
Supplementary

S1. Availability

Gaussian result:
https://kawue.github.io/grine_demo/index_gaussians_githubpages.

html

Barley result:
https://kawue.github.io/grine_demo/index_barley_githubpages.html

Glioblastoma result:
https://kawue.github.io/grine_demo/index_glioblastoma_githubpages.

html

Mouse urinary bladder result: https://kawue.github.io/grine_demo/index_
bladder_githubpages.html

Network building and community detection code:
https://github.com/Kawue/imaging_communitydetection_demo

Visualization (Grine) code:
https://github.com/Kawue/grine_demo
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Figure 12: Grine UI with network hierarchy mode active and graph mode in-
active. The circle of m/z-value 689.211 is selected. (A) Network display in
hierarchy mode. (B-D) Image Display. (B) Legend for color scheme (in this
case: viridis). (C) Community-map. (D) m/z-image. (E) Options box to con-
figure the graph, image and hierarchy mode. (F) List of all m/z-values or, if
selected, of all m/z-values in the selected community.

S2. Circle packing mode in network display

Figure 12 shows an example of the hierarchy mode (circle packing).

S3. Calculation of two dimensional gaussians

The gaussians were calculated by:

Ogs = Ae−(a(x−xc)2+2b(x−xc)(y−yc)+c(y−yc)2)
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where A ∈ [5, 6) is the amplitude, (xc, yc) is the center of the gaussians, σx and
σy is the spread in x and y direction and Θ is the rotation angle. Randomized
distortion of xc, yc, σx, σy is achieved by adding ε to each value, where ε is
uniformly sampled on the interval [−5, 5).

S4. Graph Structures of Barley and Glioblastoma

Figure 13 and Figure 14 show the calculated community network structure for
data set DB and DT , respectively. Both networks can be interactively explored
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Figure 13: Community-graph of the barley seed sample. Each node symbolizes
a community. Each community has a different color assigned. Smaller vertices
symbolize (1)–Communities.

Figure 14: Community-graph of DT. Each node symbolizes a community.
Each community has a different color assigned. Smaller nodes symbolize (1)–
Communities.

by visiting the respective links given under Availability of data and mate-
rial.

S5. Correlation between community-maps / m/z-images
and PCA

A PCA component image IPCA is computed and used as background canvas.
Data projections on the three most informative eigenvectors (PCA components)
are assigned to the red, green and blue color channel, respectively, like in Fonville
et al. (2013). These eigenvectors mostly correspond to the three largest or the
second to fourth largest eigenvalues. If this option is selected the image display
changes. If no community-map is displayed, the full PCA component image is
shown. If a community-map or an m/z-image is displayed depending on the cho-
sen mode (threshold based or dynamic) their presentation change. In threshold
mode pixels above a chosen threshold are transparent, showing the IPCA back-
ground, all others are greyed out. In dynamic mode the transparency scales
with the signal intensity. Both modes are demonstrated in Figure 15. There
are multiple reasons to include the PCA result in our visualization. First of all,
PCA is one of the most established data analysis methods and most biologists
have experience in interpretation of PCA results. As our community results
are likely to be new for biologists, comparison to results of a known method,
like PCA, can support the interpretation of communities. Second, PCA often
succeeds in showing the main signal distributions of the underlying data set.
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Figure 15: Correlation of a community-map and an m/z-image with the PCA
component image. Signal intensity threshold is set to (A) 0.5, meaning every
signal below 50% of the maximal signal is greyed out, and (B) dynamic.

S6. Comparison communities and PCA – Barley

The first three PCA components, ordered by decreasing eigenvalue, reveal five
major areas that match the anatomical structure (Figure 5 D). The first com-
ponent divides the seed in embryo and endosperm. The second component
separates the shoot from the remaining embryo and the third component sep-
arates root and center from each other. Thus, these results are similar to our
community approach, although it is coarser. Fine structures, like the scutellum
or structural distinction within the endosperm are not detected. Additionally
the second and third PCA components are visually not as easy to interpret as
our communities, as they are not just a differentiation in signal and no signal.
Moreover, to assign specific m/z-values to detected pattern, the PCA loadings
have to be analyzed, as they show the importance of each m/z-value for each
component. This is more complicated and more fuzzy than our method, or dis-
crete clustering in general, where clear groups of m/z-values for each detected
signal distribution are provided.

On the other hand, instead of just comparing our results with PCA we can
use it as additional source of information and as a tool for first quality control like
shown in Figure 15. If the signal distribution of a community overlaps strongly
with the distribution of a PCA component or forms a subset of it, this can be
seen as first evidence for a biological foundation instead of an methodologically
conditioned artificial result.

S7. Comparison communities and PCA – Glioblastoma

PCA is calculated without the additional preprocessing steps of data squaring
and image thresholding. Its evaluation shows, that the first component is not
as rich in information, as the second, third and fourth, ordered by decreasing
variance. Therefore we selected these three for analysis. Figure 9 D shows three
major signal distributions. Signals in P2 and P3 are one sided distributed
opposite to each other. P4 shows a weakly increased signal at the border of
tumor and non tumor area, as well as at the outer border of the sample. The
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split in two major areas is in line with both, our community results and the HE
staining. Special to this result is the explicit revelation of a border area.

S8. Noise reduction

The glioblastoma data set DT features more noise than the barley data set
DB. Therefore, we applied two additional preprocessing steps for DT. First
all intensities are squared: DT = (DT)2 to broaden the range of values, which
already successfully suppresses a lot of noise. Second, image thresholding based
on Lis Minimum Cross Entropy method Li and Lee (1993); Li and Tam (1998)
is applied:

(DT)pk,sl =

{
0, if (DT)pk,sl < tp,sl
(DT)pk,sl , otherwise

where (DT)pk,sl is the k-th pixel of the m/z-image corresponding to m/z-value
l and tp,sl is Li’s threshold calculated across all pixels of the m/z-image of m/z-
value l. Li’s method was chosen, because it does not need any parameter and
denoises the image while maintaining main structural features.

S9. Comparison community detection, k-means and hier-
archical clustering

A comparison of our community detection approach with k-means and hierarchi-
cal clustering is shown in Figure 16. Although all three methods are capable of
finding the correct groups, k–means and hierarchical clustering need the correct
number of groups as prior knowledge, while our community detection approach
does not. Knowledge about the number of groups is often unavailable, giving
our approach an advantage over methods that require it.

S10. Image scaling

As explained in the methods part, we decided to scale each image separately
based on their intensity wise weakest and strongest pixel, before using them in
Grine to improve the perception of detected pattern:

Ωmin = min
k

Φ(pk)

Ωmax = max
k

Φ(pk)

Φ(pk) = Ω(pk),

(1)

where Ω is a function that maps the intensity values to a new domain according
to the used continuous color scale.

There are two obvious alternatives to this scaling. Either to scale each
image based on the weakest and strongest pixel across all images or to scale
community wise and use the weakest and strongest pixel across all images in
the same community. The advantage of scaling over all images is that back-
ground signals are reduced. However, a strong disadvantage is that images with
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Figure 16: Comparison of three cluster methods: (A) Community detection with
Grine. (B) Hierarchical clustering, based on average linkage and correlation
distance. Numbers give the number of clusters if the hierarchy is split after
the joint indicated by the arrow. (C) k–means for k = 2, . . . , 6, based on the
full similarity matrix. Each node is a 2D - gaussian image and each edge is
the similarity between two connected nodes, assumed it is above tS = 0.6382.
Different colors of nodes indicate different community membership.

very intensive signals can dominate the community-maps, weaker signals can be
overshadowed and images with weak overall signal are hard to perceive or the
signals are not perceivable at all. The advantage of scaling each image indepen-
dently (Equation 1) is that all images contribute with the same strength to the
community-maps and their signal is always perceivable. The main disadvantage
is that background signals become stronger. Scaling per community behaves
somewhere in between. The concrete behavior differs for each community and
depends on their image composition.

In agreement with three of the authors (MG, HB, KN) we decided that
the equal contribution of weak signal distributions in the community-maps is
more important than reduced noise. Especially because, although the noise
is stronger, localized spatial distributions can still be distinguished from back-
ground. It is important to mention that in this work these scalings only influence
the visual perception and do not affect the similarity calculation. The reason is
that the Pearson correlation coefficient is invariant to scaling. However, while
using a similarity measure which is not invariant to scaling one have to scale the
data before calculation. Furthermore, the influence of this scaling must then be
kept in mind while analyzing the results. For such similarity measures, commu-
nity wise scaling is obviously disqualified, since the scaling happens before the
communities are detected.
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Figure 17: Line chart of the calculation of the final threshold tS . Each line rep-
resents the vector of a relevant measure for the threshold calculation procedure.
x-axis represents the candidate thresholds and y-axis the calculated value of
the respective measure at a specific candidate threshold. The measure vectors
are: Eigenvector projection (y), total number of edges (νNE ), average cluster-
ing coefficient(νζ), global efficiency (νξ), baselined average clustering coefficient
(ηζ), baselined global efficiency (ηξ). tS is chosen as the maximum of y

S11. Threshold selection

17, 18, 19 show the results of the threshold analysis of the data sets DG, DB ,
DT , respectively. The final threshold tS is selected at the maximum value of
the projection on the first eigenvector y.

S12. Mouse Urinary Bladder

Here we present the results of a mouse urinary bladder data set, to show that
our presented method is applicable to data sets that were not produced by us.
This data set was downloaded from the website: ms-imaging.org . It is a publicly
available and commonly known example data set.

The data was rebinned into 20000 bins by in house software. Based on the
average spectrum the software mMass (see Strohalm et al. (2008, 2010); Nie-
dermeyer and Strohalm (2012)) was used for peak picking with default options.
The resulting peak list was used to pick the 150 most intense peaks.

The community detection results in 23 communities, with 17 of them are (1)-
Communities (Figure 20). Most of these (1)-Communities are completely black.
This is due to the winsorizing preprocessing step. Originally those images had
irregularly distributed one pixel intensity spikes. Since those are assumed to be
artifacts they are removed, leaving a black image. In the following we consider
only (n)-Communities. Four main structures are revealed. Figure 21 (B) (C)
show the innermost structure. Figure 21 (F) has most of its intensity distributed
right around the innermost structure. Figure 21(G) has most of its intensity
within the tissue but outside of Figure 21 (F) and Figure 21 (D) has most
of its signal outside of the tissue, while Figure 21 (E) is complementary to
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Figure 18: Line chart of the calculation of the final threshold tS . Each line rep-
resents the vector of a relevant measure for the threshold calculation procedure.
x-axis represents the candidate thresholds and y-axis the calculated value of
the respective measure at a specific candidate threshold. The measure vectors
are: Eigenvector projection (y), total number of edges (νNE ), average cluster-
ing coefficient(νζ), global efficiency (νξ), baselined average clustering coefficient
(ηζ), baselined global efficiency (ηξ). tS is chosen as the maximum of y

Figure 19: Line chart of the calculation of the final threshold tS . Each line rep-
resents the vector of a relevant measure for the threshold calculation procedure.
x-axis represents the candidate thresholds and y-axis the calculated value of
the respective measure at a specific candidate threshold. The measure vectors
are: Eigenvector projection (y), total number of edges (νNE ), average cluster-
ing coefficient(νζ), global efficiency (νξ), baselined average clustering coefficient
(ηζ), baselined global efficiency (ηξ). tS is chosen as the maximum of y
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Figure 20: Community-graph of the mouse urinary bladder sample. Each
node symbolizes a community. Each community has a different color assigned.
Smaller vertices symbolize (1)–Communities.

Figure 21 (D). There is also a more specific distinction between Figure 21 (B)
and Figure 21 (C). While (B) shows a strong one sided intesity bias, this is not
the case for (C).

A detailed look at the subgraph of one of the communities (Figure 22) re-
veals that the whole community, except one m/z-node, is densely connected
(Figure 22 (E)). This node is the only one which shows a stronger association
with the patter of the orange community (Figure 21 (G)) instead of the ac-
tual assigned green community (Figure 21 (F)). Tracking the edges of this node
shows that it is connected to three other nodes (22 (C),(D),(F)) which on the
other hand can be associated with the pattern of the whole community. They
also show a strong intensity distribution at the border of the tissue. We can
suppose that similarity in this border is strong enough to associate the the node
in Figure 22 (E) with the green community instead of the orange one.

S13. Projection Maps for: Principal components Analy-
sis (PCA), Non-negative matrix factorization (NMF)
and Latent Dirichlet allocation (LDA)

Another common approach than the presented one to analyse the spatial distri-
bution of imaging data is to employ dimension reduction techniques. The data
set of dimension N is reduced to a dimension k << N , e.g. k = 3. Each of
those dimensions show a specific distribution. The characteristics of those dis-
tributions is strongly influenced by the optimization criterions of the dimension
reduction method. An overview of important properties for the applied context
of this work is given in Table 1.

Each channel can assigned to one color, e.g. in RGB. The pixels of the
resulting color image will be colored according to their intensity values in their
respective channel. In the following examples each color channel is normalized
on its own, meaning that the intensity value at the 99-percentile of each channel
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Figure 21: (A) community-graph as shown in 20, excluding all (1)–Communities.
Each community-node is associated with its respective average community-map
(B)-(G). For all maps viridis is used as color map.
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Figure 22: Questionable community assignment, revealed by network struc-
ture. (A) Community-subgraph. (B) Average community-map. (C),(D),(F)
Intensity-maps of single nodes (m/z-values). (E) Intensity-map of the outlier
revealed by the graph structure. It is obvious that the main intensity distribu-
tion in the middle of the tissue is missing.
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is used as maximal color strength.
Examples for three common dimension reduction techniques (PCA, NMF

and LDA) are shown in Figure 23 to 37.
Figure 23, 24, 25 show the first ten PCA components (four for DG) and the

projection of components one to three and two to four on the RGB color space,
for data set DG, DB and DT , respectively. The PCA compontents are ordered
by the amount of variance they explain, i.e. their importance. For a projection
into a three dimensional space it is always advisable to analyse the first four
components. The reason is that the first component is often susceptible for
showing either simple relations (e.g. background and foreground) or artifacts
(e.g. border and interior regions).

Figure 26 to 31 show the results of NMF. NMF does not have an implicit
ordering like PCA. Therefore we show both, a dimension reduction to three di-
mensions and the RGB projection (Figure 26, 27, 28) and a dimension reduction
to ten dimensions (four for DG) (Figure 29, 30, 31).

Figure 32 to 37 show the results of LDA. LDA is used because it is a gen-
eralization of pLSA (probabilistic latent semantic analysis), which was already
analysed before (Hanselmann et al. (2008)). Like NMF, LDA has no implicit
ordering, therefore the analysis is executed in the same way like we did for NMF.
The dimension reduction to three dimensions and the RGB projection can be
seen in Figure 32, 33, 34 for DG, DB and DT , respectively. The dimension
reduction to ten dimensions (four for DG) is shown in Figure 35, 36, 37 for DG,
DB and DT , respectively.

It can be seen that the RGB projections of all three methods do well in re-
vealing coarse distinct regions. In comparison, LDA projections provide regions
with the highest contrast for DB and DT , followed by NMF. For DG the highest
contrast result is generated by NMF, followed by LDA. PCA projections pro-
vide the lowest contrast results in all cases. A look towards the ten component
results shows that many NMF and LDA components show much more specific
pattern than most of the PCA components (DB , DT ). Comparing NMF and
LDA shows that some components are quite similar between both methods. In
DB it can also be seen that the regions of those components are intensity wise
more prominent for LDA. This is most likely due to the fact that DB is a well
structured sample, due to its physiology. We can conclude that for our three
tested data sets LDA and NMF are more effective than PCA and at least for
DB LDA is more effective than NMF. Compared to our method fine regions like
the scutellum in DB are not revealed.

Additionally, all three methods share two problems: 1. The number of di-
mensions have to be predefined. Finding the best number of dimensions is a non
trivial task and especially important for NMF and LDA. A comparison of figure
pairs: 26 – 29, 27 – 30, 28 – 31, 32 – 35, 33 – 36 and 34 – 37 shows that the
number of dimensions influences the lateral distribution of the resulting com-
ponents for NMF and LDA. 2. Compared to our clustering approach it is much
harder to analyse which molecules participate in which lateral distributions.
This is because the components of all three methods consist of combinations of
the original data samples.
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Table 1: Summary of properties of three dimension reduction methods. The
mentioned properties are important in the applied context.

Method
Independent of

number of components
Negative

values possible
High contrast

projections
Implicit
ordering

PCA 3 3 7 3
NMF 7 7 3 7
LDA 7 7 3 7

Figure 23: PCA components 1-4 of DG, projection of component one to three
into RGB space and projection of component two to four into RGB space (top-
left to bottom-right) after reduction to three dimensions. Components are or-
dered by their importance (variance explained).

12



Figure 24: PCA components 1-10 of DB , projection of component one to three
into RGB space and projection of component two to four into RGB space (top-
left to bottom-right) after reduction to three dimensions. Components are or-
dered by their importance (variance explained).
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Figure 25: PCA components 1-10 of DT , projection of component one to three
into RGB space and projection of component two to four into RGB space (top-
left to bottom-right) after reduction to three dimensions. Components are or-
dered by their importance (variance explained).
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Figure 26: NMF components 1-3 of DG and projection into RGB space (top-left
to bottom-right) after reduction to three dimensions.

Figure 27: NMF components 1-3 of DB and projection into RGB space (top-left
to bottom-right) after reduction to three dimensions.

Figure 28: NMF components 1-3 of DT and projection into RGB space (top-left
to bottom-right) after reduction to three dimensions.
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Figure 29: NMF components 1-4 ofDG (top-left to bottom-right) after reduction
to four dimensions.

Figure 30: NMF components 1-10 of DB (top-left to bottom-right) after reduc-
tion to ten dimensions.
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Figure 31: NMF components 1-10 of DT (top-left to bottom-right) after reduc-
tion to ten dimensions.
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Figure 32: LDA components 1-3 of DG and projection into RGB space (top-left
to bottom-right) after reduction to three dimensions.

Figure 33: LDA components 1-3 of DB and projection into RGB space (top-left
to bottom-right) after reduction to three dimensions.

Figure 34: LDA components 1-3 of DT and projection into RGB space (top-left
to bottom-right) after reduction to three dimensions.
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Figure 35: LDA components 1-4 of DG (top-left to bottom-right) after reduction
to four dimensions.

Figure 36: LDA components 1-10 of DB (top-left to bottom-right) after reduc-
tion to ten dimensions.
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Figure 37: LDA components 1-10 of DT (top-left to bottom-right) after reduc-
tion to ten dimensions.
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S14. Implementation Details

Step one to four of our analysis pipeline is implemented in python. This in-
cludes: preprocessing, similarity calculation, threshold calculation and commu-
nity detection. Currently, the source data needs to be in a special HDF5 format.
This format requires a multiindex, labeled grid x and grid y, which describes
the (x,y) pixel positions. Columns are labeled by m/z-value. This part of the
analysis pipeline needs to be executed locally by calling the respective python
script (main.py which can be found at https://github.com/Kawue/imaging_
communitydetection_demo). The result will be a JSON file, which can be used
in Grine.

Grine itself is implemented with plain Javascript, HTML and CSS. It can be
started locally in a localhost. As it is currently only used for research purposes,
the adaption to the own data requires code changes. One have to create an
index.html where the var dataPath needs to point to the local JSON file
and the var msiImagePath needs to point to a folder with all m/z-image png
files. This folder also needs to contain a three component PCA image named
as pca rgb.png.

Further development to polish Grine to a final user friendly state is part of
our future work.

S15. Computation Time Complexity

Regarding the computation time three main parts need to be considered: 1.
Calculation of the similarity matrix, 2. threshold selection to transform the
similarity matrix to an adjacency matrix and 3. community detection.

Pearsons correlation coefficient can be computed in linear time.
The transformation method is more complex as it needs to compute a PCA

and utilizes graph properties. The used SVD based implementation has a
complexity of O(n2maxnmin), where nmax = max(nsamples, nfeatures) and nmin =
min(nsamples, nfeatures). The average clustering coefficient on sparse graphs has
a complexity of O(v2), while the global efficiency has a complexity of O(p(e +
vlogv)), where p, e, v is the number of all possible vertex pairs, edges and ver-
tices, respectively. Considering the fact that we perform those calculations for
a series of candidate graphs, where the series is of length t, this leads to a total
complexity of O(t((p(e + vlogv)) + v2) + n2maxnmin). Since nmax equals t and
nmin equals two we can simplify to O(t(p(e+ vlogv)) + tv2 + 2t2). We can also
rewrite p as v!

2!(v−2)! leading to O(t( v!
2!(v−2)! (e+ vlogv)) + tv2 + 2t2). Since t is a

freely choosable parameter this expression is clearly dominated by v!
2!(v−2)! , i.e.

the number of nodes.
The computation time of the leading eigenvector community detection for a

sparse graph is O(v2 log v), where v is the number of vertices.
We would like to mention that some of these complexities rely on estimations

from either papers or workshops. Therefore, no proof may be available and we
cannot guarantee their correctness. However, this analysis should provide a
good impression for complexity and performance.
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Without going into more detail here it is obvious that both, the transforma-
tion and the community calculation complexity depends on the number of ver-
tices. Meaning, that the number of m/z-values, i.e. vertices, limits our method
with factorial complexity. Ignoring its mediocre results, we could use a linear
transformation method. This can be achieved by relying on simple statistics
like mean and standard deviation. However, the number of vertices would still
limit the method with a factor of v2 log v. Moreover, too many vertices can also
cause clutter problems in our visualization.

On the other hand the size of the m/z-images is only important for the
pearson correlation coefficient calculation. Due to the linear complexity the
image size does not limit our analysis significantly.

To make our method applicable to data sets with a high amount of peaks
the the transformation method could be changed to a less complex variant, e.g.
relying on statistics and the community algorithm could be changed to a greedy
one. Those changes would improve the performance a lot but also result in a
decreasing network and community quality.

S16. Workflow Dependencies for Parameters and Func-
tions

During this study we had to make three main methodological decisions, i.e.
1. which similarity measure, 2. which thresholding method and 3. which
community detection algorithm. In this part we explain how these three most
important steps influence each other and their impact on the downstream MSI
analysis. Considered alternatives will be discussed in section S17.

The explanation will be backwards to facilitate understanding.
The quality and characteristics of the detected communities depends on

the algorithms optimization criterion. Many community detection algorithms
try to optimize criteria like minimizing inner group distances and maximizing
inter group distances. The result quality of the community detection algorithm
depends strongly on the graph structure. A graph with strongly pronounced
group structures will provide better results than one with weakly pronounced
group structures. The graph structure itself strongly depends on the calculated
threshold value, as this determines presence and absence of edges. For this
reason, we use a computationally expensive method, which is based on criteria
that are closely connected to the optimization strategies of different community
detection algorithms. Lastly, the threshold detection works best if the computed
similarity values are not evenly distributed and cover a broad range. This allows
an easier distinction between similar and dissimilar.

In summary it can be said that the descriptive ability of the similarity mea-
sure and the threshold selection are the most critical points in our analysis
workflow. The selection of the community detection algorithm influences the
characteristics of communities, depending on the optimization criterion. Also,
different algorithms provide different features, like overlaps, hierarchies or mem-
bership strength.
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It is obvious that every step has a strong influence on the downstream analy-
sis. Choices for the similarity measure and the threshold selection can be made
independent of the research question. Choices for the community detection
algorithm may differ depending on provided features.

Small-worldness is often considered as a structure that is suitable to describe
relationships on biological graphs. Therefore we made most of our decisions with
this principle in mind. Out of all tested similarity measures the pearson cor-
relation had the broadest value range and was suited for the high variability
in MALDI-MSI data. The threshold selection method was developed to re-
ward dense groups and solid inter group connectivity, which is the quintessence
behind small-worldness. As the community detection algorithm, we chose the
leading eigenvector method for a couple of reasons. First, it has a well traceable
optimization criterion (modularity). Second, it has a automatic stop criterion,
i.e. it does not need an apriori number of communities. Third, in the method
section we explained that the community assignment is based on the sign of
the elements in the leading eigenvector. While the magnitude of the elements
is currently ignored there is still information in those values. In fact, the mag-
nitude describes how strongly a node belongs to a group (Newman (2006)).
This allows for two possible future enhancements. First, ambiguous community
assignments can be spotted and resolved. Second, this information could be in-
cluded in Grine to allow for a more in depth analysis regarding the community
structure.

S17. Alternatives

Similarity Measure:
During this study we computed communities with different measures. We chose
the pearson correlation as it produced consistently good results with a low com-
putation time. Cosine similarity and mutual information were considered as
alternatives. However, pearson correlation produced better results. We assume
it is slightly better suited than cosine similarity because our data is not mean
centered and has a non negligible amount of instrument induced variation. Mu-
tual information seems to have problems with the high pixel to pixel variation
inherent to MALDI-MSI and is therefore not suitable.

Threshold Calculation:
We began to calculate the threshold based on very basic statistics, i.e. mean(S)+
c ∗ std(S), where S is the set of all similarity values and c is a constant. The
results were very unstable. Next, we tried the approach from Zahoránszky-
Kőhalmi et al. (2016), which chooses the threshold based on the average cluster-
ing coefficient. While the results were more stable we found synthetic examples
that produced bad results. We concluded that the average clustering coeffi-
cient alone does not provide enough information about the network. With the
small-worldness criterion in mind our current implementation was developed.
This method produces the most stable results and also works on the synthetic
examples.
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Community Detection:
A few alternatives for the community detection algorithm were considered.

We tried an overlapping community detection approach called clique per-
colation method Palla et al. (2005). To explain our decision to work with
spatial distributions, we argued that the assumption of existing overlapping
information is a more realistic setting in biology. This also counts for over-
lapping community structures. However, their computation is harder and the
analysis is more complex. As our approach is novel for the MSI community we
decided to focus on non-overlapping community structures. Also, the current
implementation of Grine is not capable to handle overlapping communities.

We also considered two non-overlapping community methods. The first one
is called Louvain Method (Blondel et al. (2008)). While the exact complexity
of this method is not known it seems to run in O(v log v), where v is the number
of vertices. The method allows to create a hierarchical community structure.
However, at the current time Grine is not able to handle hierarchical community
structures. On the evaluated data sets, the Louvain Method and the leading
eigenvector method worked approximately equally well. As long as Grine is
not capable to deal with hierarchical communities, we value the possibility to
resolve ambiguities higher. The second method, called fluid communities
(Parés et al. (2017)), did not provide an appropriated quality.

There are a lot of different state-of-the-art community detection methods.
An extensive analysis on their differences and impact on MSI data would be a
study on its own and seems like an interesting topic for future work.

S18. Limitations and Considerations

The assumption of spatially bound metabolic activity is a limitation that targets
the definition of similarity. Extending our definition of similarity in a way that
makes it location independent would make this restrictive assumption obsolete.
One could consider to either change the m/z-images by extensive transforma-
tions like scaling, rotation and alignment or to change the definition of similarity
directly. However, both variants have their own complications. Extensive trans-
formations are likely to yield a not negligible number of false positive relation-
ships. Additionally, the inherent variability in distribution shapes and intensity
values makes this problem even harder. Changing the similarity measure itself
is an even more complex problem. It requires an initial comparative study of
existing methods, followed by introducing changes into existing measures or the
creation of new ones. Because of its vast scope this problem requires a study of
its own and is one of our future research interests.

In this work we were interested in similar and locally bounded distributions.
Two other interesting questions arise that are closely connected to this prob-
lem: 1. Inverse localization and 2. shared regions. Both questions cannot be
answered right now but are interesting topics for future research. While not
going into detail, we believe that the graph is an appropriate tool to investigate
both questions. If the similarity measure is suitable, inversely located regions
should be far away in the graph, i.e. many hops are needed to connect them. On
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the other hand, communities that share regions, like common borders, should
be very closely connected. If these assumptions hold, Grine could be extended
to automatically find sets of candidates for both cases.
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