Structural basis for human sterol isomerase in cholesterol

biosynthesis and multidrug recognition

Tao Long, Abdirahman Hassan, Bonne M Thompson, Jeffrey G McDonald, Jiawei Wang and Xiaochun Li

Supplementary Figure 1 Cholesterol biosynthesis pathway and membrane enzymes. Acetyl-CoA is the precursor for cholesterol biosynthesis. After several reactions, the intermediate lanosterol is synthesized. Conversion of lanosterol to cholesterol involves many reactions catalyzed by membrane enzymes (red). The left lane denotes the Bloch pathway; the right lane denotes the Kandutsch-Russell pathway. 24,25-double bond desaturation can occur at any step between lanosterol and desmosterol in this pathway, but in most tissues desaturation does not occur until after demethylation is complete (after t-MAS)¹.

Supplementary Information

Supplementary Figure 2 Summary of pharmacologically active compounds that

bind to human EBP protein.

a, Anti-tumor drugs. b, Neuroprotective drugs. c, Fungicides. d, Calcium channel

blockers. e, Sterol biosynthesis inhibitors. K_i values are from the previous reports ^{2,3}.

Supplementary Figure 3 Expression and purification of human EBP protein.

Representative Superdex 200 increase 10/30 gel-filtration chromatogram of human EBP.

Peak fraction of human EBP is shown on SDS-PAGE with molecular markers.

Supplementary Figure 4 The 2Fo-Fc electron density of EBP.

a, An overall view of the experimental electron density, contoured at 1.5 σ , in one unit cell. **b**, The *2Fo-Fc* electron density map of EBP with U18666A, contoured at 1.0 σ . An overall view of the EBP dimer is shown (left). A representative view of the helices of Molecule A is shown (right). **c**, The *2Fo-Fc* electron density map of EBP with tamoxifen, contoured at 1.0 σ . An overall view of the EBP dimer is shown (left). A representative view of the helices of the helices

Supplementary Figure 5 Crystal packing of human EBP protein.

a, EBP with U18666A. **b**, EBP with tamoxifen. The three molecules of EBP protein in an asymmetric unit are indicated in the different colors.

a, Structural comparison from parallel to the membrane view. **b**, Structural comparison

from lumen view. **c**, The comparison of U18666A and tamoxifen in the structures.

Supplementary Figure 7 Physiological function of EBP dimer

a, The EBP dimer is verified by pull down assay. Protein with both His and Strep tag was expressed by cells which were co-infected with two baculoviruses (see Methods) and purified by Strep-Tactin affinity column. **b**, The dimer interface of EBP. The key residues that form the interface are shown as sticks. **c**, Yeast complementation assay. EBP with dimerization mutations can rescue the growth of Δ Erg2 *Saccharomyces cerevisiae*, but these mutants are not as efficient as WT. Growth of yeast expressing EBP mutant in the presence of 50 ng/ml concentrations of cycloheximide for 24 to 48 hours. Source data are provided as a Source Data file.

Supplementary Figure 8 Sequence alignment of human EBP protein with different

species EBP proteins. The residue numbers of hsEBP are indicated above the protein

sequence. The secondary structures are labeled. Residues under the dashed lines are

excluded from the 3D reconstruction. The catalytic residues for the reaction are indicated

by blue balls. Species label: hs-Homo sapiens; mm-Mus musculus; xt-Xenopus

tropicalis; dr-Danio rerio; at-Arabidopsis thaliana.

Supplementary Figure 9 Molecular Docking Simulations for binding of Δ^8 -sterol to EBP.

The top 5 scoring poses of Δ^8 -sterol bound to EBP are overlaid with key residues represented as sticks (light blue). Color: pose 1, orange; pose 2, cyan; pose 3, magenta; pose 4, yellow; pose 5, wheat.

Supplementary Figure 10 LC-MS/MS chromatography of EBP activity assays. a, wild type. b, mutant with H76A. c, mutant with E80A. d, mutant with E122A. e, mutant with W196A. f, No protein. The peak of the precursor, deuterium labeled zymostenol, is colored in blue; the peak of the product, lanthosterol, is colored in white. LC-MS/MS results with three independent repeats.

	U18666A-bound	Tamoxifen-bound	Se-SAD
	(Se-labeled)	(Native form)	SC SI ID
Data collection	(Se hooled)	(ituative form)	
Space group	$P2_{1}2_{1}2_{1}2_{1}2_{1}2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}2_{1}2_{1}2_{1}2_{1}2_{1}$
Cell dimensions			
a, b, c (Å)	194.566, 67.823.	192.837.66.829.	194.338, 67.923,
	96.858	98.678	99.731
α, β, γ (°)	90, 90, 90	90, 90, 90	90, 90, 90
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,	, ,	Peak
Wavelength	0.97927	0.97927	0.97910
Resolution (Å)	50~3.15 (3.26~3.15)	50~3.45 (3.51~3.45)	50~3.50 (3.63~3.50)
$R_{\rm merge}(\%)$	8.6 (>1)	11.7 (>1)	13.2 (>1)
$I/\sigma I$	30.0 (1.2)	17.3 (1.0)	21.1 (1.3)
Completeness (%)	99.8 (99.6)	99.6 (99.7)	99.6 (99.8)
Redundancy	12.9 (11.9)	6.3 (5.7)	43.5 (30.1)
Refinement			
Resolution (Å)	50~3.20	50~3.50	
No. reflections	28389	13685	
Rwork / Rfree	26.85 / 31.91	27.25 / 32.59	
No. atoms	5208	5208	
Protein	5124	5124	
Ligand/ion	84	84	
Water	0	0	
B-factors			
Protein	56.30	35.37	
Ligand/ion	61.35	36.32	
Water	N/A	N/A	
R.m.s deviations			
Bond lengths (Å)	0.004	0.004	
Bond angles (°)	0.927	0.927	

Supplementary Table 1. Data collection, phasing and refinement statistics

Values in parentheses are for the highest resolution shell. R_{free} was calculated with 5% of the

reflections selected in the thin shell.

Mutation	Probably effect	Likely consequence	
L18P ⁴	Block the solvent entry	Non-functional protein	
W47C ⁵	To be determined	Unknown	
W47R ⁶	To be determined	Unknown	
R62W ⁷	To be determined Unknown		
L66P ⁸	To be determined Unknown		
C72R ⁹	⁹ Sterol binding /entry Non-functional protein		
C72Y ⁷	Sterol binding /entry Non-functional protein		
G73E ⁹	Sterol binding /entry	Non-functional protein	
I75N ^{10,11}	Sterol binding /entry Non-functional protein		
E80K ^{12,13}	Catalytic activity	Non-functional protein	
W82C ^{14,15}	Sterol binding /entry	Non-functional protein	
L100P ⁹	Sterol binding /entry	Non-functional protein	
W101C ⁹	Sterol binding /entry	Non-functional protein	
E103K ¹⁶	Block the solvent entry	Non-functional protein	
Y104H ⁹	Sterol binding /entry	Non-functional protein	
Y104C ⁹	Sterol binding /entry	Non-functional protein	
A105D ⁹	Block the solvent entry	Non-functional protein	
G107E ⁹	Block the solvent entry	Non-functional protein	
R110Q ^{16,17}	Block the solvent entry	Non-functional protein	
Y111H ⁹	Sterol binding /entry	Non-functional protein	
G130V ⁷	Sterol binding /entry	Non-functional protein	
S133R ^{8,13}	To be determined	Unknown	
F140C ⁹	To be determined	Unknown	
R147C ⁹	To be determined	Unknown	
R147H ¹⁴⁻¹⁶	To be determined	Unknown	
G157S ⁷	Dimerization	Destabilize the protein or	
		cause folding defect	
G161R ⁹	Dimerization	Destabilize the protein or	
		cause folding defect	
D162H ⁸	Sterol binding /entry	Non-functional protein	
L164P ¹⁶	Dimerization	Destabilize the protein or	
		cause folding defect	
Y165C ¹⁴	Sterol binding /entry	Non-functional protein	
R171C ⁹	Dimerization	Destabilize the protein or	
		cause folding defect	
R171H ⁹	Dimerization	Destabilize the protein or	
		cause folding defect	
G173R ⁷	To be determined	Unknown	
H176R ⁹	To be determined	Unknown	
W196S ⁷	Sterol binding /entry	Non-functional protein	
L203P ¹⁵	To be determined	Unknown	

Supplementary Table 2. Disease-related mutations and their probably effect and consequence.

L211R ⁹	Dimerization	Destabilize the protein or
		cause folding defect
T217M ⁹	Dimerization	Destabilize the protein or
		cause folding defect

Primer name	Sequences (5' – 3')
EBP_Strep_Forward	AATGAATTCATGTGGTCACATCCGCAGTTCGAGAAAA
	CTACCAACGCGGGCCCC
EBP_Flag_Forward	CGCGGATCC GACTACAAAGACGATGACGACAAGACTA
	CCAACGCGGGCCCC
EBP_His_Forward	AATGAATTCATGCACCACCACCACCACCACCACCACCAC
	TACCAACGCGGGCCCC
EBP_Reverse	AATGCGGCCGCTCAGTTCTTCTTGCTCTTGGC
EBP_H76A_Forward	GTGTGTGGGTTCATTGCCCTGGTGATCGAGGGC
EBP_H76A_Reverse	GCCCTCGATCACCAGGGCAATGAACCCACACAC
EBP_E80A_Forward	ATTCACCTGGTGATCGCGGGGCTGGTTCGTTCTC
EBP_E80A_Reverse	GAGAACGAACCAGCCCGCGATCACCAGGTGAAT
EBP_E122A_Forward	TTCACAGTGTGCATGGCAACCATCACAGCTTGC
EBP_E122A_Reverse	GCAAGCTGTGATGGTTGCCATGCACACTGTGAA
EBP_N193A_Forward	TACTTTGTCTTCATGGCTGCCCTGTGGCTGGTG
EBP_N193A_Reverse	CACCAGCCACAGGGCAGCCATGAAGACAAAGTA
EBP_W196A_Forward	TTCATGAATGCCCTGGCGCTGGTGCTGCCTGGA
EBP W196A Reverse	TCCAGGCAGCACCAGCGCCAGGGCATTCATGAA
EBP_Y160E/L164E_Forward	TCTGTGGGCCAGATCGAGGGGGGATGTGGAGTACTTCCT
_	GACAGAG
EBP_Y160E/L164E_Reverse	CTCTGTCAGGAAGTACTCCACATCCCCCTCGATCTGGCC
	CACAGA

Supplementary Table 3. Lists of primers used in this study.

References:

- 1 Mitsche, M. A., McDonald, J. G., Hobbs, H. H. & Cohen, J. C. Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell-type specific pathways. *eLife* **4**, e07999, doi:10.7554/eLife.07999 (2015).
- 2 Laggner, C. *et al.* Discovery of high-affinity ligands of sigma1 receptor, ERG2, and emopamil binding protein by pharmacophore modeling and virtual screening. *Journal of medicinal chemistry* **48**, 4754-4764, doi:10.1021/jm049073+ (2005).
- 3 Moebius, F. F. *et al.* Pharmacological analysis of sterol delta8-delta7 isomerase proteins with [3H]ifenprodil. *Molecular pharmacology* **54**, 591-598 (1998).
- 4 Milunsky, J. M., Maher, T. A. & Metzenberg, A. B. Molecular, biochemical, and phenotypic analysis of a hemizygous male with a severe atypical phenotype for X-linked dominant Conradi-Hunermann-Happle syndrome and a mutation in EBP. *American journal of medical genetics*. *Part A* **116a**, 249-254, doi:10.1002/ajmg.a.10849 (2003).
- 5 Furtado, L. V. *et al.* A novel X-linked multiple congenital anomaly syndrome associated with an EBP mutation. *American journal of medical genetics. Part A* **152a**, 2838-2844, doi:10.1002/ajmg.a.33674 (2010).
- 6 Hartill, V. L. *et al.* An unusual phenotype of X-linked developmental delay and extreme behavioral difficulties associated with a mutation in the EBP gene. *American journal of medical genetics. Part A* **164a**, 907-914, doi:10.1002/ajmg.a.36368 (2014).
- 7 Herman, G. E. *et al.* Characterization of mutations in 22 females with X-linked dominant chondrodysplasia punctata (Happle syndrome). *Genetics in medicine : official journal of the American College of Medical Genetics* **4**, 434-438, doi:10.109700125817-200211000-00006 (2002).
- 8 Whittock, N. V. *et al.* Novel mutations in X-linked dominant chondrodysplasia punctata (CDPX2). *The Journal of investigative dermatology* **121**, 939-942, doi:10.1046/j.1523-1747.2003.12489.x (2003).
- 9 Landrum, M. J. *et al.* ClinVar: improving access to variant interpretations and supporting evidence. *Nucleic acids research* 46, D1062-d1067, doi:10.1093/nar/gkx1153 (2018).
- Barboza-Cerda, M. C., Wong, L. J., Martinez-de-Villarreal, L. E., Zhang, V. W.
 & Dector, M. A. A novel EBP c.224T>A mutation supports the existence of a male-specific disorder independent of CDPX2. *American journal of medical genetics. Part A* 164a, 1642-1647, doi:10.1002/ajmg.a.36508 (2014).
- 11 Barboza-Cerda, M. C., Campos-Acevedo, L. D., Rangel, R., Martinez-de-Villarreal, L. E. & Dector, M. A. A novel phenotype characterized by digital abnormalities, intellectual disability, and short stature in a Mexican family maps to Xp11.4-p11.21. *American journal of medical genetics*. *Part A* **161a**, 237-243, doi:10.1002/ajmg.a.35743 (2013).
- 12 Aughton, D. J., Kelley, R. I., Metzenberg, A., Pureza, V. & Pauli, R. M. X-linked dominant chondrodysplasia punctata (CDPX2) caused by single gene mosaicism in a male. *American journal of medical genetics*. *Part A* **116a**, 255-260, doi:10.1002/ajmg.a.10852 (2003).

- Braverman, N. *et al.* Mutations in the gene encoding 3 beta-hydroxysteroid-delta
 8, delta 7-isomerase cause X-linked dominant Conradi-Hunermann syndrome.
 Nature genetics 22, 291-294, doi:10.1038/10357 (1999).
- 14 Shirahama, S. *et al.* Skewed X-chromosome inactivation causes intra-familial phenotypic variation of an EBP mutation in a family with X-linked dominant chondrodysplasia punctata. *Human genetics* **112**, 78-83, doi:10.1007/s00439-002-0844-x (2003).
- 15 Has, C. *et al.* Gas chromatography-mass spectrometry and molecular genetic studies in families with the Conradi-Hunermann-Happle syndrome. *The Journal of investigative dermatology* **118**, 851-858, doi:10.1046/j.1523-1747.2002.01761.x (2002).
- 16 Canueto, J. *et al.* Clinical, molecular and biochemical characterization of nine Spanish families with Conradi-Hunermann-Happle syndrome: new insights into X-linked dominant chondrodysplasia punctata with a comprehensive review of the literature. *The British journal of dermatology* **166**, 830-838, doi:10.1111/j.1365-2133.2011.10756.x (2012).
- 17 Derry, J. M. *et al.* Mutations in a delta 8-delta 7 sterol isomerase in the tattered mouse and X-linked dominant chondrodysplasia punctata. jderry@immunex.com. *Nature genetics* **22**, 286-290, doi:10.1038/10350 (1999).