that were associated with the degree 
of interstitial fibrosis and the methylation of these probes already showed association with 
gene expression levels in the kidney (n=5) (Table 3). In addition, we examined probes that 
improved kidney function decline regression models and also showed association with gene 
expression in kidney samples (n=5) (Table 5). Total of 10 probes. Of these 10 probes 5 
showed methylation changes after 5AZA treatment and 2 of the 5 probes (40%) also showed 
corresponding gene expression changes. For these sites, we were able to verify that 
methylation changes are directly associated with gene expression changes (i.e. this is not just 
as an association as we previously observed). Supplementary Figure 13 shows these results. 

 
Point 2. Methylation in tubules and blood samples. The authors discuss this important pitfall in the 
discussion on page 15, however, readers of this journal need to see possible shared mechanisms that drive 
methylation in the multiple cell types. Describing what methylation states is only the beginning and the 
general feeling by the authors is this is beyond the study scope but should not be. Indeed, there are 
experiments that assess the functionality of methylation states and sites that are important in providing 
knowledge showing methylation is not an epiphenomenon. Chen et al provide examples of methylation 
changes in both WB and monocytes associated with gene expression changes. 
 
To further examine the direct relationship between cytosine methylation and gene expression 
changes we performed an experiment with cultured proximal tubule cells (HKC8 cells). We 
artificially demethylated cytosines using the DNA methyltransferase inhibitor, 5-aza-
2deoxycytidine. We measured cytosine methylation by Infinium 450K arrays and gene expression 
by AffymetrixST1.0 arrays. 
 
We focused on examining probes that were associated with the degree of interstitial fibrosis and the 
methylation of these probes already showed association with gene expression levels in the kidney 
(n=5) (Table 3). In addition, we examined probes that improved kidney function decline regression 
models and also showed association with gene expression in kidney samples (n=5) (Table 5). Total 
of 10 probes. Of these 10 probes 5 showed methylation changes after 5AZA treatment and 2 of the 5 
probes (40%) also showed corresponding gene expression changes.  For these sites, we were able to 
verify that methylation changes are directly associated with gene expression changes. Box plots for 
methylation levels and cis gene expression levels are shown in Supplementary Figure 13. We 
therefore demonstrate the role of observed methylation differences in regulating gene expression 
changes. Understanding the upstream regulators of methylation remains a complex issue. We 
admire the elegant work of Chen et al. It is difficult to directly link high glucose, methylation and 
gene expression changes, given that hyperglycemia regulates a large number of pathways. In 
addition, there are multiple other factors in diabetes that could change the epigenome. For 
example, underlying genetic variation as strongly pointed out by reviewer 1 could also contribute to 
methylation changes.  
For these reasons we limited our analysis to understand the correlation between methylation and 
gene expression changes. 
 
Point 3. Given that small numbers of individuals are studied and present with varying degrees of DKD 
and the methylation probe cg21048700 is identified in a kidney inactive region which is thought to be 
"associated" with COL3A1. The link between the methylated probes and genes implicated with DKD is 
not strong and raises questions as to whether the methylation is beyond chance? Additional data is 
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necessary to address this. 
 
Thank you for this comment.  

1. While our sample size is modest, it is still the largest for tissue-based methylation analysis. 
Indeed, we would like to point out again that this is the first tissue-based analysis for 
diabetic kidney disease. If our work can be published other scientists will be able to build on 
our dataset and expand the sample size and the field will grow. 

2. We used the kidney function and methylation data as continuous variables to improve the 
power. 

3. The relationship between the probes cg21048700 and COL3A1 are based on permutation, 
indicating that the relationship is significant compared with random chance. We have 
shown the strong association of this relationship in Supplementary Figure 11 The effect size 
of this relationship (beta) is strong -0.526 with a p-value of 1.34E-07.  

4. The methylation of probe cg21048700 and COL3A1 expression level is strongly correlated 
with % Interstitial Fibrosis on histology as shown below: 

5. We included the association of cg21048700 and COL3A1 based on reviewer #3’s 
observation that this is in fact potentially an important pathway in the pathogenesis in 
kidney fibrosis. Others have shown that collagen turnover may be an important prognostic 
marker in for certain forms of kidney disease (Genovese at al NDT 2015;31 472-479).  

6. While this probe does not colocalize with enhancer marks when a whole kidney (mostly 
tubule cells) was studied, it is localized to an enhancer region in human fibroblast 
(ENCODE data). We propose that this site might be important for regulating collagen3 
expression in fibroblast, but probably not in kidney tubule cells. Since fibroblasts only 
represent just a small percentage of the whole kidney, whole tissue analysis is likely not 
sensitive enough.  
 

 

  
Abstract: the contemporary use of the terms "genome wide cytosine methylation" is confusing when 
attached to 450K array and this will be noticed by the broad Nature Comm readership, furthermore, this is 
highlighted with the technological advances of the 850k array which many do not attach "genome wide 
cytosine methylation". Whilst it is understood that the 450K array is a cursory assessment of methylation, 
it by no means would be referred to as "genome wide" and this appears to be a misunderstood here. It is 
simpler and more accurate to use "Illumina Infinium 450K arrays". 
 
Thank you for this suggestion, we changed the abstract. We used the term genome wide as a 
method that covers the whole genome (as opposed to site specific) we did not mean to imply that 
this is base resolution method. For example, genome wide association analysis (GWAS) is not 
performed at base resolution level, but the whole genome is covered (not site specific).  
 
 



Methods/Design: The authors concede the replication cohort using blood samples is likely to be different 
from the kidney tissues and this could be the case for methylation. The article by Chen et al (Proc Natl 
Acad Sci U S A. 2016 May 24;113(21):E3002-11) show dramatic changes in DNA methylation including 
a range of genes and probes using the Illumina 450k array, the same method used in this article. Infact, 
that article is important, not only because of the relevant experimental design and 450 array approaches, 
but is relevant because they also identified probes from the 450k array associated with genes including 
TXNIP, CYB5b and many others. The dataset by Chen et al is rich with valuable information that could 
have strengthened the Gluck et al article. It is unclear why this relevant dataset that shows methylation in 
monocytes and whole blood was not carefully explored in relation to the current article. Any analysis and 
comparison would be useful, comparing similar technologies (450k array) and disease (diabetic 
complications). 
 

Thank you.  

Thank you, we have now included look-up analysis of the Chen et al data under Supplementary 
Table 12. We were able to confirm nominally significant changes in the Chen dataset. 

We agree that the paper by Chen et al is an important milestone, however, we would like to point 
out that we used different statistical criteria and model adjustment for data analysis (FDR by 
Gluck and nominal p value by Chen). We used different tissue type (kidney vs. blood) and we used 
different cohorts (type1 vs. type2 diabetes). Additionally, we used different data analysis, for 
example we have tried to adjust for genetic variation by using GapHunter program. Despite all 
these significant differences we were able to validate some sites using nominal p-values indicating 
consistency. 

 
Power calculations: 80% is too low for a study of the size and what appears to be replicated between 
blood and kidney tissue may very well reflect probe bias. This is why an independent method is useful. 

Thank you. The power of the study depends on the effect size. The article by Tsai et (2015 Aug; 
44(4): 1429–1441. Int J Epidemiology) includes power calculations estimations for varying effect 
sizes (or mean methylation differences) for Illumina 450K beadchips. They estimate that for case 
control studies approximately 25 pairs, will have 100% power to detect mean methylation 
difference 30%. They note that for cohorts like ours with increased case:control ratio (1:2 or 1:4) 
that there is increased power to detect smaller changes3.  Most importantly, we did not analyze the 
data in a case control manner, but as continuous outcome, which improves the power.   
In summary, small studies are well powered to detect large effect size differences. The best example 
of this is that the first GWAS study on macular degeneration has identified regions with genome 
wide significance, despite the very small sample size. Current GWAS studies using much larger 
sample sizes can identify changes with smaller effect sizes and regions identified by prior smaller 
studies tend to replicate in larger dataset.  
This is the first study to report methylation changes in diabetic human kidney samples, so have 
used another kidney cohort to validate fibrosis associated as there is no other study available for 
validation. We fully agree that independent validation is useful and we performed such 
independent validation. We also would like to point out that no other prior studies have performed 
independent validation cohorts. 
Furthermore, we would like to highlight that we used a blood sample replication cohorts to validate 
our observation.  
 



 
Reviewer #3 (Remarks to the Author): 
 
 
1. Patient groups are still poorly characterized, despite the authors' claim that they have provided a 
comprehensive clinical and histopathological information.  
 
We are a bit surprised by this suggestion. In our view this is the first manuscript that uses the “gold 
standard” criteria for DKD description, which is histological diagnosis. We provide a detailed 19 
point histopathological description of the cohort and a full description for the subjects and samples.   
Every other prior study and 99% of the published clinical literature use the presence of GFR 
decline or albuminuria in patients with diabetes. However, we do not know whether or not such 
subjects actually have diabetic kidney disease.  
 
 
Additional comments from Reviewer #3:  
Reviewer #3 (Remarks to the Author): 
  
- As requested in the first revision, the authors should provide at least the following data: blood pressure, 
metabolic control, serum lipids, concomitant drug treatment such as ACE inhibitors, ARBs, HMGCoA 
inhibitors, blood glucose and lowering agents.  
 
As stated above we are a bit surprised by this suggestion and would like to understand a strong 
rationale for this statement. In our view this is the first manuscript that uses the “gold standard” 
criteria for DKD description, which is histological diagnosis. We provide a detailed 19 point 
histopathological description of the cohort and a full description for the subjects and samples.   
Every other prior study and 99% of the published clinical literature use the presence of GFR 
decline or albuminuria in patients with diabetes. However, we do not know whether or not such 
subjects actually have diabetic kidney disease.  
We would like to mention that we have provided the blood pressure information in the manuscript. 
We provide metabolic control such as HbgA1c when available (not for non-diabetic subjects). Due 
to the sample size we cannot adjust for medication use and this information was only partially 
available and only for the time of sample collection. As the role of serum lipids and lipid lowering in 
DKD development is a bit controversial it is hard to make strong case for this information, which is 
a potential limitation of the study.  
 
In particular, blood pressure data are of key importance. It is concerning that the authors adjusted for 
hypertension (yes/no), instead of using a continuous variable (e.g. MAP) in the reported regression 
models (see page 6, Figure 1). The above approach generates some questions that need to be addressed: 
 

1. We would like to emphasize that we used machine learning methods (LASSO) to identify 
clinical, histological, gene expression and methylation variables to predict GFR decline. 
This is a key novelty of the work. We do not have control over the variables that predict 
kidney function decline in machine learning models. In our review of the literature no prior 
studies have used LASSO for model selection, as most prior models mostly picked variable 
“intuitively” or used a stepwise approach to model selection. It is also important to note that 
LASSO is a shrinkage model that penalizes for having too many variables in the model. It 
might be important to reanalyze some of the clinical observational cohorts using LASSO. 
For example, if a variable closely correlates with BP or HTN status LASSO will not use that 
variable. 
  



2. We would like to point out that the outcome in our study was different from prior 
publications. We examined GFR slope and interstitial fibrosis. In our view the role of BP 
has not been formally analyzed for these outcomes.  
 

3. We acknowledge the sentiment on the role of hypertension in development of CKD. Our 
review of the literature indicates that while some studies have indicated the role of BP in 
progression others did not. For example, the study by Tangri et. al. JAMA 2011 found, that 
BP did not predict renal outcome. Further external validation of the Tangri et al equation 
in a very large cohort (JAMA 2016) show excellent discrimination of the formula and again 
show that BP did not add to the predictive accuracy for renal outcome. The blood pressure 
recommendation goals for patients with diabetes varies significantly between different 
organizations.  

 
4. In our study, using a univariate analysis, BP did not correlate with our histological outcome 

(degree of tubulointerstitial fibrosis) (beta 0.147, p-value 0.22). However, HTN diagnosis did 
correlate with degree of interstitial fibrosis (beta 0.28, p-value 0.011); therefore, we used 
HTN as a covariate in our regression analysis. This may just reflect that a single blood 
pressure reading might not reflect long term blood pressure measurements or a residual 
effect of hypertension status despite medical management. 
 

5. Similarly, as reported by prior studies, HTN did correlate with kidney function decline as 
outcome. In addition, BP (or MAP) at the time of kidney tissue procurement, poorly 
correlated (beta -0.07, p-value 0.57) with GFR decline. In our view, this may reflect the fact 
that medically treated HTN mitigates the effect of HTN on kidney function decline.  
 

6. Finally, given the reviewer’s concern we “forced” hypertension into the CKD progression 
model, and we identified 67 methylation probes that significantly improve the model 
(FDR<0.05) including 2 of the same top probes previously identified and associated with 
gene expression changes (EGF and HCLS1). We have included this result as Supplementary 
Table 10.  

 
 
•             The operational definition of 'hypertension' (e.g. DBP above 80 mmHg or use of 
antihypertensive agents) is not provided by the authors. From a clinical point of view, however, it 
is  essential to clarify this aspect. 
 
We clarified this issue. We used the hypertension diagnosis code as a definition of hypertension. In 
general, we think it is hard to find a correct definition for HTN as multiple organizations use 
different recommendations. 
 
•             Whatever definition is adopted by the authors, 'presence of hypertension' is determined on the 
basis of continuous BP values. It is therefore difficult to believe that the authors cannot avail themselves 
of original (continuous) data.  
 
Please see response above.  Please note that machine learning was used to identify factors for 
progression, but blood pressure was not picked by the algorithm. Please see results when blood 
pressure data was forced into the model.  
 
•             It is notable that for the independent validation cohort some regression models included mean 
arterial pressure (as a continuous variable) among the independent covariates, instead of 'hypertension' 



(see page 12, Figure 5). Please explain why the authors didn’t use the same independent variable in order 
to represent blood pressure.  
 
We used published blood data as a replication cohort as kidney data was not available. This 
progression model was developed using prior knowledge and intuition and the authors included BP.  
In our manuscript we used a computer learning program LASSO to determine significant variables 
for the CKD progression model. As discussed above this model penalizes for adding too many 
variables into the model. In our analysis the inclusion of variables was unbiased, which is a key 
strength of the study. 
Please see discussion above and review supplemental table 10 where we show data by forcing BP 
information into the multivariable model.  
 
•          The authors' choice is also suboptimal from a methodological point of view. Actually, it is always 
preferable to use continuous covariates instead of the same 'dichotomized' variable, because the former 
provides more accurate estimates.   
  
Thank you for this interesting comment.  

1. Please see discussion above. We used machine learning for variable selection.   
2. Second, we are not aware of studies correlating BP with renal structural outcomes such as 

kidney fibrosis as outcome.  
3. Third since BP treatment has a significant effect on reducing renal outcome, but may not 

completely eliminate all residual effects of HTN we think that there is an important 
biological basis to potentially use HTN as binary outcome.   

4. Finally, to respond to this comment we “forced” blood pressure into our CKD progression 
model for the primary kidney cohort (results under supplemental table 10) and found that 
the majority of progression is explained by baseline GFR (40.1%) followed by diabetes 
(6.89%), then Age (4.4%) and finally HTN (1.5%) or Systolic BP (0.41%).  

 
2. The authors claim that they have clarified the study design in the abstract. This is simply not true. 
Moreover, they did not provide any information about study setting, participating centers, recruitment 
period and data monitoring, as requested.  
 
We would like to apologize. We clarified the study design in the rebuttal. Unfortunately, we cannot 
include all clinical this information requested by the reviewer to the abstract due to word limitation 
so eventually it was deleted from the final submission.  
We described the collection of the tissue samples and the clinical information in the methods 
section. We would like to point out that this is not a simple epidemiological dataset, the key aspect 
of the work is having tissue samples, detailed histological analysis and methylation data 
information and the use machine learning to identify variables that predict the different outcomes. 
 
We have added the following description to the methods section: “The study used cross-sectional 
design. The samples were collected from Albert Einstein College of Medicine Montefiore Medical 
Center between the years of 2007-2011. Samples were de-identified and the corresponding clinical 
information available at the time of nephrectomy was collected by an honest broker. The study was 
approved by the Institutional Review Boards at the Albert Einstein College of Medicine Montefiore 
Medical Center (IRB 2002-202) and the University of Pennsylvania (IRB 815796).” These samples 
are considered medical discard and the samples were collected de-identified and the clinical data 
was added by an honest broker. For this reason, this is not considered a clinical trial and no DSMB 
was needed.  
 



 
3. The authors asserted that in the primary cohort they included controls (non-diabetic CKD patients). 
However, this has not been specified in the manuscript, but, more importantly, no clinical data on diabetic 
and non-diabetic CKD patients (controls) have been provided. Data of the two patient populations should 
be shown. The choice of non-diabetic CKD patients is crucial, as they must have the same degree of renal 
insufficiency and proteinuria as diabetic patients.  
 
We remain confused by these comments. Please see below response to additional comments below. 
The primary cohort did not include subjects with non-diabetic CKD. The study did not use CKD as 
outcome. We used continuous variables as outcome; structure damage and rate of kidney function 
decline. 
 
- The authors never mentioned before that the primary cohort only had 22 diabetic CKD patients and it 
never emerged that the controls were healthy patients without any kind of kidney injury. Similarly, the 
replication kidney cohort should be described better, specifying how many patients are affected by 
diabetic CKD and how many by hypertensive CKD. 
 
Thank you. We are very confused by statements of the reviewer. Diabetic CKD was not an outcome 
in this study and the controls were not healthy subjects without kidney injury.  
 
The cohort was NOT analyzed in a case control manner as detailed in the manuscript. As 
highlighted by this reviewer many times continuous outcome analysis is more powerful then case 
control analysis. Indeed, the reviewer made 5 comments on continuous vs binary use of BP vs HTN. 
The primary cohort only had diabetic CKD patients (n=22). We used an external validation cohort 
to replicate the methylation and fibrosis association. This replication kidney cohort contained both 
diabetic CKD and non-diabetic CKD patients (diabetic CKD = 10, non-diabetic CKD = 38). The 
controls included patients with diabetes in the absence of kidney disease (n=11) as well as 
hypertension in the absence of kidney disease (n= 25).  As stated in the manuscript we did not use 
DKD as an outcome. DKD is complex phenotype. Clinically both GFR decline and albuminuria 
describes DKD and these 2 definitions do not fully overlap. We used the gold standard histological 
definition. At present, we do not know the correlation between gold standard vs clinical DKD 
diagnosis. We replicated structural changes of DKD, in a cohort where the etiology of fibrosis was 
related to diabetes or hypertension. 
 
We do not wish to present the data as a case control data as it was not analyzed as a case control 
dataset. We would like to point out that the CKD definition of eGFR<60 is highly arbitrary 
definition and differences between samples of eGFR 59 and 20 is highly significant while changes in 
samples between GFR of 61 (no CKD) and 59 (no CKD) is probably not greater than chance. 
 
Cohort characteristics are shown in Table 1-2 and Supplementary Tables 1-3. The primary cohort 
did not include non-diabetic CKD patients. The primary kidney cohort only had diabetic CKD 
patients (n=22); the replication kidney cohort contained both diabetic CKD and non-diabetic CKD 
patients (n=48).  
 
- In order to identify the best control, it is indispensable to have a clear idea of what one wants to 
demonstrate. Comparing CKD patients (diabetic plus hypertensive) to healthy patients, as the authors did, 
allows one to identify a methylation signature specific to CKD, and not to diabetic kidney disease. In this 
case, the authors should change their conclusions accordingly. By contrast, to define cytosine methylation 
changes specific to diabetic kidney disease, the authors should compare diabetic kidney disease patients 
with patients with the same degree of renal insufficiency and proteinuria as diabetic ones. 
 



Thank you for the note. There seems to be a significant misunderstanding.  
1. We would like to emphasize that this is NOT a case control study as suggested by the 

reviewer.  
2. The definition of CKD is having a GFR under 60ml/min/1.73m2. We did not used this 

outcome. We do not understand the comment of the reviewer. 
3. We feel that figures 2 and 5 clearly described our analysis and outcomes. The goal is to 

understand DKD (hence the title). DKD however has multiple endophenotypes, such as 
eGFR, albuminuria, glomerulosclerosis, fibrosis and GFR decline. We have analyzed 
two phenotypes as continuous outcomes: 1) degree of interstitial fibrosis and 2) eGFR 
decline. 

4. In addition, it seems that the reviewer has misunderstood the analysis. The primary 
cohort was a cohort of subjects with varying degrees of renal insufficiency and kidney 
function decline. In this cohort, 41 subjects carried a diagnosis of DM and 65 carried a 
diagnosis of HTN. In this primary cohort, all subjects with GFR<60 had diabetes and 
evidence of DKD on histologic analysis (n=22). Subjects with GFR>60 included those 
with and without diabetes and with and without hypertension. As such, in our linear 
regression analysis, we adjusted for both DM and HTN and the above mentioned 
outcomes were used. 

5. For the structure changes in DKD, we used a cohort of subjects with diabetic and 
hypertensive fibrosis, given the significant overlap between histological manifestation of 
the tubulointerstitial changes. We would like to highlight that all models were adjusted 
for diabetes.  

6. Our CKD progression model was adjusted for baseline kidney function. Given that this 
not a case control design and we adjusted the data for these covariates, we do not see the 
value of matching the data. 

 
 
4. I recognize the step forward upon filtering out with Gap Hunter method. However, this new approach 
has not confirmed some probes associated with interstitial fibrosis found in the original paper’s analysis, 
in particular as regards the one correlated with the stem cell transcription factor HOPX (Hop homeobox) 
levels that, according to the authors, could have a pivotal role in disease development.  
 
There seems to be a misunderstanding.  

1. The observed methylation changes around HOPX are correct.  
2. Upon the suggestion of reviewer1 we removed probes where the methylation change in 

the vicinity of sequence variations, such as the HOPX region. 
3. The argument here is not about whether or not the methylation difference exists, but 

about the cause of the observed methylation change (environmentally induced vs the 
result of genetic variation). 

4. We will need to generate genotype information for these exact samples to understand 
the cause of methylation changes in the HOPX region.  

 
The authors didn’t specify whether the degree of cg24818418 methylation associated with EGF 
(Epidermal Growth Factor) transcript level, and able to predict kidney function decline, was validated in 
the independent cohort. This should be the most important confirmation finding of their study.  
 
We are a bit confused by this comment as this information is included in the manuscript.  

1. We show that the methylation of EGF probe predicts eGFR decline (Fig4).  
2. The EGF probe is on a kidney specific regulatory region and the methylation is 

associated with gene expression changes.  
3. We dedicated an entire figure (Figure 4) to show this important finding of the study.  



4. We show the effect and p-value (beta 0.008, p-value 0.049) of this probe with degree of 
interstitial fibrosis for our multivariate analysis in Supplementary Table 11.  

5. On univariate analysis, the relationship is strong (beta 0.46, p-value 1.2 E-05). 
Furthermore, transcript level of EGF is well correlated with degree of interstitial 
fibrosis on univariate analysis (beta -0.50, p-value 4.54E-06).  

6. The association between fibrosis and EGF transcript level has also been validated by  
Beckerman et al (eBioMedicine 2017). The association between EGF transcript and 
fibrosis and EGF and kidney function decline has been observed by Ju et al (Sci Trans 
Med 2016).  

 
 
6. The authors did not provide a convincing answer about the use of surrogate cells to define epigenetic 
changes observed in the kidney. Two of three papers cited by the authors in their defense actually do not 
support their claims. Indeed, Hannon et al. found that for the majority of DNA methylation sites, 
interindividual variation in whole blood is not a strong predictor of interindividual variation in the brain, 
while Klein and co-authors asserted that “it is unlikely that there is a strong, direct correlation between the 
epigenomes of the brain and blood such that measuring a given epigenomic feature in blood offers a 
reasonable proxy for the same feature in the brain for most genomic loci”.  
 
This is a good point, however, we would like to point out that the 3 reviewers seem to have differing 
views on this issue. The goal of this study is to describe methylation changes in human kidney 
samples of subjects with diabetic kidney disease, as the kidney tubule is one important cell type for 
diabetic kidney disease development.  
  
The entire field of epigenetics does not have sufficient information to come to a solid conclusion on 
the use of surrogate cell types for epigenome wide association studies. In the study performed by 
Hannon et al (“Interindividual methylomic variation across blood, cortex, and cerebellum: 
implications for epigenetic studies of neurological and neuropsychiatric phenotypes”), 1.19% of 
whole blood variable methylation probes were “strongly” and 3.68% were “moderately” correlated 
with changes in the cerebellum. The authors postulate the role of underlying genetic variation and 
allele specific DNA methylation as a potential explanation for these similarities and reference the 
works of other smaller studies with similar comparisons (for example, Slieker et al “Identification 
and systematic annotation of tissue-specific differentially methylated regions using the Illumina 
450k array”). Surrogate cell types are often more accessible than the tissue of interest (as in the 
case with our study) and markers that are able to be validated in the blood may be of increased 
clinical utility which is why we strove for this comparison.  
 
Overall the use and role of surrogate cell types for epigenetic studies is not a solved issue. Making it 
even more important to analyze epigenetic changes in the cell type of interest. If possible, we would 
like to avoid making strong statements on the use of surrogate cell types for epigenetic studies. 
  
7. The authors should properly cite the method they used to estimate the power of their sample size (Tsai 
et al., ?) in the main text.  
 
We corrected this issue. 
 
Minor points:  
- Supplementary tables are erroneously named. Please check and correct.  
- The authors should re-write the sentence on page 8, lines 14-17 “Fold change...analysis”. 
 
Thank you. We corrected our labeling error.   



 
We re-wrote this to read: “Compared to a random selection of probes our set of 65 probes (that are 
associated with DKD and fibrosis) showed a 4.5-fold enrichment to be localized to a kidney 
enhancer region, suggesting their functional importance in the kidney.”   
 



REVIEWERS' COMMENTS:  

 

Reviewer #1 (Remarks to the Author):  

 

All my concerns have now been replied to - Thanks  

 

 

Reviewer #2 (Remarks to the Author):  

 

Contrary to the popular belief that DNA methylation is inversely correlated with expression in 

disease, this article in its current form indicates that understanding the role of DNA methylation in 

kidney disease is complicated. Additional experiments and new data included in the revised work 

while helpful raise more questions regarding the relevance of differentially methylated genes in 

diabetic kidney disease. Let’s consider the new data included in Tables 3 and 5. The new data is a 

worthwhile addition to the article, but the list of replicated probes is all too brief and difficult to 

understand why the authors have only presented a shortened list. However, the main criticism of 

the data is discussed below.  

 

New Table 3: a brief list of 5 methylated probes derived for the Illumina 450K array show the 

position of the methylated CG site to the nearest transcription start site of cis-acting genes are a 

long distance away and more than 10k base pairs (for example IFI16 and CCND2) with the majority of 

CG sites located 137k (AIM2) 279k (FCER1A)…, bp away from the TSS. Based on the CG locations that 

are 137,045 or 279,663 bp away from the nearest gene (AIM2, FCER1A , etc) it remains difficult to 

understand how these distances and CG sites are directly regulating expression of predicted genes 

that are implicated to be functionally relevant to interstitial fibrosis.  

 

New Table 5: the same critique described above applies to the list of probes that improve model of 

kidney function decline. These results are neither described on pages 8-9 for table 3 or page 11 for 

table 5 in the results sections and surprisingly the issue of CG site distance to the nearest TSS is 

neither interpreted nor is it described as a limitation in the discussion. The issue of functional CG 

methylation is important, and it is difficult to imagine without direct experimental evidence that a 

CG methylation site 10,000, 100,000 or 400,000 base pairs away from the nearest TSS of a cis-acting 

gene is regulating gene expression.  

 



The experiments using 5AZA in HKC8 cells to show functional relevance and methylation mediated 

gene regulation are interesting but problematic and flawed. Of the ten probes on the array 5 

showed methylation changes after 5AZA and 2 of the 5 probes were correlated with gene 

expression. A close look at the data shows confusion understanding the role of DNA methylation and 

the complex interpretive issues with the dataset. The title to SF13 describes CG methylation of two 

probes linked with expression of genes implicated in interstitial fibrosis, specifically, C1S and HCLS1, 

however, HCLS1 is listed in Table 5 as a probe that improve model of kidney function. While this 

might be a minor point the next issue is more complicated and relates to the methylation probe of 

the C1S gene is 164,195 bp away and for HCLS1 is 295,485 bp away from their respective 

transcription start sites. Genic methylation occurring at a distance from the TSS is positively 

correlated with gene expression (some examples of these published in Nature, 466 (2010), pp. 253-

257 and Genome Res., 23 (2013), pp. 555-567) which is not to be confused with the DNA 

methylation found in promoters that is associated with gene repression. The authors rightly or 

wrongly expect 5AZA to cause hypomethylation in genic regions in the same way as promoters are 

demethylated by 5AZA and subsequently causes gene reactivation. Gene body methylation may not 

necessarily operate in the same way as promoter methylation and this remains a subtle but 

important difference between promoter and gene body DNA methylation (Cancer Cell 26: 4, 13 

Oct2014, Pages 577-590). There is a confusion with the interpretation of the data and the authors 

have not considered this subtle but important difference nor is the current literature discussed. The 

implication that 5AZA causes demethylation of a CG methylation probe that is 164,195 bp away from 

C1S and 295,485 bp away from HCLS1 which are considered genic methylation sites is flawed and 

paradoxical because gene body remethylation is correlated with gene expression.  

 

Based on these comments the role of methylation in DKD is unclear.  

 

 

Reviewer #3 (Remarks to the Author):  

 

<b>The author’s answers have clarified several aspects that have been neglected in the manuscript. 

The authors should improve their manuscript so that it will be more reader-friendly.</b>  

 

R- As requested in the first revision, the authors should provide at least the following data: blood 

pressure, metabolic control, serum lipids, concomitant drug treatment such as ACE inhibitors, ARBs, 

HMGCoA inhibitors, blood glucose and lowering agents.  

 

A- As stated above we are a bit surprised by this suggestion and would like to understand a strong 

rationale for this statement. In our view this is the first manuscript that uses the “gold standard” 



criteria for DKD description, which is histological diagnosis. We provide a detailed 19 point 

histopathological description of the cohort and a full description for the subjects and samples.  

 

Every other prior study and 99% of the published clinical literature use the presence of GFR decline 

or albuminuria in patients with diabetes. However, we do not know whether or not such subjects 

actually have diabetic kidney disease.  

We would like to mention that we have provided the blood pressure information in the manuscript. 

We provide metabolic control such as HbgA1c when available (not for non-diabetic subjects). Due to 

the sample size we cannot adjust for medication use and this information was only partially 

available and only for the time of sample collection. As the role of serum lipids and lipid lowering in 

DKD development is a bit controversial it is hard to make strong case for this information, which is a 

potential limitation of the study.  

 

<b>The problem of only partially available clinical information at the time of sample collection as far 

as of the potentially reduced generalizability of the selected patient sample should be mentioned in 

the text among the limitations of the study. </b>  

 

R- In particular, blood pressure data are of key importance. It is concerning that the authors adjusted 

for hypertension (yes/no), instead of using a continuous variable (e.g. MAP) in the reported 

regression models (see page 6, Figure 1). The above approach generates some questions that need 

to be addressed:  

 

A- We would like to emphasize that we used machine learning methods (LASSO) to identify clinical, 

histological, gene expression and methylation variables to predict GFR decline. This is a key novelty 

of the work. We do not have control over the variables that predict kidney function decline in 

machine learning models. In our review of the literature no prior studies have used LASSO for model 

selection, as most prior models mostly picked variable “intuitively” or used a stepwise approach to 

model selection. It is also important to note that LASSO is a shrinkage model that penalizes for 

having too many variables in the model. It might be important to reanalyze some of the clinical 

observational cohorts using LASSO. For example, if a variable closely correlates with BP or HTN 

status LASSO will not use that variable.  

 

We would like to point out that the outcome in our study was different from prior publications. We 

examined GFR slope and interstitial fibrosis. In our view the role of BP has not been formally 

analyzed for these outcomes.  

 



We acknowledge the sentiment on the role of hypertension in development of CKD. Our review of 

the literature indicates that while some studies have indicated the role of BP in progression others 

did not. For example, the study by Tangri et. al. JAMA 2011 found, that BP did not predict renal 

outcome. Further external validation of the Tangri et al equation in a very large cohort (JAMA 2016) 

show excellent discrimination of the formula and again show that BP did not add to the predictive 

accuracy for renal outcome. The blood pressure recommendation goals for patients with diabetes 

varies significantly between different organizations.  

 

In our study, using a univariate analysis, BP did not correlate with our histological outcome (degree 

of tubulointerstitial fibrosis) (beta 0.147, p-value 0.22). However, HTN diagnosis did correlate with 

degree of interstitial fibrosis (beta 0.28, p-value 0.011); therefore, we used HTN as a covariate in our 

regression analysis. This may just reflect that a single blood pressure reading might not reflect long 

term blood pressure measurements or a residual effect of hypertension status despite medical 

management.  

 

<b>Including in the Supplemental Material the above findings arising from the univariate analyses 

may help in better understanding the variables’ selection process.</b>  

 

Similarly, as reported by prior studies, HTN did correlate with kidney function decline as outcome. In 

addition, BP (or MAP) at the time of kidney tissue procurement, poorly correlated (beta -0.07, p-

value 0.57) with GFR decline. In our view, this may reflect the fact that medically treated HTN 

mitigates the effect of HTN on kidney function decline.  

 

<b>The lack of correlation between blood pressure and eGFR decline is clinically interesting and it 

should be added in the Supplemental Material. Moreover the Authors should recognize in the 

Discussion section the use of estimated GFR instead of measured GFR may be suboptimal in 

representing renal function in diabetes.  

 

Moreover the authors should include the following information that are important and clinically 

relevant: 

- in the abstract: primary cohort had diabetic CKD patients (n=22);  

- in the method section: replication kidney cohort had both diabetic CKD and non-diabetic CKD 

patients (diabetic CKD = 10, non-diabetic CKD = 38). The controls included patients with diabetes in 

the absence of kidney disease (n=11) as well as hypertension in the absence of kidney disease (n= 

25).</b> 



REVIEWERS' COMMENTS: 
 
Reviewer #1 (Remarks to the Author): 
 
All my concerns have now been replied to - Thanks 
 
Thank you.  
 
Reviewer #2 (Remarks to the Author): 
 
Contrary to the popular belief that DNA methylation is inversely correlated with 
expression in disease, this article in its current form indicates that understanding the 
role of DNA methylation in kidney disease is complicated. Additional experiments and 
new data included in the revised work while helpful raise more questions regarding the 
relevance of differentially methylated genes in diabetic kidney disease. Let’s consider 
the new data included in Tables 3 and 5. The new data is a worthwhile addition to the 
article, but the list of replicated probes is all too brief and difficult to understand why the 
authors have only presented a shortened list. However, the main criticism of the data is 
discussed below. 
 
Thank you for this comment. We have provided the full lists of methylation probes 
associated with outcomes in our supplementary information and supplementary data. 
Unfortunately, this information is too long to include in the main manuscript.  
 
New Table 3: a brief list of 5 methylated probes derived for the Illumina 450K array 
show the position of the methylated CG site to the nearest transcription start site of cis-
acting genes are a long distance away and more than 10k base pairs (for example IFI16 
and CCND2) with the majority of CG sites located 137k (AIM2) 279k (FCER1A)…, bp 
away from the TSS. Based on the CG locations that are 137,045 or 279,663 bp away 
from the nearest gene (AIM2, FCER1A , etc) it remains difficult to understand how these 
distances and CG sites are directly regulating expression of predicted genes that are 
implicated to be functionally relevant to interstitial fibrosis.  
 
New Table 5: the same critique described above applies to the list of probes that 
improve model of kidney function decline. These results are neither described on pages 
8-9 for table 3 or page 11 for table 5 in the results sections and surprisingly the issue of 
CG site distance to the nearest TSS is neither interpreted nor is it described as a 
limitation in the discussion. The issue of functional CG methylation is important, and it is 
difficult to imagine without direct experimental evidence that a CG methylation site 
10,000, 100,000 or 400,000 base pairs away from the nearest TSS of a cis-acting gene 
is regulating gene expression. 
 
Thank you. We have added this important point to our results and discussion sections. 
We have included a caveat that functional link would require experimental validation 
given the large distances between some methylation probes and the postulated target 



genes. We have included a brief discussion about mechanisms of epigenetic regulation 
as well.   
 
The experiments using 5AZA in HKC8 cells to show functional relevance and 
methylation mediated gene regulation are interesting but problematic and flawed. Of the 
ten probes on the array 5 showed methylation changes after 5AZA and 2 of the 5 
probes were correlated with gene expression. A close look at the data shows confusion 
understanding the role of DNA methylation and the complex interpretive issues with the 
dataset. The title to SF13 describes CG methylation of two probes linked with 
expression of genes implicated in interstitial fibrosis, specifically, C1S and HCLS1, 
however, HCLS1 is listed in Table 5 as a probe that improve model of kidney function. 
While this might be a minor point the next issue is more complicated and relates to the 
methylation probe of the C1S gene is 164,195 bp away and for HCLS1 is 295,485 bp 
away from their respective transcription start sites. Genic methylation occurring at a 
distance from the TSS is positively correlated with gene expression (some 
examples of these published in Nature, 466 (2010), pp. 253-257 and Genome Res., 23 
(2013), pp. 555-567) which is not to be confused with the DNA methylation found in 
promoters that is associated with gene repression. The authors rightly or wrongly expect 
5AZA to cause hypomethylation in genic regions in the same way as promoters are 
demethylated by 5AZA and subsequently causes gene reactivation. Gene body 
methylation may not necessarily operate in the same way as promoter methylation and 
this remains a subtle but important difference between promoter and gene body DNA 
methylation (Cancer Cell 26: 4, 13 Oct2014, Pages 577-590). There is a confusion with 
the interpretation of the data and the authors have not considered this subtle but 
important difference nor is the current literature discussed. The implication that 5AZA 
causes demethylation of a CG methylation probe that is 164,195 bp away from C1S and 
295,485 bp away from HCLS1 which are considered genic methylation sites is 
flawed and paradoxical because gene body remethylation is correlated with gene 
expression. 
 
Thank you for this comment. Based on this comment and at the suggestion of the 
editorial board, we have removed this experimental data from the finalized manuscript.  
 
Based on these comments the role of methylation in DKD is unclear. 
 
 
Reviewer #3 (Remarks to the Author): 
 
The author’s answers have clarified several aspects that have been neglected in 
the manuscript. The authors should improve their manuscript so that it will be 
more reader-friendly. 
 
R- As requested in the first revision, the authors should provide at least the following 
data: blood pressure, metabolic control, serum lipids, concomitant drug treatment such 
as ACE inhibitors, ARBs, HMGCoA inhibitors, blood glucose and lowering agents.  
 



A- As stated above we are a bit surprised by this suggestion and would like to 
understand a strong rationale for this statement. In our view this is the first manuscript 
that uses the “gold standard” criteria for DKD description, which is histological 
diagnosis. We provide a detailed 19 point histopathological description of the cohort and 
a full description for the subjects and samples.  
 
Every other prior study and 99% of the published clinical literature use the presence of 
GFR decline or albuminuria in patients with diabetes. However, we do not know whether 
or not such subjects actually have diabetic kidney disease.  
We would like to mention that we have provided the blood pressure information in the 
manuscript. We provide metabolic control such as HbgA1c when available (not for non-
diabetic subjects). Due to the sample size we cannot adjust for medication use and this 
information was only partially available and only for the time of sample collection. As the 
role of serum lipids and lipid lowering in DKD development is a bit controversial it is 
hard to make strong case for this information, which is a potential limitation of the 
study.  
 
The problem of only partially available clinical information at the time of sample 
collection as far as of the potentially reduced generalizability of the selected 
patient sample should be mentioned in the text among the limitations of the 
study.  
 
Thank you. We added this limitation in the discussion section. 
 
R- In particular, blood pressure data are of key importance. It is concerning that the 
authors adjusted for hypertension (yes/no), instead of using a continuous variable (e.g. 
MAP) in the reported regression models (see page 6, Figure 1). The above approach 
generates some questions that need to be addressed:  
 
A- We would like to emphasize that we used machine learning methods (LASSO) to 
identify clinical, histological, gene expression and methylation variables to predict GFR 
decline. This is a key novelty of the work. We do not have control over the variables that 
predict kidney function decline in machine learning models. In our review of the 
literature no prior studies have used LASSO for model selection, as most prior models 
mostly picked variable “intuitively” or used a stepwise approach to model selection. It is 
also important to note that LASSO is a shrinkage model that penalizes for having too 
many variables in the model. It might be important to reanalyze some of the clinical 
observational cohorts using LASSO. For example, if a variable closely correlates with 
BP or HTN status LASSO will not use that variable. 
 
We would like to point out that the outcome in our study was different from prior 
publications. We examined GFR slope and interstitial fibrosis. In our view the role of BP 
has not been formally analyzed for these outcomes.  
 
We acknowledge the sentiment on the role of hypertension in development of CKD. Our 
review of the literature indicates that while some studies have indicated the role of BP in 



progression others did not. For example, the study by Tangri et. al. JAMA 2011 found, 
that BP did not predict renal outcome. Further external validation of the Tangri et al 
equation in a very large cohort (JAMA 2016) show excellent discrimination of the 
formula and again show that BP did not add to the predictive accuracy for renal 
outcome. The blood pressure recommendation goals for patients with diabetes varies 
significantly between different organizations.  
 
In our study, using a univariate analysis, BP did not correlate with our histological 
outcome (degree of tubulointerstitial fibrosis) (beta 0.147, p-value 0.22). However, HTN 
diagnosis did correlate with degree of interstitial fibrosis (beta 0.28, p-value 0.011); 
therefore, we used HTN as a covariate in our regression analysis. This may just reflect 
that a single blood pressure reading might not reflect long term blood pressure 
measurements or a residual effect of hypertension status despite medical 
management.  
 
Including in the Supplemental Material the above findings arising from the 
univariate analyses may help in better understanding the variables’ selection 
process.  
 
Thank you. We have added the univariate analyses to the Supplementary Information.  
 
Similarly, as reported by prior studies, HTN did correlate with kidney function decline as 
outcome. In addition, BP (or MAP) at the time of kidney tissue procurement, poorly 
correlated (beta -0.07, p-value 0.57) with GFR decline. In our view, this may reflect the 
fact that medically treated HTN mitigates the effect of HTN on kidney function decline. 
 
The lack of correlation between blood pressure and eGFR decline is clinically 
interesting and it should be added in the Supplemental Material. Moreover the 
Authors should recognize in the Discussion section the use of estimated GFR 
instead of measured GFR may be suboptimal in representing renal function in 
diabetes. 
 
Thank you. We have added the correlation between blood pressure and eGFR decline 
to the Supplementary Information. 
 
We have added to the methods section that we used estimated GFR using the Chronic 
Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. While many research 
studies use measured GFR, several longitudinal studies have shown that use of 
estimated GFR correlates with hard outcomes such as mortality and kidney failure2.  
 
Moreover the authors should include the following information that are important 
and clinically relevant:  
- in the abstract: primary cohort had diabetic CKD patients (n=22);  
- in the method section: replication kidney cohort had both diabetic CKD and non-
diabetic CKD patients (diabetic CKD = 10, non-diabetic CKD = 38). The controls 
included patients with diabetes in the absence of kidney disease (n=11) as well as 



hypertension in the absence of kidney disease (n= 25). 
 
Unfortunately, we are unable to add this information to the abstract since we were 
required to shorten our abstract significantly. 
 
We have added to the methods section the clarifications about the primary and 
replication cohorts. 
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