
“output” — 2019/2/12 — 15:42 — page 1 — #1i
i

i
i

i
i

i
i

BMC Bioinformatics

Supplementary

TAR-VIR: a pipeline for TARgeted VIRal strain
reconstruction from metagenomic data
Jiao Chen 1, Jiating Huang 2, and Yanni Sun 3,∗

3Electronic Engineering, City University of Hong Kong, Hong Kong, China SAR.

1 Sizes of common regions between human
viruses and other microbial species

To evaluate the similarity between different microbes, we calculated the
sizes of LCSs between human viruses and other microbial genomes. As
bacteria infect humans as well as viruses, the sizes of LCSs between human
viruses, human vs. non-human viruses, and human viruses vs. bacteria
were calculated. The virus reference genomes were downloaded from
NCBI Viruses (https://www.ncbi.nlm.nih.gov/genome/viruses/). To date
(June 2018), there are in total 7,456 complete viral genomes, of which
481 have human as the natural host (denote as human viruses). The human
bacterial reference genomes were downloaded from Human Microbiome
Project (HMP) on NCBI. In total, 2,314 bacterial reference genomes were
downloaded.

As there is a large number of microbial species available, we conducted
LCS search for available microbial genomes by constructing generalized
suffix array and the corresponding longest common prefix (LCP)
array (Gusfield, 1997). First, we build a generalized SA (Rajasekaran
and Nicolae, 2014). Then, the LCP array, which contains LCPs between
each two adjacent suffixes, can be calculated in linear time (Kasai et al.,
2001; Kärkkäinen and Sanders, 2003). By definition, the LCS for each two
sequences is the maximum LCP between all pairs of suffixes from the two
sequences. The following lemma is employed in order to avoid checking
all the LCP values between two sequences. For the suffix starting atSA[i],
the LCP betweenSA[i] andSA[j] (j > i) is no less than the LCP between
SA[i] and SA[k] if k > j. With this property and a user-defined LCS
cutoff, the LCP calculation between SA[i] and all other suffixes after i
can be calculated in constant time. The overall time complexity is O(N).

The results of the LCS histograms are shown in Figure S1(A-C).
One may also examine whether the read recruitment process can incur
contamination by using simulated or real sequencing data. However, the
empirical studies using real data are limited to the viruses in the samples.
Meanwhile, producing simulated sequencing data for all microbes is not
practical. Using suffix-array based LCS computation allows us to obtain
a more comprehensive view of the common regions between different
microbes.

We also compared the sizes of the LCSs between different microbes
with the ones within a viral population. As the characterized haplotypes
for different RNA viruses are very limited, instead of computing the LCS
using available data, we estimated the LCSs within a quasispecies using a
probability model and dynamic programming (Chen et al., 2018). With the
mutation rate of 3e-5 at each base during virus replication, the probability

distribution of LCS length between two HIV strains that are n generations
apart were calculated and the distribution of LCS probabilities is shown in
Figure S1(D).

Human virusesA Human viruses and non-human virusesB

LCS length (log10(LCS))

pa
ir

of
 v

iru
se

s

LCS length (log10(LCS))

pa
ir

of
 v

iru
se

s

LCS length (log10(LCS))

Human viruses and bacteria

pa
ir

of
 v

iru
s a

nd
 b

ac
te

ria

C

LCS (bp)

Pr
ob

ab
ili

ty

D

Fig. S1. Histogram of the LCS sizes between human viruses (A), between human viruses
and non-human viruses (B), and between human viruses and bacteria (C). The x-axis is
the log10 of the LCS length. The y-axis is the number of pairs within the given range of
LCS size. Only LCSs that are longer than 10 bp are presented. (D) Probability distribution
for LCSs between two simulated HIV strains that are 50, 100, 200, and 500 generations
apart. The x-axis is the length of LCS, with a range from 0 to 10,000 bp. The y-axis is the
corresponding probabilities for those LCS sizes.

To gain guidance on appropriate overlap cutoffs for extension, the ROC
curve for LCS thresholds is plotted in Figure S2. As there are 142,021,586
pairs of virus-vs-other sequences, near zero FPR (false positive rate)
values are generated for many LCS cutoffs. Thus we also presented the
actual number of virus-vs-other sequence pairs with LCS above a given
cutoff in Figure S3. For each LCS cutoff, the corresponding TPR (true
positive rate) and the number of false positive pairs are illustrated using
two axes. To compute the TPR and FPR, we define a positive case as
two sequences from the same quasispecies. The negative case refers to a
pair of genomes from two different species. Thus, given an LCS cutoff,
the FPR can be computed as the percentage of negative cases with LCS
above the cutoff in all 142,021,586 examined pairs. The TRP measures

© The Author . Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

“output” — 2019/2/12 — 15:42 — page 2 — #2i
i

i
i

i
i

i
i

a pipeline for TARgeted VIRal strain reconstruction from metagenomic data 2

the percentage of positive cases with LCS above the cutoff, which can be
computed by sampling the distribution in Figure S1(D). In Figure S1(D),
we have several distributions with different number of generations of
replication. We generated 106 positive samples using the distribution with
100 generations. If one replication takes about 24 hours, this curve mimics
the infection of about 3 months.

The AUC for the ROC curve is 0.999, which means sequences from
different viral haplotypes in a quasispecies have different LCSs (larger)
from sequences of different species. From Figure S3, when the overlap
cutoff is between 100 bp to 500 bp, the FPR is close to 0 and TPR is
close to 1. Users can choose overlap cutoff within this range but less than
the read size. Taking into account the contamination from chimeric reads
and the read size, an overlap threshold between 130 to 249 is advised.
The actual cutoff still needs to be tested because different data sets have
different coverage. For our experiments, the default cutoff is 150 for all
MiSeq reads of 250 bp.

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
v
e
 r

a
te

ROC

Fig. S2. The ROC curve for LCS cutoff. The x-axis is the false positive rate (FPR). The
y-axis is the true positive rate (TPR).

101 102 103 104

LCS cutoff (bp)

0

100

200

300

400

500

Fa
ls

e
 p

o
si

ti
v
e
 n

u
m

b
e
r

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
v
e
 r

a
te

Fig. S3. False positive numbers and ture positive rates (TPR) for given LCS cutoffs. The
x-axis is the value of LCS cutoff. The double y axes represent the value of FP and TPR,
respectively.

2 Pseudocode for iterative search

Algorithm 1 Default mode: create BWT for all reads
Input: seed read set R0, the input text T, the overlap threshold τ
Output: Reads that are sequenced from the targeted viruses

1: output← R0

2: R← R0

3: Create BWT and RID for T : BWT (T), RID(T)

4: while R not empty do
5: Backward search on BWT (T) to find all reads that overlap with

reads in R
6: Save them to set R′

7: output← output ∪R′

8: R← R′

9: return output

3 Read recruitment and assembly results for
simulated SARS-Cov data

The assembly results on SARS-Cov aligned and recruited reads are shown
in Table S1.

4 Commands for running tools on SARS
simulated data set

Input data: sars_meta_1.fa, sars_meta_2.fa or sars_meta_1.fq, sars_meta_2.fq
or sars_meta_whole.fa
Reference: Bat_coronavirus.fasta

Overlap extension

1. Alignment
(1) Bowtie2

bowtie2-build -f Bat_coronavirus.fasta index/

Bat_coronavirus

bowtie2 -x Bat_coronavirus -f -a --score-min L,0,-0.6 -

t -p 16 -S bat_corona_align.sam" sars_meta_whole.

fa

These are our recommended parameters for read mapping

step.

(2) BWA

bwa mem -B 3 -A 1 -t 4 sars_meta_whole.fa >

bwa_bat_corona_align.sam

2. Recruite reads with TAR-VIR’s overlap extension component

build -f sars_meta_whole.fa -o sars_meta

overlap -S bat_corona_align.sam -x sars_meta -f

sars_meta_whole.fa -c 150 -o sars_recruited.fa

Assembly

1. TAR-VIR’s assembly compont

python pehaplo.py -f sars_meta_whole.fa -l 160 -l1 190

-r 250 -F 600 -std 150 -correct yes -n 2 -t 4

2. SGA

“output” — 2019/2/12 — 15:42 — page 3 — #3i
i

i
i

i
i

i
i

a pipeline for TARgeted VIRal strain reconstruction from metagenomic data 3

Table S1. Assembly results on SARS-CoV aligned and recruited metagenomic data. N50 is defined as the maximal length so that all contigs above this length
contain at least 50% of all the contig bases. Genome coverage is the percentage of the five haplotypes’ genomes being aligned by at least one contig. Mismatch rate
is the percentage of mismatches between the aligned contigs and the references.

Bowtie2
Aligned

Tool # Contigs N50
Genomes
covered (%)

Mismatch
rate (%)

Bowtie2
Recruited

Tool # Contigs N50
Genomes
Covered (%)

Mismatch
rate (%)

L,0,-0.3

PEHaplo - - - -

L,0,-0.3

PEHaplo 8 29,613 86.0 0.0
SGA - - - - SGA 14 26,301 86.0 0.0
SPAdes - - - - SPAdes 12 29,256 76.5 0.47
SAVAGE - - - - SAVAGE 19 21,389 85.9 0.0

L,0,-0.6

PEHaplo 12 374 2.96 0.0

L,0,-0.6

PEHaplo 9 29,643 89.6 0.0
SGA 11 374 2.7 0.0 SGA 13 26,301 89.6 0.0
SPAdes 5 384 1.3 0.10 SPAdes 17 16,445 80.3 0.29
SAVAGE 12 362 2.9 0.0 SAVAGE 29 22,920 86.8 0.0

L,0,-0.9

PEHaplo 58 505 19.7 0.02 PEHaplo 7 29,676 98.9 0.0
SGA 56 505 20.1 0.03 SGA 13 26,729 98.9 0.0
SPAdes 34 569 12.9 0.16 SPAdes 14 15,882 92.1 0.51
SAVAGE 54 455 17.5 0.0

L,0,-0.9

SAVAGE 22 12,445 97.0 0.0

L,0,-1.2

PEHaplo 91 568 32.8 0.0

L,0,-1.2

PEHaplo 7 29,698 99.5 0.0
SGA 80 700 32.6 0.0 SGA 12 27,540 99.5 0.0
SPAdes 52 695 23.5 0.13 SPAdes 17 12,822 92.6 0.4
SAVAGE 74 500 25.2 0.0 SAVAGE 22 12,182 96.7 0.0

BWA
Aligned

Tool # Contigs N50
Genomes
covered (%)

Mismatch
rate (%)

BWA
Recruited

Tool # Contigs N50
Genomes
Covered (%)

Mismatch
rate (%)

B:8

PEHaplo 32 3,123 54.3 0.0

B:8

PEHaplo 6 29,687 99.5 0.0
SGA 53 723 26.3 0.0 SGA 10 27,556 99.5 0.0
SPAdes 34 2675 45.7 0.0 SPAdes 16 12,838 92.6 0.45
SAVAGE 29 1709 23.4 0.0 SAVAGE 46 6,803 91.5 0.0

B:4

PEHaplo 38 5151 70.4 0.0

B:4

PEHaplo 7 29,680 99.8 0.0
SGA 64 1177 41.6 0.0 SGA 9 27,563 99.8 0.0
SPAdes 37 3170 64.4 0.12 SPAdes 15 13,494 94.6 0.49
SAVAGE 43 1416 31.3 0.0 SAVAGE 40 9,300 91.3 0.02

B:2

PEHaplo 83 1,192 54.3 0.0

B:2

PEHaplo 6 29,683 99.7 0.0
SGA 85 983 54.5 0.0 SGA 11 20,792 99.8 0.0
SPAdes 66 1,012 43.8 0.11 SPAdes 19 17,766 87.9 0.46
SAVAGE 53 763 28.1 0.0 SAVAGE 70 3,093 85.5 0.003

PEHaplo 84 1,192 55.1 0.0

B:1

PEHaplo 6 29,706 99.5 0.0
SGA 85 1,027 56.5 0.0 SGA 18 12,638 99.5 0.0
SPAdes 67 1,012 44.6 0.12 SPAdes 21 10,353 89.2 0.39

B:1

SAVAGE 68 669 32.3 0.0 SAVAGE 56 5,140 89.3 0.0

#! /bin/bash -x

IN=sars_recruited.fa

Parameters

SGA_BIN=sga

Overlap parameter used for the final assembly. This

is the only argument

to the script

OL=150

ER=0.02

The number of threads to use

CPU=8

Correction k-mer value

CK=51

The minimum k-mer coverage for the filter step. Each

27-mer in the reads must be seen at least this

many times

COV_FILTER=2

FK=51

Overlap parameter used for FM-merge. This value must

be no greater than the minimum

overlap value you wish to try for the assembly step.

MOL=55

Parameter for the small repeat resolution algorithm

R=10

The number of pairs required to link two contigs into

a scaffold

MIN_PAIRS=5

“output” — 2019/2/12 — 15:42 — page 4 — #4i
i

i
i

i
i

i
i

a pipeline for TARgeted VIRal strain reconstruction from metagenomic data 4

The minimum length of contigs to include in a

scaffold

MIN_LENGTH=350

Turn off collapsing bubbles around indels

MAX_GAP_DIFF=0

First, preprocess the data to remove ambiguous

basecalls

$SGA_BIN preprocess -o virus.fa $IN

#

Error correction

#

Build the index that will be used for error

correction

As the error corrector does not require the reverse

BWT, suppress

construction of the reversed index

$SGA_BIN index -a ropebwt -t $CPU --no-reverse virus.fa

Perform error correction with a 41-mer.

The k-mer cutoff parameter is learned automatically

$SGA_BIN correct -k $CK --discard --learn -t $CPU -o

reads.ec.k$CK.fa virus.fa

#

Contig assembly

#

Index the corrected data.

$SGA_BIN index -a ropebwt -t $CPU reads.ec.k$CK.fa

Remove exact-match duplicates and reads with low-

frequency k-mers

$SGA_BIN filter -x $COV_FILTER -k $FK -t $CPU --

homopolymer-check --low-complexity-check reads.ec.

k$CK.fa

Merge simple, unbranched chains of vertices

$SGA_BIN fm-merge -m $MOL -t $CPU -o merged.k$CK.fa

reads.ec.k$CK.filter.pass.fa

Build an index of the merged sequences

$SGA_BIN index -t $CPU merged.k$CK.fa

Remove any substrings that were generated from the

merge process

$SGA_BIN rmdup -t $CPU merged.k$CK.fa

Compute the structure of the string graph

$SGA_BIN overlap -m $OL -e $ER -t $CPU merged.k$CK.

rmdup.fa

Perform the contig assembly without bubble popping

$SGA_BIN assemble -m $OL -g $MAX_GAP_DIFF -r $R -o

assemble.m$OL merged.k$CK.rmdup.asqg.gz

3. SPAdes

metaspades.py --meta --only-assembler -k 105,115,125 -s

sars_recruited.fa -o sars_meta_output/

4. SAVAGE

pear -f sars_meta_1.fq -r sars_meta_2.fq -o

sars_meta_join

savage --split 1 --min_overlap_len 120 -s singles.fastq

-p1 paired1.fastq -p2 paired2.fastq -t 16

5. PRICE

init_contig.fa: sars_meta_whole.fa reads aligned on

Bat_coronavirus.fasta

PriceTI -nc 5 -a 8 -fp sars_meta_1.fa sars_meta_2.fa

600 -icf init_contig.fa 3 3 1 -o price_results.fa

References
Chen, J., Zhao, Y., and Sun, Y. (2018). De novo haplotype reconstruction in viral

quasispecies using paired-end read guided path finding. Bioinformatics.
Gusfield, D. (1997). Algorithms on strings, trees and sequences: computer science

and computational biology. Cambridge university press.
Kärkkäinen, J. and Sanders, P. (2003). Simple linear work suffix array construction.

In International Colloquium on Automata, Languages, and Programming, pages
943–955. Springer.

Kasai, T., Lee, G., Arimura, H., Arikawa, S., and Park, K. (2001). Linear-time
longest-common-prefix computation in suffix arrays and its applications. In Annual
Symposium on Combinatorial Pattern Matching, pages 181–192. Springer.

Rajasekaran, S. and Nicolae, M. (2014). An elegant algorithm for the construction
of suffix arrays. Journal of Discrete Algorithms, 27, 21–28.

