Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Tuning the π -Bridge of Quadrupolar Triarylborane Chromophores for One- and Two-Photon Excited Fluorescence Imaging of Lysosomes in Live Cells

Electronic Supporting Information

Stefanie Griesbeck, Evripidis Michail, Dr. Chenguang Wang, Hiroaki Ogasawara, Sabine Lorenzen, Lukas Gerstner, Theresa Zang, Dr. Jörn Nitsch, Dr. Yoshikatsu Sato, Dr. Rüdiger Bertermann, Dr. Masayasu Taki, Prof. Dr. Christoph Lambert*, Prof. Dr. Shigehiro Yamaguchi*, Prof Dr. Todd B. Marder*

Contents

Experimental Section	3
Linear Optical Properties	20
TD-DFT Calculations	23
Two-Photon Absorption	29
Imaging	30
Cell Viability	37
NMR Spectra	38
Cartesian Coordinates for all DFT-Optimized Structures	54
References	76

Experimental Section

General information. Unless otherwise noted, the following conditions apply. Reactions were performed using standard Schlenk or glovebox (Innovative Technology Inc.) techniques under an atmosphere of argon. Only oven-dried glassware was used. Solvents used for reactions were HPLC grade, dried using an Innovative Technology Inc. Solvent Purification System, and further deoxygenated. Tris(dibenzylideneacetone)-dipalladium(0),¹ bis[4-(*N*,*N*-dimethyl-amino)-2,6-xylyl]-2,6-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborlan-2-yl)-phenyl-borane,² 2,7-dibromopyrene,³ *N-tert*-butoxycarbonyl-3,6-dibromo-9*H*-carbazole,⁴ di-*tert*-butyl-3,6-bis-(5-bromothiophen-2-yl)-1,4-dioxopyrrolo[3,4-c]pyrrole-2,5-(1H,4H)-dicarboxylate⁵ and 2-(3,5-dimethylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane⁶ were synthesized according to literature procedures. All other starting materials were purchased from commercial sources and were used without further purification.

Reaction progress was monitored using thin layer chromatography (TLC) plates pre-coated with a layer of silica (Polygram® Sil G/UV254) with fluorescent indicator UV254 from Marchery-Nagel. Automated flash column chromatography was performed using a Biotage® Isolera Four system with silica gel (Biotage SNAP cartridge KP-Sil 50g or KP-Sil 100g obtained from Biotage) as the stationary phase and the solvent system indicated. Solvents were generally removed *in vacuo* using a rotary evaporator at a maximum temperature of 50 °C.

¹H, and ¹³C{¹H} solution NMR spectroscopic data were obtained at ambient temperature using a Bruker Avance 500 NMR spectrometer (operating at 500 MHz for ¹H and 125 MHz for ¹³C{¹H}). Chemical shifts (δ) were referenced to solvent peaks as follows: ¹H NMR spectra were referenced to residual protiated solvent in CD₂Cl₂ (5.32 ppm), CD₃OD (3.31 ppm) or DMSO (2.50 ppm); and ¹³C{¹H} spectra were referenced to CD₂Cl₂ (53.84 ppm), CD₃OD (49.00 ppm) or DMSO (39.52 ppm). The solid-state magic-angle spinning (MAS) NMR spectra were recorded using a Bruker DSX-400 or a Bruker Avance Neo 400 WB spectrometer operating at 128.38 MHz for ¹¹B and a 4 mm rotor. Spectra are referenced to external BF₃•Et₂O. Isotropic chemical shifts were estimated by simulating the observed spectrum using the Solid Line Shape Analysis 2.2.4 (SOLA) in Bruker TopSpin. Due to the very small amount of sample of **4M** and **5M**, a residual boron signal of the boron nitride stator is observable at -30 to 15 ppm.

Elemental analyses were performed on an Elementar vario MICRO cube elemental analyser. As is common for related organo-BMes₂ compounds, carbon analyses of **1M**, **2**, **2M**, **4M** and **5M** were up to 3.6% below the calculated value, while hydrogen, nitrogen and sulphur analyses were satisfactory. This has been ascribed previously to the formation of boron carbide.⁷ High resolution mass spectrometry (MS) was performed with a Thermo Fisher Scientific Exactive Plus Orbitrap MS System with either an atmospheric-pressure chemical ionization (APCI), liquid injection field desorption ionization (LIFDI) or a heated-electrospray ionization (HESI) probe.

General photophysical measurements. All measurements were performed in standard quartz cuvettes (1 cm x 1 cm cross-section), except for **5M** in DMSO (plastic or silylated cuvettes were used). UV-visible absorption spectra were recorded using an Agilent 8453 diode array UV-visible spectrophotometer. The molar extinction coefficients were calculated from three independently prepared samples in MeCN (**1M-5M**) and hexane (**1-5**) solution.

The emission spectra were recorded using an Edinburgh Instruments FLSP920 spectrometer equipped with a double monochromator for both excitation and emission, operating in right-angle geometry mode, and all spectra were fully corrected for the spectral response of the instrument. All solutions used in photophysical measurements had a concentration lower than 5×10^{-6} M to minimize inner filter effects during fluorescence measurements.

Fluorescence quantum yield measurements. The fluorescence quantum yields were measured using a calibrated integrating sphere (inner diameter: 150 mm) from Edinburgh Instruments combined with the FLSP920 spectrometer described above. For solution-state measurements, the longest-wavelength absorption maximum of the compound in the respective solvent was chosen as the excitation wavelength, unless stated otherwise.

Lifetime measurements. Fluorescence lifetimes were recorded using the time-correlated single-photon counting (TCSPC) method using an Edinburgh Instruments FLS980 spectrometer equipped with a high speed photomultiplier tube positioned after a single emission monochromator. Measurements were made in right-angle geometry mode, and the emission was collected through a polarizer set to the magic angle. Solutions were excited with a pulsed diode laser at a wavelength of 376 nm (1-4, 1M-4M) and 509 nm (5, 5M) at repetition rates of 10 or 20 MHz, as appropriate. The full-width-at-half-maximum (FWHM) of the pulse from the diode laser was ca. 80 ps with an instrument response function (IRF) of ca. 230 ps FWHM and ca. 200 ps with an instrument response function (IRF) of ca. 1120 ps FWHM, respectively. The IRFs were measured from the scatter of an aqueous suspension of Ludox at the excitation wavelength. Decays were recorded to 10 000 counts in the peak channel with a record length of 8 192 channels. The band pass of the emission monochromator and a variable neutral density filter on the excitation side were adjusted to give a signal count rate of <60 kHz. Iterative reconvolution of the IRF with one decay function and non-linear least-squares analysis were used to analyse the data. The quality of all decay fits was judged to be satisfactory, based on the calculated values of the reduced χ^2 and Durbin-Watson parameters and visual inspection of the weighted residuals.

Two-photon induced fluorescence spectroscopy. The two-photon absorption cross-section of the compounds was determined by the relative two-photon induced fluorescence technique.

S4

In detail, the fundamental laser source used is an amplified Ti: sapphire laser (Solstice, Spectra Physics) operating at 1 KHz repetition rate with 100 fs pulses at 800 nm. 70% of the available energy seeds a computer-controlled optical parametric amplifier (TOPAS-C, Light Conversion), which produces pulses in the range of 290 - 2600 nm. Excitation of the samples was achieved using a protected silver parabolic mirror, and vertically polarized light with the excitation energy varying in the $0.2 - 3 \mu$ J range. The latter conditions established by using a series of three thin broadband polarizers and a mechanical rotational mount. Maintenance of identical excitation conditions for both reference and samples was achieved using a high precision motorized rotational stage to ensure that the unknown compounds and the secondary reference standard are subjected to the same excitation conditions. Perylene in CH₂Cl₂, Coumarin 540A in CCl₄, Rhodamine 6G in CH₃OH and Styryl 9M in CHCl₃ were used as reference compounds.^{8, 9} The emitted fluorescence signal was detected at 90° with respect to the excitation beam, and recorded using a compact CCD spectrometer. Two-photon excitation was verified by log-log plots of fluorescence intensities *vs.* excitation power at various wavelengths, all giving slopes of 2 (see Figure S5).

Theoretical studies. All calculations (DFT and TD-DFT) were carried out with the Gaussian 09 (Rev. D.01) program package¹⁰ and were performed on a parallel cluster system. GaussView 5.0.9 was used to visualize the results, to measure calculated structural parameters, and to plot orbital surfaces (isovalue: ±0.03 [e a₀⁻³]^{1/2}). The ground-state geometries were optimized using the B3LYP functional¹¹⁻¹³ in combination with the 6-31G(d) basis set.^{14, 15} The optimized geometries were confirmed to be local minima by performing frequency calculations and obtaining only positive (real) frequencies. Stability analysis showed the wavefunction to be stable in each case. Based on these optimized structures, the lowest-energy gas-phase vertical transitions were calculated (singlets, 10 states) by TD-DFT, using the Coulomb-attenuated functional CAM-B3LYP¹⁶ in combination with the 6-31G(d) basis set.^{11, 12} The CAM-B3LYP functional has been shown to be effective for the ICT systems, hence its selection here.¹⁷⁻²¹ The optimizations were conducted with inclusion of hexane (**1-5**) or water (**1M-5M**) solvation through the polarizable continuum model (PCM). The ultrafine integration grid was used throughout.

Cell culture. HeLa and HepG2 cells (RIKEN Cell Bank, Japan) were cultured in Dulbecco's modified Eagle's medium (DMEM, Wako) containing 10% fetal bovine serum (FBS, Biosera) and 1% Antibiotic-Antimycotic (AA, Wako) at 37 °C in a 5% CO₂/95% air incubator. Cells (5 × 10^4) were seeded in poly-lysine coated glass-bottom dishes three days before imaging. In order to facilitate the generation of lipid droplets, the HepG2 cells were treated with fatty acids (oleic acid:palmitic acid = 2:1, 1 mM) in DMEM for 24 h before staining with dyes.

Staining Experiments. The incubation medium was removed from the HeLa cells, and the cells were further incubated with 5 μ M **1-3** in DMEM containing 0.5% DMSO for 1 h in a CO₂ incubator. Afterwards, the cells were rinsed with DMEM three times and the dish was filled with 1.5 mL of DMEM. Fluorescence images before and after washing were obtained with a FV10i-DOC confocal laser-scanning microscope (OLYMPUS), with a 405 nm LD laser for excitation. The fluorescence signals were collected between 570-670 nm.

The incubation medium was removed from the HepG2 cells and the cells were further incubated with 5 μ M of **1** or 5 μ M of **1** premixed with 0.04% Pluronic F-127 in DMEM containing 0.5% DMSO for 24 h in a CO₂ incubator. Fluorescence images before and after washing were obtained with a FV10i-DOC confocal laser-scanning microscope (OLYMPUS), with a 405 nm LD laser for excitation. The fluorescence signals were collected between 570-670 nm.

Co-staining experiments. The incubation medium was removed from the cells, and the cells were further incubated with 0.5 µM 1M-5M in DMEM containing 0.5% DMSO for 2 h in a CO₂ incubator. Then the cells were rinsed with DMEM three times and the dish was filled with 2.0 mL of DMEM containing 0.1 µM LysoTracker[™] Green or LysoTracker[™] Red (Invitrogen) and further incubated for 20 min in a CO₂ incubator. Fluorescence images were obtained with a confocal microscope (TCS SP8 STED 3X; Leica), including an inverted DMI6000 CS microscope equipped with a laser diode (405 nm), a tuneable (470 - 670 nm) pulsed white light laser (WLL; repetition rate of 78 MHz) for excitation. For confocal imaging, a HyD detector and 100 x oil-immersion objective (NA 1.4) were used. The dyes were excited with the 405 nm diode laser (1M, 2M, 3M, 4M), and the 561 nm wavelength of the WLL (LysoTracker[™] Red). The fluorescence signals were collected between 450 and 550 nm (1M, 2M, 3M), 500 and 605 nm (4M), 600 and 750 nm (LysoTracker™ Red in the co-staining experiment with 1M-3M) and 607 and 786 nm (LysoTracker[™] Red in the co-staining experiment with **4M**) with a time gating interval of 0.1 – 12 ns. Each image was recorded with a line average of 4. To avoid crosstalk among the channels, the emission signals were collected independently in the sequential scanning mode. Fluorescence images (5M) were obtained with an FV10i-DOC confocal laserscanning microscope (OLYMPUS), using LD lasers of 473 nm and 559 nm were used for the excitation of LysoTracker[™] Green and **5M**, respectively. The fluorescence signals were collected between 490 and 540 nm (LysoTracker[™] Green) and 570 and 670 nm (5M). Images were processed with Fiji software.

Cytotoxicity evaluation. HeLa cells were seeded into a flat-bottomed 96-well plate (1 × 10⁴ cells/well) and incubated in DMEM at 37 °C in a 5% CO₂/95% air incubator for 24 h. The medium was then replaced with culture medium (100 μ L/well) containing various concentrations of **1M-5M** (0, 0.5, 1, 5, and 10 μ M) in DMEM (0.5% DMSO). Then the cells were incubated for 24 h at 37 °C, MTT reagent (10 μ L/well, 0.5 mg/mL) in PBS was added to each

well, and the plates were incubated for another 4 h in a CO₂ incubator. The medium was then removed, the formazan crystals were solubilized in DMSO (100 μ L/well) for 10 min at room temperature, and the absorbance of each well was measured using a SpectraMax i3 (Molecular Devices) with an excitation at 535 nm.

Uptake pathway. The incubation medium was removed from the cells, and the cells were incubated with 0.5 μ M **5M** in 1.5 mL DMEM. Fluorescence images (**5M**) were obtained with a FV10i-DOC confocal laser-scanning microscope (OLYMPUS), and a 559 nm LD laser was used for the excitation of **5M**. The fluorescence signals were collected between 570 and 670 nm every 10 min over a period of 2 hours. Images were processed with Fiji software.

In the cellular uptake control experiment, cells were stained at 37 °C with 500 nM of **5M** in DMEM, washed with fresh DMEM and subsequent imaging. In the cellular uptake experiment at 4 °C experiment, cells were incubated at 4 °C for 30 min, then grown in DMEM containing **5M** (500 nM) for 2 h at 4 °C, washed with fresh DMEM and subsequent imaging. In the cellular uptake experiment in the presence of NaN₃ cells were first pretreated at 37 °C for 30 min with DMEM containing 0.1% NaN₃ and then incubated with DMEM containing **5M** (500 nM) and 0.1% NaN₃ for 2 h at 37 °C. Afterwards, the cells were washed with fresh DMEM followed by imaging. Fluorescence images were obtained with a FV10i-DOC confocal laser-scanning microscope (OLYMPUS), and a 559 nm LD laser was used for the excitation of **5M**. The fluorescence signals were collected between 570 and 670 nm.

Photostability. The incubation medium was removed from the cells, and the cells were further incubated with 0.5 μ M **5M** or 0.1 μ M LysoTrackerTM Red (Invitrogen) in DMEM in a CO₂ incubator for 2 h or 20 min, respectively. Then cells stained with **5M** were rinsed with DMEM three times and the dish was filled with 1.5 mL of DMEM. Imaging experiments were conducted using a Leica TCS SP8 STED 3X system (Leica Microsystems), including an inverted DMI6000 CS microscope equipped with a tuneable (470 – 670 nm) pulsed white light laser (WLL; repetition rate of 78 MHz) for excitation. For confocal imaging, a HyD detector and 100 × oil-immersion objective (NA 1.4) were used. For the evaluation of photostability under confocal conditions, dye-stained cells prepared above were irradiated with a WLL at 561 nm, the fluorescence signals were collected between 570 and 770 nm and images were acquired at the following setting: 1024 × 1024 pixels; scan speed of 100 Hz; bidirectional model; zoom factor of 5; line average of 4; frame average of 1. The total signal intensity of each image was normalized to the value of the first image and plotted as a function of the number of recorded confocal images.

TPA imaging. The incubation medium was removed from the cells, and the cells were further incubated with 0.5 μ M **5M** in DMEM in a CO₂ incubator for 2 h. Then the cells were rinsed with DMEM three times and the dish was filled with 15 mL of DMEM containing 20 mM HEPES (pH

= 7.4). Imaging experiments were conducted using a Leica SP8-MP system (Leica Microsystems), equipped with a tuneable (680 - 1300 nm) for laser two-photon excitation. For TPA imaging, a HyD detector with a 650/50 bandpass filter and a Lens HC Fluotar L 25 × 0.95 W VisIR objective were used. The dye was excited with the 720 nm wavelength of the laser and fluorescence signals were collected between 600 and 700 nm.

Synthesis

Compound **6** (500 mg, 0.93 mmol, 2.1 eq.), 4,4²-dibromobiphenyl (138 mg, 0.44 mmol, 1.0 eq.) and KOH (149 mg, 2.66 mmol, 6.0 eq.) were dissolved in a degassed mixture of H₂O (5 mL) and toluene (10 mL). The reaction mixture was degassed for 15 min and SPhos (36.4 mg, 88.7 μ mol, 20 mol%) and Pd₂(dba)₃ (24.3 mg, 23.5 μ mol, 5 mol%) were added. After heating to 85 °C for 3 d, the aqueous layer was extracted with hexane (3 x 30 mL). The solvent was evaporated and the crude product was purified by automated flash column chromatography (KP-Sil 50g, hexane:ethylacetate 5:1) to obtain compound **1** as a yellow solid (310 mg, 72%).

¹**H NMR** (500 MHz, CD_2Cl_2): $\delta = 7.77 - 7.73$ (m, 8H), 7.25 (s, 4H), 6.33 (s, 4H), 6.33 (s,4H), 2.96 (s, 24H), 2.12 (s, 12H), 2.03 (s, 12H), 1.99 (s, 12H) ppm.

¹³C{¹H} NMR (125 MHz, CD₂Cl₂): δ = 151.7, 149.0, 143.2, 142.9, 141.1, 140.4, 140.2, 139.6, 136.2, 127.5, 127.4, 126.0, 111.9, 111.8, 40.2, 24.0, 23.8, 23.1 ppm.

Solid-State ¹¹**B**{¹**H**} **NMR** (128 MHz): Isotropic chemical shift $\delta_{so} = 72.8$ ppm, quadrupole coupling constant C_Q = 4.49 MHz, quadrupolar asymmetry parameter $\eta_{Quad} = 0.0$.

HRMS (ESI⁺): m/z found: [M]⁺ 975.6637; calc. for [C₆₈H₈₀B₂N₄]⁺ 975.6642 (| Δ | = 0.51 ppm).

Elem. Anal. Calc. (%) for C₆₈H₈₀B₂N₄: C 83.77, H 8.27, N 5.75; found: C 83.83, H 8.28, N 5.49.

4,4´-Bis[4-[bis[4-(*N*,*N*,*N*-trimethylammonio)-2,6-xylyl]-boryl]-3,5-xylyl]-1,1´-biphenyl tetratriflate 1M

In a soda-lime glass vial, compound **1** (15.0 mg, 15.4 μ mol, 1.0 eq.) was dissolved in degassed DCM (2.0 mL). After the addition of MeOTf (7.74 μ L, 69.2 μ mol, 4.5 eq.), the reaction mixture was stirred at r.t. for 2 d. The white precipitate was collected by filtration and washed with Et₂O (6.0 mL) to obtain compound **1M** as a pale yellow solid (19.6 mg, 78%).

¹**H NMR** (500 MHz, CD₃OD): *δ* = 7.80 (s, 8H), 7.58 (s, 4H), 7.58 (s, 4H), 7.40 (s, 4H), 3.67 (s, 36H), 2.26 (s, 12H), 2.18 (s, 12H), 2.13 (s, 12H) ppm.

¹³C{¹H} NMR (125 MHz, CD₃OD): δ = 149.7, 149.5, 145.2, 145.0, 144.5, 144.4, 142.9, 141.2, 140.5, 128.4, 128.3, 127.8, 121.8 (q, *J* = 319 Hz), 120.1, 57.5, 23.6, 23.6, 23.4 ppm.

Solid-State ¹¹**B**{¹**H**} **NMR** (128 MHz): Isotropic chemical shift $\delta_{so} = 79.2$ ppm, quadrupole coupling constant C_Q = 4.86 MHz, quadrupolar asymmetry parameter $\eta_{Quad} = 0.0$.

HRMS (ESI⁺): m/z found: [M-2OTf]²⁺ 666.3266; calc. for $[C_{74}H_{92}B_2F_6N_4O_6S_2]^{2+}$ 666.3269 ($|\Delta| = 0.45$ ppm).

Elem. Anal. Calc. (%) for $C_{76}H_{92}B_2F_{12}N_4O_{12}S_4$: C 55.95, H 5.68, N 3.43, S 7.86; found: C 54.76, H 5.88, N 3.53, S 7.62.

2,7-Bis[4-[bis[4-(N,N-dimethylamino)-2,6-xylyl]boryl]-3,5-xylyl]-pyrene 2

Compound **6** (1.00 g, 1.86 mmol, 2.2 eq.), 2,7-dibromopyrene (304 mg, 0.85 mmol, 1.0 eq.) and KOH (285 mg, 5.07 mmol, 6.0 eq.) were dissolved in a degassed mixture of H₂O (5 mL) and toluene (10 mL). The reaction mixture was degassed for 15 min and SPhos (104 mg, 254 μ mol, 30 mol%) and Pd₂(dba)₃ (52.5 mg, 50.7 μ mol, 6 mol%) were added. After heating to 85 °C for 16 h, the aqueous layer was extracted with hexane (3 x 30 mL). The solvent was evaporated and the crude product was purified by automated flash column chromatography (KP-Sil 100g, hexane:ethylacetate 9:1). The yellow solid obtained was dissolved in DCM and crystallized by adding MeOH to afford **2** as a yellow solid (399 mg, 46%).

¹**H NMR** (500 MHz, CD₂Cl₂): *δ* = 8.49 (s, 4H), 8.15 (s, 4H), 7.51 (s, 4H), 6.36 (s, 8H), 2.97 (s, 24H), 2.21 (s, 12H), 2.07 (s, 12H), 2.05 (s, 12H) ppm.

¹³C{¹H} NMR (125 MHz, CD₂Cl₂): *δ* = 151.7, 149.1, 143.3, 143.0, 141.4, 141.0, 139.3, 136.2, 131.9, 128.2, 127.0, 124.1, 123.9, 111.9, 111.9, 40.2, 24.1, 23.9, 23.2 ppm.

Solid-State ¹¹**B**{¹**H**} **NMR** (128 MHz): Isotropic chemical shift $\delta_{so} = 71.9$ ppm, quadrupole coupling constant C_Q = 4.51 MHz, quadrupolar asymmetry parameter $\eta_{Quad} = 0.0$.

HRMS (ESI⁺): m/z found: [M]⁺ 987.6623; calc. for [C₆₉H₈₀B₂N₄]⁺ 987.6642 (| Δ | = 1.92 ppm).

Elem. Anal. Calc. (%) for C₇₂H₈₂B₂N₄: C 84.36, H 8.06, N 5.47; found: C 82.87, H 8.05, N 5.33.

2,7-Bis[4-[bis[4-(*N*,*N*,*N*-trimethylammonio)-2,6-xylyl]-boryl]-3,5-xylyl]-pyrene tetratriflate 2M

In a soda-lime glass vial, compound **2** (15.0 mg, 146 μ mol, 1.0 eq.) was dissolved in degassed DCM (3.0 mL). After the addition of MeOTf (7.47 μ L, 65.7 μ mol, 4.5 eq.), the reaction mixture was stirred at r.t. for 2 d. The precipitate was collected by filtration and washed with Et₂O (6.0 mL) to obtain compound **2M** as a brown solid (21.4 mg, 91%).

¹**H NMR** (500 MHz, CD₃OD): δ = 8.55 (s, 4H), 8.23 (s, 4H), 7.69 (s, 4H), 7.62 (br s, 4H), 7.62 (br s, 4H), 7.62 (br s, 4H), 2.33 (s, 12H), 2.23 (s, 12H), 2.22 (s, 12H) ppm.

¹³C{¹H} NMR (125 MHz, CD₃OD): δ = 149.7, 149.5, 145.3, 145.2, 145.0, 144.5, 143.0, 139.4, 133.1, 129.1, 128.8, 125.1, 124.7, 121.8 (q, *J* = 319 Hz), 120.1, 57.5, 23.6, 23.5 ppm.

Solid-State ¹¹B{¹H} **NMR** (128 MHz): Isotropic chemical shift $\delta_{so} = 77.2$ ppm, quadrupole coupling constant C_Q = 4.78 MHz, quadrupolar asymmetry parameter $\eta_{Quad} = 0.0$.

HRMS (ESI⁺): m/z found: [M-4OTf]⁴⁺ 270.6869; calc. for [C₇₆H₉₂B₂N₄]⁴⁺ 270.6872 (| Δ | = 1.11 ppm).

Elem. Anal. Calc. (%) for $C_{80}H_{92}B_2F_{12}N_4O_{12}S_4$: C 57.21, H 5.52, N 3.34 S 7.64; found: C 56.17, H 5.75, N 3.39, S 7.37.

2,7-Bis[4-[bis[4-(N,N-dimethylamino)-2,6-xylyl]-boryl]-3,5-xylyl]-fluorene 3

Compound **6** (1.00 g, 1.86 mmol, 2.2 eq.), 2,7-dibromofluorene (274 mg, 0.85 mmol, 1.0 eq.) and KOH (285 mg, 5.08 mmol, 6.0 eq.) were dissolved in a degassed mixture of H₂O (5 mL) and toluene (10 mL). The reaction mixture was degassed for 15 min and SPhos (104 mg, 253 μ mol, 30 mol%) and Pd₂(dba)₃ (52.5 mg, 50.7 μ mol, 6 mol%) were added. After heating to 85 °C for 16 h, the aqueous layer was extracted with hexane (3 x 30 mL). The solvent was evaporated and the crude product was purified by automated flash column chromatography (KP-Sil 100g, hexane:ethylacetate 98:2). The yellow solid obtained was dissolved in Et₂O and crystallized by adding MeOH to afford **3** as a yellow solid (511 mg, 61%).

¹**H NMR** (500 MHz, CD₂Cl₂): *δ* = 7.88 – 7.85 (m, 4H), 7.72 – 7.70 (m, 2H), 7.28 (s, 4H), 6.35 (s, 4H), 6.35 (s, 4H), 4.03 (s, 2H), 2.97 (s, 24H), 2.14 (s, 12H), 2.06 (s, 12H), 2.02 (s, 12H) ppm.

¹³C{¹H} NMR (125 MHz, CD₂Cl₂): δ = 151.7, 148.8, 144.7, 143.2, 142.9, 141.1, 141.1, 140.9, 140.1, 136.3, 126.2, 126.0, 123.8, 120.4, 111.9, 111.8, 40.2, 37.4, 24.0, 23.8, 23.2 ppm.

Solid-State ¹¹**B**{¹**H**} **NMR** (128 MHz): Isotropic chemical shift $\delta_{so} = 73.0$ ppm, quadrupole coupling constant C_Q = 4.53 MHz, quadrupolar asymmetry parameter $\eta_{Quad} = 0.0$.

HRMS (ESI⁺): m/z found: [M]⁺ 987.6623; calc. for $[C_{69}H_{80}B_2N_4]^+$ 987.6642 ($|\Delta|$ = 1.92 ppm).

Elem. Anal. Calc. (%) for C₆₉H₈₀B₂N₄: C 83.96, H 8.17, N 5.68; found: C 83.94, H 8.38, N 5.71.

2,7-Bis[4-[bis[4-(*N*,*N*,*N*-trimethylammonio)-2,6-xylyl]-boryl]-3,5-xylyl]-fluorene tetratriflate 3M

In a soda-lime glass vial, compound **3** (15.0 mg, 15.2 μ mol, 1.0 eq.) was dissolved in degassed DCM (2.0 mL). After the addition of MeOTf (7.74 μ L, 68.4 μ mol, 4.5 eq.), the reaction mixture was stirred at r.t. for 2 d. The yellow precipitate was collected by filtration and washed with Et₂O (6.0 mL) to obtain compound **3M** as a yellow solid (22.8 mg, 91%).

¹**H NMR** (500 MHz, CD₃OD): *δ* = 7.93 – 7.92 (m, 2H), 7.91 - 7.90 (m, 2H), 7.73 - 7.72 (m, 2H), 7.58 (s, 8H), 7.41 (s, 4H), 4.06 (s, 2H), 3.67 (s, 36H), 2.27 (s, 12H), 2.18 (s, 12H), 2.13 (s, 12H) ppm.

¹³C{¹H} NMR (125 MHz, CD₃OD): δ = 149.6, 149.5, 145.8, 145.3, 144.9, 144.5, 142.9, 142.4, 140.3, 127.9, 127.0, 124.6, 121.8 (q, *J* = 319 Hz), 121.4, 120.1, 57.5, 37.8, 23.6, 23.4 ppm.

Solid-State ¹¹**B**{¹**H**} **NMR** (128 MHz): Isotropic chemical shift $\delta_{so} = 77.1$ ppm, quadrupole coupling constant C_Q = 4.76 MHz, quadrupolar asymmetry parameter $\eta_{Quad} = 0.0$.

HRMS (ESI⁺): m/z found: [M-4OTf]⁴⁺ 261.6870; calc. for $[C_{73}H_{92}B_2N_4]^{4+}$ 261.6872 ($|\Delta| = 0.76$ ppm).

Elem. Anal. Calc. (%) for $C_{77}H_{92}B_2F_{12}N_4O_{12}S_4$: C 56.28, H 5.64, N 3.41 S 7.80; found: C 56.38, H 5.94, N 3.56 S 7.63.

3,6-Bis[4-[bis[4-(N,N-dimethylamino)-2,6-xylyl]boryl]-3,5-xylyl]-N-Boc-carbazole 4

Compound **6** (1.00 g, 1.86 mmol, 2.2 eq.), 3,6-dibromo-*N-Boc*-carbazole (359 mg, 0.84 mol, 1.0 eq.) and KOH (283 mg, 5.04 mmol, 6.0 eq.) were dissolved in a degassed mixture of H₂O (10 mL) and toluene (20 mL). The reaction mixture was degassed for 15 min and SPhos (103 mg, 252 μ mol, 30 mol%) and Pd₂(dba)₃ (52.2 mg, 50.4 μ mol, 6 mol%) were added. After heating to 85 °C for 3 d, the aqueous layer was extracted with hexane (3 x 30 mL). The solvent was evaporated and the crude product was purified by automated flash column chromatography (KP-Sil 100g, hexane:ethylacetate 97:3 \rightarrow 95:5 \rightarrow 90:10) to obtain compound **4** as a yellow solid (757 mg, 83%).

¹**H NMR** (500 MHz, CD₂Cl₂): *δ* = 8.42 - 8.41 (m, 2H), 8.40 - 8.39 (m, 2H), 7.87 - 7.85 (m, 2H), 7.40 (s, 4H), 6.39 - 6.38 (m, 8H), 3.00 (s, 24H), 2.21 (s, 12H), 2.10 (s, 12H), 2.08 (s, 12H), 1.84 (s, 9H) ppm.

¹³C{¹H} NMR (125 MHz, CD₂Cl₂): δ = 151.7, 151.4, 148.7, 143.2, 142.9, 141.2, 140.8, 138.7, 136.6, 136.3, 126.7, 126.4, 126.3, 118.0, 116.9, 112.0, 111.9, 84.4, 40.2, 28.6, 24.1, 23.9, 23.3 ppm.

¹¹**B**{¹**H**} **NMR** (160 MHz, CD₂Cl₂): δ = 73 ppm.

HRMS (ESI⁺): m/z found: [M+H]⁺ 1088.7112; calc. for [C₇₃H₈₈B₂N₅O₂]⁺ 1088.7119 (| Δ | = 0.64 ppm).

Elem. Anal. Calc. (%) for C₇₃H₈₇B₂N₅O₂: C 80.58, H 8.06, N 6.44; found: C 80.65, H 8.24, N 6.53.

3,6-Bis[4-[bis[4-(*N*,*N*,*N*-trimethylammonio)-2,6-xylyl]-boryl]-3,5-xylyl]-9*H*-carbazole tetratriflate 4M

In a soda-lime glass vial, compound **4** (44.0 mg, 40.1 μ mol, 1.0 eq.) was dissolved in degassed DCM (6.0 mL). After the addition of MeOTf (20.6 μ L, 183 μ mol, 4.5 eq.), the reaction mixture was stirred at r.t. for 18 h. The pale yellow precipitate was collected by filtration and washed with Et₂O (18 mL) to obtain the methylated compound as a pale yellow solid (50.0 mg, 71%). The crude product (50.0 mg, 28.7 μ mol, 1.0 eq.) was directly deprotected and therefore dissolved in MeOH (1.0 mL) in a soda-lime glass vial. After the addition of a solution of TfOH (3.0 mL) in MeOH (5.0 mL), the reaction mixture was stirred at r.t. for 1 h. The reaction mixture was quenched with water (8.0 mL) and the precipitate was collected by centrifugation and washed with water until the washing solution was pH neutral. The compound **4M** was isolated as a yellow solid (32.0 mg, 68%).

¹**H NMR** (500 MHz, CD_2Cl_2): δ = 8.49 (d, *J* = 1.3 Hz, 2H), 7.77 – 7.75 (m, 2H), 7.56 (s, 8H), 7.56 – 7.54 (m, 2H), 7.47 (s, 4H), 3.65 (s, 36H), 2.27 (s, 12H), 2.16 (s, 12H), 2.13 (s, 12H) ppm.

¹³C{¹H} NMR (125 MHz, CD₂Cl₂): δ = 149.7, 149.5, 146.2, 144.9, 144.4, 144.1, 142.9, 141.9, 132.5, 127.9, 126.1, 125.1, 121.8 (q, J = 319 Hz), 120.0, 120.0, 119.6, 112.3, 57.5, 23.7, 23.6, 23.4 ppm.

Solid-State ¹¹**B**{¹**H**} **NMR** (128 MHz): Isotropic chemical shift $\delta_{so} = 77.0$ ppm, quadrupole coupling constant C_Q = 4.77 MHz, quadrupolar asymmetry parameter $\eta_{Quad} = 0.1$.

HRMS (ESI⁺): m/z found: [M-2OTf]²⁺ 672.8241; calc. for $[C_{74}H_{91}B_2F_6N_5O_6S_2]^{2+}$ 672.8245 ($|\Delta| = 0.59$ ppm).

Elem. Anal. Calc. (%) for $C_{76}H_{91}B_2F_{12}N_5O_{12}S_4$: C 55.51, H 5.58, N 4.26, S 7.80; found: C 53.52, H 5.71, N 4.30, S 7.51.

2,5-Di-*N-Boc*-3,6-bis[5-[4-[bis[4-(*N*,*N*-dimethylamino)-2,6-xylyl]boryl]-3,5-xylyl]-2thienyl]-1,4-diketopyrrolo[3,4-c]pyrrole 5

Compound **6** (4.59 g, 8.83 mmol, 2.2 eq.), 2,5-di-*N*-*Boc*-3,6-di(5-bromo-thien-2-yl)-1,4diketopyrrolo[3,4-c]pyrrole (2.55 g, 3.87 mol, 1.0 eq.) and KOH (1.30 g, 23.2 mmol, 6.0 eq.) were dissolved in a degassed mixture of H₂O (46 mL) and toluene (93 mL). The reaction mixture was degassed for 15 min and SPhos (479 mg, 1.17 mmol, 30 mol%) and Pd₂(dba)₃ (277.0 mg, 0.27 mmol, 7 mol%) were added. After heating to 85 °C for 3 d, the aqueous layer was extracted with DCM (7 x 100 mL) and dried over Na₂SO₄. The solvent was evaporated and the crude product was purified by automated flash column chromatography (KP-Sil 100g, hexane:ethylacetate 9:1 \rightarrow 5:1) to obtain compound **5** as a violet solid (1.48 g, 29%).

¹**H NMR** (500 MHz, CD_2Cl_2): $\delta = 8.23$ (d, J = 4.2 Hz, 2H), 7.47 (d, J = 4.2 Hz, 2H), 7.26 (s, 4H), 6.33 (s, 4H), 6.32 (s, 4H), 2.96 (s, 24H), 2.09 (s, 12H), 2.03 (s, 12H), 1.97 (s, 12H), 1.63 (s, 18H) ppm.

¹³C{¹H} NMR (125 MHz, CD₂Cl₂): δ = 159.4, 152.2, 151.8, 151.6, 149.4, 143.4, 142.9, 141.5, 137.2, 135.8, 135.4, 132.8, 128.6, 125.2, 124.1, 111.9, 110.5, 86.1, 40.2, 27.9, 24.1, 23.9, 23.0 ppm.

Solid-State ¹¹B{¹H} **NMR** (128 MHz): Isotrope chemical shift $\delta_{so} = 72.5$ ppm, quadrupole coupling constant C_Q = 4.49 MHz, quadrupolar asymmetry parameter $\eta_{Quad} = 0.1$.

HRMS (LIFDI): m/z found: [M]⁺ 1320.6856; calc. for $[C_{80}H_{94}B_2N_6O_6S_2]^+$ 1320.6857 ($|\Delta| = 0.08$ ppm).

Elem. Anal. Calc. (%) for C₈₀H₉₄B₂N₆O₆S₂: C 72.72, H 7.17, N 6.36, S 4.85; found: C 72.97, H 7.40, N 6.49, S 4.52.

3,6-Bis[5-[4-[bis[4-(*N*,*N*,*N*-trimethylammonio)-2,6-xylyl]boryl]-3,5-xylyl]-2-thienyl]-1,4diketopyrrolo[3,4-c]pyrrole tetratriflate 5M

In a soda-lime glass vial, compound **5** (15.0 mg, 11.4 μ mol, 1.0 eq.) was dissolved in degassed DCM (2.0 mL). After the addition of MeOTf (5.78 μ L, 51.1 μ mol, 4.5 eq.), the reaction mixture was stirred at r.t. for 7 h. The violet precipitate was collected by filtration and washed with Et₂O (6 mL) to obtain the methylated compound as a violet solid (22.0 mg, 97%). The crude product (22.0 mg, 11.1 μ mol, 1.0 eq.) was directly deprotected and therefore dissolved in MeOH (0.2 mL) in a borosilicate glass vial. After the addition of a solution of TfOH (0.8 mL) in MeOH (2.0 mL), the reaction mixture was stirred at r.t. for 1.5 h. The reaction mixture was quenched with water (9.0 mL) and the precipitate was collected by centrifugation and washed with water until the washing solution was pH neutral. The compound **5M** was isolated as a violet solid (17.0 mg, 86%).

¹**H NMR** (500 MHz, CD₃OD): *δ* = 8.23 (d, *J* = 4.1 Hz, 2H), 7.69 (d, *J* = 4.1 Hz, 2H), 7.59 (s, 4H), 7.58 (s, 4H), 7.48 (s, 4H), 3.67 (s, 36H), 2.25 (s, 12H), 2.17 (s, 12H), 2.11 (s, 12H) ppm.

¹³C{¹H} NMR (125 MHz, CD₃OD): δ = 163.7, 150.8, 149.8, 149.2, 147.0, 144.9, 144.6, 143.3, 137.9, 137.0, 134.2, 131.7, 126.8, 126.7, 112.8 (q, *J* = 319 Hz), 120.2, 120.2, 111.0, 57.5, 23.6, 23.5, 23.4 ppm.

Solid-State ¹¹**B**{¹**H**} **NMR** (128 MHz): Isotropic chemical shift $\delta_{so} = 77.1$ ppm, quadrupole coupling constant C_Q = 4.79 MHz, quadrupolar asymmetry parameter $\eta_{Quad} = 0.0$.

HRMS (ESI⁺): m/z found: [M-4OTf]⁴⁺ 295.1685; calc. for $[C_{74}H_{90}B_2N_6O_2S_2]^{4+}$ 295.1683 ($|\Delta| = 0.68$ ppm).

Elem. Anal. Calc. (%) for C₇₈H₉₀B₂F₁₂N₆O₁₄S₆: C 52.70, H 5.10, N 4.73, S 10.82; found: C 51.49, H 5.40, N 4.48, S 10.14.

3,6-Bis[5-[4-[bis[3,5-xylyl]-2-thienyl]-1,4-diketopyrrolo[3,4-c]pyrrole 5A

2-(3,5-dimethylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (140 mg, 0.60 mmol, 2.2 eq.), 2,5-di-*N-Boc*-3,6-di(5-bromo-thien-2-yl)-1,4-diketopyrrolo[3,4-c]pyrrole (180 mg, 0.27 mol, 1.0 eq.) and KOH (92.0 mg, 1.64 mmol, 6.0 eq.) were dissolved in a degassed mixture of H₂O (1.5 mL) and toluene (3 mL). The reaction mixture was degassed for 5 min and SPhos (33 mg, 82.0 μ mol, 30 mol%) and Pd₂(dba)₃ (16.6 mg, 16.4 μ mol, 6 mol%) were added. After heating to 85 °C for 3 d, the aqueous layer was extracted with DCM (3 x 30 mL). The solvent was evaporated and the crude product was purified by automated flash column chromatography (KP-Sil 100g, hexane:ethylacetate 99:1 \rightarrow 97:3 \rightarrow 95:5 \rightarrow 90:10) to obtain the coupled compound as a violet solid (100 mg, 52%). The crude product (50.0 mg, 70.4 μ mol, 1.0 eq.) was directly deprotected and therefore dissolved in DCM (1.0 mL) in a borosilicate glass vial. After the addition of a solution of TfOH (0.2 mL) in DCM (1.0 mL), the reaction mixture was stirred at r.t. for 1 h. The precipitate was collected by centrifugation and washed with water until the washing solution was pH neutral. The compound **5A** was isolated as a violet solid (30.0 mg, 84%).

¹**H NMR** (500 MHz, d⁶-DMSO): *δ* = 11.23 (s, 2H), 8.17 (d, *J* = 4.0 Hz, 2H), 7.68 (d, *J* = 4.0 Hz, 2H), 7.36 (s, 4H), 7.05 (s, 2H), 2.34 (s, 12H) ppm.

¹³C{¹H} NMR (125 MHz, d⁶-DMSO): δ = 161.6, 149.4, 138.6, 135.5, 132.7, 132.5, 130.5, 129.5, 125.2, 123.6, 109.1, 20.9 ppm.

HRMS (ASAP⁻): m/z found: [M]⁻ 508.1281; calc. for $[C_{30}H_{24}N_2O_2S_2]^-$ 508.1285 ($|\Delta| = 0.79$ ppm).

Elem. Anal. Calc. (%) for C₃₀H₂₄N₂O₂S₂: C 70.84, H 4.76, N 5.51, S 12.61; found: C 66.23, H 4.95, N 5.37, S 11.73.

Linear Optical Properties

Figure S1. Absorption and emission spectra of **1** (first row, left), **2** (first row, right), **3** (second row, left), **4** (second row, right) and **5** (third row, left) in various solvents (hexane: black, toluene: blue, diethylether: red, dichloromethane: green, MeCN: orange).

	solvent	$\lambda_{ m abs}$ / nm	ε/M ⁻¹ cm ⁻¹	λ _{em} / nm	Stokes shift / cm ⁻¹	Ø	τ/ns	k _r / 10 ⁸ s ⁻¹	k _{nr} / 10 ⁸ s ⁻¹
	hexane	372	69 000	442	4 300	0.14	1.5	0.9	5.8
	toluene	376		493	6 300	0.20	3.4	0.6	2.3
1	Et ₂ O	369		511	7 500	0.24	5.9	0.4	1.3
	DCM	373		556	8 800	0.30	8.8	0.3	0.8
	MeCN	371		603	10 400	0.08	2.5	0.3	3.7
	hexane	366	70 000	445	4 900	0.14	1.5	0.9	5.8
	toluene	372		490	6 500	0.23	3.6	0.6	2.2
2	Et ₂ O	368		511	7 600	0.27	6.4	0.4	1.2
	DCM	371		545	8 600	0.34	9.6	0.4	0.6
	MeCN	370		603	10 400	0.08	2.9	0.3	3.1
	hexane	378	82 000	441	3 800	0.16	1.5	1.1	5.6
	toluene	383		491	5 700	0.21	3.3	0.6	2.4
3	Et ₂ O	375		509	7 000	0.23	6.5	0.4	1.1
	DCM	383		555	8 100	0.29	8.1	0.4	0.8
	MeCN	377		596	9 700	0.09	3.3	0.3	2.7
	hexane	393	56 000	436	2 500	0.12	1.4	0.9	6.2
	toluene	399		479	4 200	0.23	3.3	0.7	2.3
4	Et ₂ O	395		495	5 100	0.25	5.0	0.5	2.0
	DCM	399		530	6 200	0.41	10.3	0.4	0.6
	MeCN	398		581	7 900	0.15	6.3	0.2	1.4
	hexane	557	59 000	622	1 900	0.57	2.4	2.4	1.8
5	toluene	566		635	1 900	0.55	2.3	2.4	1.9
5	Et ₂ O	558		624	1 900	0.40	2.0	2.0	3.0
	DCM	568		635	1 900	0.004	2.3	0.02	4.3

Table S1. Photophysical data for compounds 1-5 in various solvents.

 $\tilde{\nu}$ / 10³ cm⁻¹ 15 25 20 EtOH MeCN H₂O + 10% MeCN 250 300 350 400 450 500 550 600 650 700 750 800 λ / nm $\widetilde{\nu}$ / $10^3~cm^{\text{-1}}$ 40 35 30 25 20 15 EtOH MeCN H₂O 250 300 350 400 450 500 550 600 650 700 750 800 λ / nm

Figure S2. Absorption and emission spectra of **1M** (first row, left), **2M** (first row, right), **3M** (second row, left), **4M** (second row, right) and **5M** (third row, left) in various solvents (ethanol: black, acetonitrile: blue, water: red).

TD-DFT Calculations

Table S2. Lowest energy singlet electronic transitions of **1** in hexane solution. H = HOMO; L = LUMO

State	Symmetry	<i>E</i> (eV)	λ (nm)	f	Major (> 10%) contributions
S ₁	В	3.50	354	0.054	H-1 → L+1 (44%), H → L (38%)
S ₂	А	3.50	354	0.736	H-1 \rightarrow L (38%), H \rightarrow L+1 (44%),
S₃	В	3.70	335	1.496	H-4 $ ightarrow$ L (11%), H-3 $ ightarrow$ L+1 (29%), H-2 $ ightarrow$ L (37%)
S ₄	А	3.77	329	0.000	H-3 → L (33%), H-2 → L+1 (42%)
S₅	В	4.19	296	0.778	H-4 → L (55%), H-3 → L+1 (15%)
S ₆	А	4.37	284	0.000	H-5 → L (31%), H-4 → L+1 (42%)
S ₇	А	4.59	270	0.001	H-7 → L+1 (29%), H-6 → L (25%)
S ₈	В	4.59	270	0.008	H-7 → L (25%), H-6 → L+1 (29%)
S ₉	В	4.62	269	0.381	H-9 → L+1 (12%), H-8 → L (14%), H-5 → L+1 (14%),
					H-4 → L+2 (22%)
S ₁₀	А	4.62	268	0.055	H-11 → L+1 (30%), H-10 → L (39%)

Table S3. Lowest energy singlet electronic transitions of **2** in hexane solution. H = HOMO; L = LUMO

State	Symmetry	<i>E</i> (eV)	λ (nm)	f	Major (> 10%) contributions
S ₁	А	3.50	355	0.352	H-1 → L+1 (11%), H → L+1 (29%), H → L+2 (41%)
S ₂	А	3.50	355	0.427	H-1 → L+1 (25%), H-1 → L+2 (46%), H → L+1 (11%)
S_3	А	3.71	334	0.000	H-5 → L (41%), H-4 → L+1 (25%), H-4 → L+3 (20%)
S_4	А	3.72	333	1.533	H-3 → L+2 (30%), H-2 → L+1 (36%)
S ₅	А	3.78	328	0.004	H-3 → L+1 (33%), H-2 → L+2 (39%)
S_6	А	3.92	317	0.345	H-4 → L (85%)
S ₇	А	4.27	290	1.072	H-6 → L+2 (16%), H-5 → L+1 (51%), H-3 → L+2 (12%)
S ₈	А	4.39	282	0.000	H-6 → L+1 (31%), H-5 → L+2 (41%)
S ₉	А	4.55	273	0.263	H-5 → L (41%), H-4 → L+1 (39%), H-4 → L+3 (12%)
S ₁₀	А	4.59	270	0.003	H-7 → L+1 (23%), H-7 → L+2 (32%)

State	Symmetry	<i>E</i> (eV)	λ (nm)	f	Major (> 10%) contributions
S ₁	А	3.49	354	0.384	H-1 → L (38%), H-1 → L+1 (43%), H-1 → L+2 (10%)
S ₂	А	3.50	354	0.410	H → L (36%), H → L+1 (44%), H → L+2 (11%)
S₃	А	3.67	338	1.788	H-3 → L+1 (23%), H-2 → L (46%)
S_4	А	3.77	329	0.025	H-3 → L (31%), H-2 → L+1 (43%)
S₅	А	4.09	303	0.590	H-4 → L (54%), H-3 → L+1 (19%), H-2 → L+2 (13%)
S_6	А	4.34	286	0.007	H-5 → L (28%), H-4 → L+1 (45%)
S ₇	А	4.54	273	0.268	H-13 → L (12%), H-5 → L+1 (26%), H-4 → L+2 (28%),
					H-2 → L+2 (10%)
S ₈	А	4.59	270	0.008	H-7 → L (23%), H-7 → L+1 (26%)
S ₉	А	4.59	270	0.004	H-6 → L (24%), H-6 → L+1 (29%)
S ₁₀	А	4.61	269	0.030	H-10 → L (14%), H-10 → L+1 (10%), H-9 → L (20%).
					H-9 → L+1 (15%)

Table S4. Lowest energy singlet electronic transitions of **3** in hexane solution. H = HOMO; L = LUMO

Table S5. Lowest energy singlet electronic transitions of **4** in hexane solution. H = HOMO; L = LUMO

State	Symmetry	<i>E</i> (eV)	λ (nm)	f	Major (> 10%) contributions
S ₁	А	3.51	353	0.207	H-1 → L (76%)
S ₂	А	3.52	352	0.581	$H \rightarrow L+1 (76\%)$
S₃	А	3.75	331	0.571	H-3 → L (34%), H-2 → L+1 (27%)
S ₄	А	3.78	328	0.438	H-3 → L (35%), H-2 → L+1 (42%)
S ₅	А	4.33	287	0.233	H-5 → L+1 (17%), H-4 → L (29%), H-4 →L+1 (11%)
S_6	А	4.36	284	0.157	H-5 → L (21%), H-4 →L (32%)
S ₇	А	4.45	279	0.061	H-4 → L+2 (63%)
S ₈	А	4.60	270	0.002	H-8 → L (55%)
S ₉	А	4.60	269	0.003	H-7 → L+1 (56%)
S ₁₀	А	4.64	267	0.022	H-9 → L+1 (58%)

Table S6. Lowest energy singlet electronic transitions of **5** in hexane solution. H = HOMO; L = LUMO

State	Symmetry	<i>E</i> (eV)	λ (nm)	f	Major (> 10%) contributions
S ₁	А	2.31	537	1.739	H → L (94%)
S ₂	А	3.35	370	0.294	H-2 $ ightarrow$ L (33%), H-2 $ ightarrow$ L+1 (20%), H-2 $ ightarrow$ L+2
					(27%), H-2 → L+3 (10%)
S₃	А	3.35	370	0.116	H-5 → L (34%), H → L+1 (33%)
S_4	А	3.38	367	0.260	H-1 → L (28%), H-2 → L+1 (24%), H-2 → L+2
					(26%), H-2 → L+3 (13%)
S₅	А	3.58	346	0.606	H-6 $ ightarrow$ L (12%), H-4 $ ightarrow$ L (28%), H-4 $ ightarrow$ L+2 (12%),
					H-3 → L+1 (12%)
S_6	А	3.68	337	0.012	H-3 → L (26%), H → L+1 (24%), H → L+3 (15%)
S ₇	А	3.75	331	0.015	H-5 → L (43%), H → L+1 (15%)
S ₈	А	3.80	326	0.122	H-1 → L (68%), H-1 → L+2 (12%), H-1→L+3 (10%)
S ₉	А	3.81	325	0.161	H-2 $ ightarrow$ L (62%), H-2 $ ightarrow$ L+2 (17%), H-2 $ ightarrow$ L+3
					(10%)
S ₁₀	А	3.90	318	0.451	H-6 →L (41%), H-4 → L (17%)

Figure S3. DFT (CAM-B3LYP/6-31 G(d))-calculated frontier orbitals for **2-4**. Hydrogen atoms are omitted for clarity. Surface isovalue: ± 0.03 [e a₀⁻³]^{1/2}.

State	Symmetry	<i>E</i> (eV)	λ (nm)	f	Major (> 10%) contributions
S ₁	А	3.66	338	1.709	H-1 → L+1 (28%), H → L (53%)
S 1	Au	3.63	341	1.857	H-1 → L+1 (26%), H → L (56%)
S ₂	А	3.80	326	0.000	H-1 → L (38%), H → L+1 (40%)
S ₂	A_g	3.80	326	0.000	H-1 → L (37%), H → L+1 (40%)
S₃	А	4.18	296	0.013	H-3 → L+1 (31%), H-2 → L (36%)
S₃	A_g	4.18	297	0.000	H-3 → L (36%), H-2 → L+1 (31%)
S_4	А	4.18	296	0.023	H-3 → L (36%), H-2 → L+1 (31%)
S 4	Au	4.18	297	0.036	H-3 → L+1 (31%), H-2 → L (36%)
S₅	А	4.30	288	0.001	H-6 → L (17%), H-5 → L+1 (26%), H-4 → L (13%),
					H-3 → L (10%), H-2 → L+1 (12%)
S 5	A_g	4.30	288	0.000	H-6 → L+1 (23%), H-5 → L (22%), H-3 → L (12%),
					H-2 → L+1 (10%)
S ₆	А	4.30	288	0.289	H-6 → L+1 (17%), H-5 → L (26%), H-4 → L+1 (13%),
					H-3 → L+1 (10%), H-2 → L (12%)
S 6	Au	4.30	288	0.292	H-6 → L (23%), H-5 → L+1 (23%), H-2 → L (12%)
S ₇	А	4.47	277	0.737	H-4 → L (10%), H → L+2 (34%)
S 7	Au	4.39	282	0.649	H-4 → L (12%), H-1 → L+1 (12%), H → L+2 (39%),
S ₈	А	4.64	267	0.000	H-7 → L (28%), H-6 → L+1 (11%), H-4 → L+1 (20%)
S 8	A_g	4.64	267	0.000	H-8 → L (24%), H-4 → L+1 (24%)

Table S7. Lowest energy singlet electronic transitions of **1M** in water. H = HOMO; L = LUMO^[a]

^[a] black: without symmetry constraints, red: in C_i symmetry

Table S8. Lowest energy singlet electronic transitions of **2M** in water. H = HOMO; L = LUMO^[a]

State	Symmetry	<i>E</i> (eV)	λ (nm)	f	Major (> 10%) contributions
S ₁	А	3.65	339	0.004	H-1 → L+2 (29%), H → L (33%), H → L+3 (28%)
S1	Au	3.51	354	0.005	H-1 → L+2 (27%), H → L (39%), H → L+3 (25%)
S ₂	А	3.69	335	1.733	H-2 → L+1 (30%), H-1 → L (52%)
S ₂	Au	3.58	347	1.801	H-2 → L+1 (24%), H-1 → L (61%)
S₃	А	3.81	325	0.012	H-2 → L (38%), H-1 → L+1 (39%)
S₃	A_g	3.75	330	0.000	H-2 → L (37%), H-1 → L+1 (43%)
S ₄	А	3.92	316	0.562	H → L+2 (87%)
S4	Au	3.86	321	0.753	H → L+2 (86%)
S ₅	А	4.16	298	0.021	H-3 → L (38%), H-3 → L+1 (27%)
S 5	A_g	4.13	300	0.000	H-4 → L+1 (30%), H-3 → L (38%)
S ₆	А	4.18	297	0.016	H-4 → L (32%), H-4 → L+1 (32%)
S 6	Au	4.15	299	0.034	H-4 → L (38%), H-3 → L+1 (31%)
S ₇	А	4.30	288	0.119	H-7 → L (12%), H-6 → L (14%), H-6 → L+1 (14%),
					H-3 → L (12%)
S ₇	A_g	4.28	290	0.000	H-7 → L+1 (12%), H-6 → L (25%), H-5 → L+1 (17%),
					H → L+1 (18%)
S ₈	А	4.31	288	0.136	H-7 → L+1 (11%), H-6 → L (11%), H-5 → L+1 (10%),
					H-4 $ ightarrow$ L (11%), H-4 $ ightarrow$ L+1 (10%)
S 8	Au	4.29	289	0.086	H-6 → L+1 (19%), H-5 → L (13%), H-1 → L+2 (21%),
					$H \rightarrow L$ (16%)

^[a] black: without symmetry constraints, red: in C_i symmetry

State	Symmetry	<i>E</i> (eV)	λ (nm)	f	Major (> 10%) contributions
S1	А	3.53	351	1.905	H-1 → L+1 (21%), H → L (60%)
S ₂	А	3.74	332	0.023	H-5 → L+1 (11%), H-1 → L (34%), H-1 → L+1 (44%)
S₃	А	4.16	298	0.018	H-2 → L (32%), H-2 → L+1 (24%)
S_4	А	4.17	297	0.017	H-3 → L (28%), H-3 → L+1 (24%)
S₅	А	4.30	289	0.459	H-5 $ ightarrow$ L (18%), H-1 $ ightarrow$ L+1 (16%), H $ ightarrow$ L+2 (40%)
S_6	А	4.30	288	0.124	H-7 → L (10%), H-6 → L (16%), H-6 → L+1 (27%)
S ₇	А	4.31	288	0.179	H-7 $ ightarrow$ L (18%), H-7 $ ightarrow$ L+1 (23%), H-6 $ ightarrow$ L (10%)
S ₈	А	4.62	269	0.005	H-8 → L (22%), H-5 → L+1 (22%), H → L+1 (15%)

Table S9. Lowest energy singlet electronic transitions of **3M** in water. H = HOMO; L = LUMO

Table S10. Lowest energy singlet electronic transitions of **4M** in water. H = HOMO; L = LUMO

State	Symmetry	<i>E</i> (eV)	λ (nm)	f	Major (> 10%) contributions
S ₁	А	3.58	346	1.113	H-5 → L (11%), H-2 → L+1 (12%), H-1 → L+1 (16%),
					H → L (48%)
S ₂	А	3.70	335	0.298	H-5 → L+1 (15%), H-2 → L (14%), H-1 → L (20%),
					H → L+1 (40%)
S₃	А	4.19	296	0.013	H-3 → L (41%), H-3 → L+1 (23%)
S_4	А	4.20	296	0.019	H-4 → L (27%), H-4 →L+1 (34%)
S ₅	А	4.23	293	0.021	H → L+2 (69%)
S ₆	А	4.32	287	0.109	H-6 → L (27%), H-6 → L+1 (21%)
S ₇	А	4.32	287	0.178	H-7 → L (17%), H-7 → L+1 (31%)
S ₈	А	4.40	282	0.030	H-5 → L (19%), H → L (21%), H → L+5 (10%)

Table S11. Lowest energy singlet electronic transitions of **5M** in water. H = HOMO; L = LUMO^[a]

State	Symmetry	<i>E</i> (eV)	λ (nm)	f	Major (> 10%) contributions
S ₁	А	2.28	544	1.802	H → L (93%)
S1	Au	2.33	<i>532</i>	1.596	H → L (94%)
S ₂	А	3.29	376	0.138	H-1 → L (22%), H → L+1 (53%), H → L+3 (10%)
S ₂	A_g	3.36	369	0.000	H-1 → L (25%), H → L+1 (45%), H → L+3 (11%)
S₃	А	3.57	347	0.777	H-2 $ ightarrow$ L (28%), H-1 $ ightarrow$ L+1 (23%), H $ ightarrow$ L+2 (34%)
S₃	Au	3.59	345	0.917	H-2 → L (26%), H-1 → L+1 (24%), H → L+2 (32%)
S_4	А	3.72	333	0.009	H-1 → L (54%), H →L+1 (19%)
S ₄	A_g	3.77	329	0.000	H-1 → L (51%), H →L+1 (20%)
S ₅	А	3.92	317	0.030	H-15 → L (23%), H-13 → L (28%)
S 5	A_g	3.90	318	0.000	H-16 → L (27%), H-13 → L (29%), H → L+3 (10%)
S_6	А	3.96	313	0.243	H-2 → L (43%), H → L+2 (25%)
S 6	Au	3.96	313	0.355	H-2 → L (53%), H → L+2 (24%)
S ₇	А	4.03	308	0.001	H-1 → L+2 (14%), H → L+3 (25%)
S 7	A_g	4.00	310	0.000	H-1 → L+2 (18%), H → L+3 (33%)
S ₈	А	4.05	306	0.011	H-3 → L (36%), H-3 → L+1 (35%), H-3 → L+2 (13%)
S 8	Au	4.04	307	0.007	H-15 → L (78%)

^[a] black: without symmetry constraints, red: in *C*_i symmetry

Table S12. Selected angles (°) for **1M-5M** in the S_0 states. Calculations were performed by using the B3LYP density functional and the 6-31G(d) basis set.

angles	1M	2M	3M	4M	5M
\angle B1C ₃ -xylyl (terminal)	54.005	53.653	53.693	54.050	53.626
	54.358	53.264	53.700	54.602	53.754
\angle B1C ₃ -xylyl (central)	44.328	44.441	44.399	43.330	44.023
∠ xylyl (central)-aryl1	36.558	36.084	35.580	38.267	14.634
$ m \angle$ aryl1-aryl2	37.464	0.286	0.863	2.240	3.545
∠ aryl2-aryl3					1.993
$ m \angle$ aryl2/3-xylyl (central)	36.557	37.100	33.891	40.320	16.020
$ ightarrow$ xylyl (central)-B2C $_3$	44.338	43.858	44.598	44.783	44.020
∠ xylyl (terminal)- B2C ₃ -	54.357	54.053	53.347	54.203	54.191
	53.993	54.054	53.822	54.159	53.139

Two-Photon Absorption

Figure S4. Two-photon absorption spectra of **5M** (red) and **5A** (orange) and one-photon absorption spectra of **5M** (blue) and **5A** (green) in DMSO.

Imaging

Figure S6. Confocal microscope image of HeLa cells after 1 h of incubation at 37 °C with a) **1** (5 μ M), b) **2** (5 μ M) and c) **3** (5 μ M). Merged bright field image with fluorescence image (λ_{ex} = 405 nm; λ_{em} = 570-670 nm) before washing (left) shows the formation of nanoparticles, while after washing (right) a nominal uptake of the dye by the cell can be observed. Scale bars: 20 μ m.

Figure S7. HepG2 cells challenged with fatty acids for 24 h and stained with **1** (5 μ M) 24 h at 37 °C. Merged bright field image with fluorescence image ($\lambda_{ex} = 405$ nm; $\lambda_{em} = 570-670$ nm) without Pluronic F-127 (left) shows the formation of nanoparticles, while with the addition of 0.04% Pluronic F-127 (right) it shows the solution of the dye, but also no cellular uptake. Scale bars: 20 μ m.

Table S13. Measured particle sizes of the neutral compounds in PBS containing 0.5% DMSOwith DLS.

compound	particle size [nm]	error [± nm]
1	413.6	50.79
2	441.0	54.45
3	425.1	54.09

Figure S8. Co-staining experiment of HeLa cells with **1M** and LysoTrackerTM Red. The cells were loaded with **1M** (0.5 μ M, 2 h) and LysoTrackerTM Red (0.1 μ M, 20 min) at 37 °C. Fluorescence images of **1M** (top, left, $\lambda_{ex} = 405$ nm; $\lambda_{em} = 450 - 550$ nm) and LysoTrackerTM Red (top, right, $\lambda_{ex} = 561$ nm; $\lambda_{em} = 600 - 750$ nm). The merged fluorescence images (bottom, left) and the correlation plot of the intensities (bottom, right, $R_r = 0.80$) show co-localization of the dye **1M** with lysosome. Scale bar: 20 µm.

Figure S9. Co-staining experiment of HeLa cells with **2M** and LysoTrackerTM Red. The cells were loaded with **2M** (0.5 μ M, 2 h) and LysoTrackerTM Red (0.1 μ M, 20 min) at 37 °C. Fluorescence images of **2M** (top, left, $\lambda_{ex} = 405$ nm; $\lambda_{em} = 450 - 550$ nm) and LysoTrackerTM Red (top, right, $\lambda_{ex} = 561$ nm; $\lambda_{em} = 600 - 750$ nm). The merged fluorescence images (bottom, left) and the correlation plot of the intensities (bottom, right, $R_r = 0.73$) show co-localization of the dye **2M** with lysosome. Scale bar: 20 µm.

Figure S10. Co-staining experiment of HeLa cells with **3M** and LysoTrackerTM Red. The cells were loaded with **3M** (0.5 μ M, 2 h) and LysoTrackerTM Red (0.1 μ M, 20 min) at 37 °C. Fluorescence images of **3M** (top, left, $\lambda_{ex} = 405$ nm; $\lambda_{em} = 450 - 550$ nm) and LysoTracker Red (top, right, $\lambda_{ex} = 561$ nm; $\lambda_{em} = 600 - 750$ nm). The merged fluorescence images (bottom, left) and the correlation plot of the intensities (bottom, right, $R_r = 0.75$) show co-localization of the dye **3M** with lysosome. Scale bar: 20 µm.

Figure S11. Co-staining experiment of HeLa cells with **4M** and LysoTrackerTM Red. The cells were loaded with **4M** (0.5 μ M, 2 h) and LysoTrackerTM Red (0.1 μ M, 20 min) at 37 °C. Fluorescence images of **4M** (top, left, $\lambda_{ex} = 405$ nm; $\lambda_{em} = 500 - 605$ nm) and LysoTrackerTM Red (top, right, $\lambda_{ex} = 561$ nm; $\lambda_{em} = 607 - 786$ nm). The merged fluorescence images (bottom, left) and the correlation plot of the intensities (bottom, right, $R_r = 0.83$) show co-localization of the dye **4M** with lysosome. Scale bar: 20 µm.

Figure S12. Cell staining with 500 nM of **5M** in DMEM for 2 h at 37 °C (left), for 2 h at 4°C (middle) and for 2 h at 37 °C with 0.1% NaN₃ (right). Fluorescence images of **5M** (top, $\lambda_{ex} = 559$ nm; $\lambda_{em} = 570 - 670$ nm) and bright field images (bottom) suggest an endocytosis pathway. Scale bars: 20 µm.

Figure S13. Cell viability of **1M-5M** loaded HeLa cells determined by MTT assay. The cells were incubated with **1M-5M** (0, 0.5, 1, 5, 10 μ M) in DMEM containing 0.5% DMSO in a CO₂ incubator for 24 h. The results are expressed as percentages of the dye-free controls. All data are presented as mean standard deviation (*n* = 10).

NMR Spectra

Figure S15. ¹³C{¹H} NMR spectrum of **1** in CD_2CI_2 at 125 MHz.

Figure S16. Solid-state ¹¹B{¹H} NMR spectrum of **1** at 128 MHz. (Top: Simulation) isotropic chemical shift δ_{so} = 72.8 ppm, quadrupolar coupling constant C_Q = 4.49 MHz, quadrupolar asymmetry parameter η_{Quad} = 0.0.

Figure S17. ¹H NMR spectrum of 1M in CD₃OD at 500 MHz.

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

Figure S18. ¹³C{¹H} NMR spectrum of 1M in CD₃OD at 125 MHz.

Figure S19. Solid-state ¹¹B{¹H} NMR spectrum of **1M** at 128 MHz. (Top: Simulation) isotropic chemical shift δ_{so} = 79.2 ppm, quadrupolar coupling constant C_Q = 4.86 MHz, quadrupolar asymmetry parameter η_{Quad} = 0.0.

Figure S21. ¹³C{¹H} NMR spectrum of 2 in CD_2CI_2 at 125 MHz.

Figure S22. Solid-state ¹¹B{¹H} NMR spectrum of **2** at 128 MHz. (Top: Simulation) isotropic chemical shift δ_{so} = 71.9 ppm, quadrupolar coupling constant C_Q = 4.51 MHz, quadrupolar asymmetry parameter η_{Quad} = 0.0.

Figure S23. ¹H NMR spectrum of 2M in CD₃OD at 500 MHz.

Figure S25. Solid-state ¹¹B{¹H} NMR spectrum of **2M** at 128 MHz. (Top: Simulation) isotropic chemical shift δ_{so} = 77.2 ppm, quadrupolar coupling constant C_Q = 4.78 MHz, quadrupolar asymmetry parameter η_{Quad} = 0.0.

Figure S27. ¹³C{¹H} NMR spectrum of 3 in CD₂Cl₂ at 125 MHz.

Figure S28. Solid-state ¹¹B{¹H} NMR spectrum of **3** at 128 MHz. (Top: Simulation) isotropic chemical shift δ_{so} = 73.0 ppm, quadrupolar coupling constant C_Q = 4.53 MHz, quadrupolar asymmetry parameter η_{Quad} = 0.0.

Figure S29. ¹H NMR spectrum of 3M in CD₃OD at 500 MHz.

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

Figure S30. ¹³C{¹H} NMR spectrum of 3M in CD₃OD at 125 MHz.

Figure S31. Solid-state ¹¹B{¹H} NMR spectrum of **3M** at 128 MHz. (Top: Simulation) isotropic chemical shift $\delta_{so} = 77.1$ ppm, quadrupolar coupling constant C_Q = 4.76 MHz, quadrupolar asymmetry parameter $\eta_{Quad} = 0.0$.

Figure S33. ¹³C{¹H} NMR spectrum of 4 in CD_2CI_2 at 125 MHz.

Figure S35. ¹H NMR spectrum of 4M in CD₃OD at 500 MHz.

Figure S36. ¹³C{¹H} NMR spectrum of 4M in CD₃OD at 125 MHz.

Figure S37. Solid-state ¹¹B{¹H} NMR spectrum of **4M** at 128 MHz. (Top: Simulation) isotropic chemical shift δ_{iso} = 77.0 ppm, quadrupolar coupling constant C_Q = 4.77 MHz, quadrupolar asymmetry parameter η_{Quad} = 0.1.

Figure S39. $^{13}C{^{1}H}$ NMR spectrum of 5 in CD₂Cl₂ at 125 MHz.

Figure S40. Solid-state ¹¹B{¹H} NMR spectrum of **5** at 128 MHz. (Top: Simulation) isotropic chemical shift δ_{so} = 72.5 ppm, quadrupolar coupling constant C_Q = 4.49 MHz, quadrupolar asymmetry parameter η_{Quad} = 0.1.

Figure S41. ¹H NMR spectrum of 5M in CD₃OD at 500 MHz.

Figure S42. ¹³C{¹H} NMR spectrum of **5M** in CD₃OD at 125 MHz.

Figure S43. Solid-state ¹¹B{¹H} NMR spectrum of **5M** at 128 MHz. (Top: Simulation) isotropic chemical shift $\delta_{iso} = 77.1$ ppm, quadrupolar coupling constant C_Q = 4.79 MHz, quadrupolar asymmetry parameter $\eta_{Quad} = 0.0$.

Cartesian Coordinates for all DFT-Optimized Structures

Н

Н

C H H H C H H H

C H

Н

H B

B C

Compound 1

DFT B3LYP/6-31G*, hexane, S₀

Point group: C₂ Total energy: -1823763.90 kcal mol⁻¹ Dipole moment: 0.57 D Imaginary frequencies: 0

Symbol	х	Y	z	С	-1.005761	-11.735162
c	0.000081	0.741285	-0.019291	С	0.427165	-11.402310
С	0.000076	3.594646	-0.017680	С	-1.495996	-9.968384
С	1.144918	1.472035	0.342532	С	-1.809030	-10.676420
С	-1.144652	1.472447	-0.380616	С	0.116846	-12.074114
С	-1.145104	2.863425	-0.377929	Н	-2.701998	-10.392100
С	1.145355	2.863005	0.341408	Н	0.771131	-12.879329
н	2.043537	0.942437	0.646596	С	0.370320	-10.312661
н	-2.043269	0.943193	-0.685282	С	1.018832	-11.743870
н	-2.055132	3.393611	-0.644168	С	-0.427166	-11.396981
н	2.055393	3.392897	0.608199	С	1.498199	-9.965546
С	-0.000081	-0.741285	-0.019291	С	1.811361	-10.673156
С	-0.000076	-3.594646	-0.017680	С	-0.116902	-12.068215
С	1.144652	-1.472447	-0.380616	Н	2.694944	-10.377390
С	-1.144918	-1.472035	0.342532	Н	-0.782298	-12.859844
С	-1.145355	-2.863005	0.341408	С	-0.370320	10.312661
С	1.145104	-2.863425	-0.377929	С	-1.018832	11.743870
Н	2.043269	-0.943193	-0.685282	С	0.427166	11.396981
Н	-2.043537	-0.942437	0.646596	С	-1.498199	9.965546
Н	-2.055393	-3.392897	0.608199	С	-1.811361	10.673156
Н	2.055132	-3.393611	-0.644168	С	0.116902	12.068215
С	0.000076	-5.077308	-0.016084	Н	-2.694944	10.377390
С	0.000577	-7.939962	-0.012238	Н	0.782298	12.859844
С	0.728849	-5.807097	-0.963839	С	0.367473	10.313887
С	-0.728317	-5.804834	0.933805	С	1.005761	11.735162
С	-0.728027	-7.201991	0.959712	С	-0.427165	11.402310
С	0.729159	-7.204399	-0.985947	С	1.495996	9.968384
Н	1.285757	-5.272458	-1.729524	С	1.809030	10.676420
Н	-1.285057	-5.268274	1.698263	С	-0.116846	12.074114
С	-0.000076	5.077308	-0.016084	Н	2.701998	10.392100
С	-0.000577	7.939962	-0.012238	Н	-0.771131	12.879329
С	0.728317	5.804834	0.933805	С	-1.675679	-11.865386
С	-0.728849	5.807097	-0.963839	Н	-1.430988	-12.405246
С	-0.729159	7.204399	-0.985947	Н	-2.328259	-11.035760
С	0.728027	7.201991	0.959712	Н	-2.260436	-12.537493
Н	1.285057	5.268274	1.698263	С	-2.447202	-8.848514
Н	-1.285757	5.272458	-1.729524	Н	-1.981898	-7.863958
С	-1.536761	-7.876059	2.052809	Н	-2.782386	-8.923999
Н	-0.892438	-8.339740	2.807011	Н	-3.340231	-8.868560

-2.183837	-8.669865	1.664326
-2.177935	-7.147361	2.560120
1.538974	-7.881023	-2.076696
2.179216	-8.679706	-1.687085
2.186810	-7.155085	-2.579479
0.895387	-8.338940	-2.835091
-1.538974	7.881023	-2.076696
-0.895387	8.338940	-2.835091
-2.179216	8.679706	-1.687085
-2.186810	7.155085	-2.579479
1.536761	7.876059	2.052809
2.183837	8.669865	1.664326
2.177935	7.147361	2.560120
0.892438	8.339740	2.807011
0.000894	-9.533158	-0.010505
-0.000894	9.533158	-0.010505
-0.367473	-10.313887	-1.331486
-1.005761	-11.735162	-3.757090
0.427165	-11.402310	-1.793693
-1 495996	-9 968384	-2 128585
-1.809030	-10.676420	-3.288639
0 116846	-12 074114	-2 975868
-2 701998	-10 392100	-3 833574
0 771131	-12 879329	-3 290167
0.370320	-10 312661	1 311011
1 018832	-11 743870	3 728105
-0.427166	-11 396981	1 777041
1 498199	-9 965546	2 108482
1 811361	-10 673156	3 268648
-0 116902	-12 068215	2 959726
2 694944	-10 377390	3 822763
-0 782298	-12 8598//	3 28/809
-0.782238	10 312661	1 311011
-1 018832	11 7/3870	3 728105
0.427166	11 206081	1 777041
-1 /108100	9 9655/6	2 108/82
-1.450155	10 673156	3 268648
0 116902	12 068215	2 959726
-2 60/0//	10 277200	2,933720
0 782298	12 859844	3 284809
0.762258	10 313887	-1 331/86
1 005761	11 735162	-3 757090
-0 /27165	11 /02310	-1 793693
1 /05006	9 96838/	-1.793093
1 800030	10 676420	-2.120505
1.809030	10.070420	-3.200033
-0.110840	10 202100	2.973000
2.701998	10.392100	-3.835374
-0.771131	12.0/3329 -11 865206	-2.29010/
1 120000	-11.000000	1.049130
-1.430988 2 220250	-12.405240	0.12001/
-2.528259	-11.055/0U	U./JO/00 1 606010
-2.200430	-12.33/493	1.000312
-2.44/202	-0.040514	-1./45024
-1.981898	-7.003758	
-2./82386	-8.923999	-0.705359

-2.379041

С	1.667846	-11.880091	-1.058417	Н
н	2.325676	-11.055059	-0.766830	Н
Н	2.250258	-12.557724	-1.691784	
Н	1.414941	-12.415963	-0.137876	
С	2.443208	-8.838554	1.730986	Compo
Н	3.334284	-8.854232	2.367230	
Н	1.971545	-7.856994	1.839984	DET B3L
н	2.782446	-8.910721	0.691823	
С	2.447202	8.848514	-1.745624	-
н	3.340231	8.868560	-2.379041	
н	1.981898	7.863958	-1.855251	
н	2.782386	8.923999	-0.705359	
С	-1.667846	11.880091	-1.058417	~
Н	-1.414941	12.415963	-0.137876	
Н	-2.325676	11.055059	-0.766830	
Н	-2.250258	12.557724	-1.691784	Tot
C	1 675679	11 865386	1 049136	100
н	2 328259	11 035760	0 758788	
н	2 260436	12 537493	1 686312	
н	1 430988	12.337433	0 128617	
Ċ	-2 4/3208	8 838551	1 730986	
н	-1 9715/15	7 856991	1 83998/	Symbol
ц	-2 782446	8 010721	0.601822	C
и Ц	2.782440	0 05/0721	0.091823	C
N	-3.334204	12 1/0256	2.307230	C
IN NI	1.545465	-12.449550	4.077600	C
IN NI	-1.299260	12.400425	-4.955051	C
IN NI	-1.343465	12.449550	4.077000	C
IN C	1.299260	12.400425		с Н
	0.365564	14.009569	-5.259559	н
н	0.940641	14.008568	-6.218606	C C
н	0.721497	14.41/322	-4.502709	C
H	-0.492724	13.441585	-5.358334	C
C	2.555655	12.144364	-5.616083	C
н	2.591345	12.729334	-6.537465	C
н	2.639030	11.086/12	-5.892402	C
Н	3.436217	12.405947	-5.00/191	с ц
C	2.384204	-11.942104	5.758122	н Ц
н	3.346204	-11.8/6353	5.235893	
н	2.510857	-12.631882	6.595066	C
Н	2.150757	-10.945098	6.164614	C
С	0.408455	-13.422970	5.410637	C
Н	0.194209	-14.205020	4.672807	C
н	-0.550376	-12.973655	5.716196	C
Н	0.852953	-13.906260	6.283145	C II
С	-0.408455	13.422970	5.410637	
Н	-0.194209	14.205020	4.672807	П
Н	0.550376	12.973655	5.716196	C
Н	-0.852953	13.906260	6.283145	C
С	-2.384204	11.942104	5.758122	C
Н	-3.346204	11.876353	5.235893	C
Н	-2.510857	12.631882	6.595066	L C
Н	-2.150757	10.945098	6.164614	C
С	-2.555655	-12.144364	-5.616083	н
Н	-2.591345	-12.729334	-6.537465	Н
Н	-2.639030	-11.086712	-5.892402	C
Н	-3.436217	-12.405947	-5.007191	Н
С	-0.583384	-13.628529	-5.259359	H
Н	-0.940641	-14.008568	-6.218606	Н

4	-0.721497	-14.417322	-4.502709
4	0.492724	-13.441585	-5.358334

ound 2

_YP/6-31G*, hexane, S₀

Point group: C₁ tal energy: -1919385.31 kcal mol⁻¹ Dipole moment: 0.82 D Imaginary frequencies: 0

Symb	ol X	Y	Z
С	-0.707661	0.018142	-0.029588
С	-3.546439	0.005920	-0.024199
С	-1.429136	0.911240	0.817689
С	-1.424647	-0.880777	-0.874514
С	-2.825665	-0.869664	-0.851681
С	-2.830089	0.888041	0.800191
Н	-3.363528	-1.579247	-1.474821
Н	-3.371698	1.592900	1.425449
С	0.715897	0.023479	-0.031466
С	3.552824	0.031500	-0.032530
С	1.432506	0.918448	0.818193
С	1.436896	-0.866644	-0.882496
С	2.837970	-0.841870	-0.866762
С	2.833705	0.901689	0.801340
Н	3.381850	-1.539171	-1.498778
Н	3.374101	1.601731	1.433336
С	5.037545	0.032622	-0.030714
С	7.898350	0.025093	-0.024817
С	5.766401	-0.135736	-1.214170
С	5.762432	0.200075	1.155295
С	7.159976	0.211729	1.175158
С	7.163951	-0.154347	-1.228288
Н	5.230223	-0.232711	-2.155204
Н	5.222959	0.299956	2.094123
С	-5.031100	-0.001043	-0.020753
С	-7.893594	-0.013993	-0.013807
С	-5.757672	0.239914	1.151885
С	-5.761126	-0.249213	-1.189671
С	-7.158583	-0.247953	-1.207431
С	-7.154898	0.225871	1.176440
Н	-5.220374	0.412146	2.081302
Н	-5.226884	-0.416959	-2.121664
С	7.832874	0.400429	2.522555
Н	8.316213	1.379825	2.600906
Н	8.610707	-0.347681	2.711233
Н	7.098829	0.321719	3.331516

С	7.841646	-0.344787	-2.573054	C	8.825743	2.972958	-0.537145
Н	8.632743	0.391620	-2.751986	Н	8.862221	4.049181	-0.735869
Н	7.113775	-0.248574	-3.385689	н	7.839809	2.742795	-0.121101
Н	8.309099	-1.331567	-2.655472	Н	8.887032	2.459716	-1.502762
С	-7.835671	-0.517143	-2.538950	C	-8.811839	2.941505	-0.520114
Н	-8.324234	0.378526	-2.935854	н	-8.851692	4.023123	-0.686514
н	-8.609980	-1.289053	-2.464791	н	-7.826286	2.590678	-0.842715
н	-7.103428	-0.857080	-3.278984	н	-8.867217	2.773920	0.560772
С	-7.827937	0.487945	2.511421	С	-11.823013	-1.081168	-1.682075
н	-8.603868	1.258841	2.443196	н	-12.353703	-1.260900	-0.741575
н	-7.093825	0.826160	3.250399	н	-10.991488	-1.792807	-1.711353
н	-8.313643	-0.410288	2.905969	н	-12.501907	-1.333736	-2.503587
В	9.491958	0.011878	-0.020086	С	-11.812952	1.037135	1.675413
В	-9.486818	-0.018928	-0.010678	н	-10.981253	1.748637	1.703542
С	10.260094	-1.195601	-0.684043	н	-12.488910	1.287226	2.500157
С	11.655941	-3.387323	-1.932352	н	-12.347278	1.219485	0.737471
С	11.353978	-0.979679	-1.571066	С	-8.786322	-2.972585	0.510798
C	9.895922	-2.551227	-0.443324	Н	-7.804828	-2.610364	0.833100
C	10.591992	-3.605081	-1.034526	н	-8.841630	-2.810902	-0.570968
Ċ	12.012921	-2.047098	-2.180756	н	-8.816144	-4.053695	0.682318
н	10.294186	-4.616759	-0.783971	N	12.432130	4.408183	2.474164
н	12.823160	-1.822163	-2.864884	N	12.315106	-4.441210	-2.549058
C	10.279783	1.204023	0.648508	N	-12.393609	-3.340889	3.826129
c	11 721697	3 366873	1 894290	N	-12 380354	3 274351	-3 881649
c	11 356842	0 965721	1 549675	C C	-13 599395	2 762764	-4 484147
c	9 945253	2 566694	0 404904	н	-13 986446	3 501023	-5 189410
c	10 658427	3 606112	1 001161	н	-14 385179	2 549368	-3 742003
c	12 032914	2 019416	2 164624	н	-13 406027	1 840143	-5 044695
н	10 373472	4 623919	0 760459	C C	-12 126144	4 703041	-3 947866
н	12 818436	1 777822	2 871469	ч	-12 717205	5 133895	-4 758696
C	-10 264064	-0 92278/	1 023500	н	-11.070565	1 901033	-4.750050
c	-11 690770	-0.522784	2 927604	н	-12 386177	5 228386	-3.01/693
c	-11.000770	-0.404486	1 7800/0	n C	11 0/5850	5 770454	2 228520
c	-11.347031	-0.404480	1.789940	с ц	11 2000/5	6 060870	1 284/84
c	-10 621025	-2.205042	2 160600	н	12 627220	6 118353	2 8/2250
C C	-10.021033	1 104672	2.109090	п	10.04/120	0.440333	2.043230
с ц	-12.010577	-1.194075	2.724220	Г	10.944129	3.912510	2.774551
п	-10.524555	-4.102081	2.209020	L L	14 190410	4.121037	3.319220
п С	-12.00/10/	-0.755599	3.300344	п	14.100419	2.443347	3.133767
C C		0.001303	-1.042078	п	12.945072	5.005229	4.412393
C C	-11./02/20	2.301230	-2.949492	Г	12.00001/	3.031/3/	3.021337
C C	-11.550556	0.559770	-1.605725	C U	-13.307133	-2.725609	4.711009
C C	-9.932048	2.245130	-1.2/22/9	п	-14.152371	-2.218531	4.139040
C C		3.020807	-2.180000	п	-12.918320	-1.989388	5.397702
	-12.033554	1.148080	-2./333/4	п	-13.840337	-3.503010	5.310690
н	-10.300008	4.069072	-2.285702	C U	-11.885119	-4.65/50/	4.1/1380
п С	-12.830490	0.692100	-3.300734	п	-11.824071	-5.301554	3.285938
	11.810592	-0.433734	1.929518	н	-12.5/1331	-5.131/33	4.8/608/
п	12.35/851	-0.919783	1.114990	п	-10.885/9/	-4.621995	4.033747
н	10.972728	-1.092828	2.177900	C U	12.032537	-5.803899	-2.132576
н	12.4/222/	-0.397475	2.801654	н	12.614443	-6.493637	-2.747346
U U	8.767364	-2.935923	0.497091	н	10.972958	-0.040335	-2.2/009/
Н	/./86216	-2.700243	0.0/26/5	H	12.282358	-5.989078	-1.0/5423
H	8.82/959	-2.414051	1.45/961	С	13.540370	-4.185409	-3.286/13
H	8./91163	-4.010616	0.706043	H	13.910139	-5.125053	-3./02139
C	11.851876	0.409251	-1.933914	H	14.333746	-3./50013	-2.658456
H	11.036002	1.093735	-2.186507	H	13.361391	-3.501489	-4.125250
H	12.522145	0.360866	-2./98798	C	-0.672640	-1.//4396	-1./15269
Н	12.403010	0.873531	-1.109373	Н	-1.219882	-2.462155	-2.355745

С	0.689062	-1.766583	-1.720172
Н	1.239554	-2.447960	-2.364660
С	-0.681603	1.811072	1.655800
Н	-1.232289	2.494902	2.297537
С	0.680138	1.813473	1.657082
Н	1.227187	2.499120	2.299982

H H H H H H C H

H H

C H H H C H H H

В

B C

С

С С С С Н Н С С С С С С Н Н С С С С С С Н Н С С С С С С Н Н С Н Н Н С Н

Compound 3

DFT B3LYP/6-31G*, hexane, S₀

Point group: C₁ Total energy: -1847671.10 kcal mol⁻¹ Dipole moment: 1.17 D

Imaginary frequencies: 0

Symbol	х	Y	Z
С	-0.719240	-1.168415	-1.182356
С	-3.477898	-0.779274	-0.777740
С	-1.637391	-1.892335	-1.946529
С	-1.180958	-0.249979	-0.216030
С	-2.539336	-0.055864	-0.014566
С	-3.000656	-1.693010	-1.738561
Н	-1.301010	-2.611050	-2.689706
Н	-2.888935	0.672824	0.712407
Н	-3.716295	-2.275058	-2.311981
С	0.746649	-1.159959	-1.175763
С	3.496854	-0.738821	-0.746521
С	1.679961	-1.873313	-1.931475
С	1.189003	-0.236171	-0.205499
С	2.543176	-0.026274	0.008017
С	3.038908	-1.658173	-1.711275
Н	1.358613	-2.595883	-2.677562
Н	2.877777	0.706174	0.738277
Н	3.766378	-2.231567	-2.278521
С	4.948673	-0.525587	-0.529455
С	7.750290	-0.108426	-0.108897
С	5.465792	-0.281972	0.749474
С	5.858512	-0.557924	-1.594199
С	7.230605	-0.371142	-1.405491
С	6.827897	-0.061872	0.971466
Н	4.790991	-0.287513	1.602016
Н	5.484837	-0.708709	-2.604035
С	-4.933867	-0.583453	-0.573745
С	-7.744244	-0.203070	-0.178484
С	-5.832636	-0.620864	-1.647581
С	-5.466082	-0.352088	0.701149
С	-6.836310	-0.179382	0.914830
С	-7.205142	-0.422245	-1.475301

-5.448551	-0.775416	-2.653043
-4.797507	-0.339663	1.558642
8.114670	-0.431938	-2.637847
8.741495	-1.329706	-2.643288
8.794582	0.424269	-2.708595
7.504162	-0.442146	-3.547023
7.264845	0.193953	2.402407
8.114255	-0.431025	2.699378
6.444320	-0.016094	3.096726
7.574588	1.233440	2.552120
-7.292383	0.041794	2.345603
-7.839895	-0.822160	2.736125
-7.960247	0.904941	2,442749
-6.431283	0.217708	2.999071
-8.073125	-0.463135	-2.719852
-8.941639	-1.120645	-2.602120
-7 497424	-0.829845	-3 576309
-8 463625	0 527120	-2 976108
9 308397	0 1 2 7 2 0 4	0 125114
-9 307519	0.008563	0.123114
9.307313	1 /1/616	0.89970/
10 651786	3 7/8672	2 356625
10.051780	1 222550	1 044012
10.737000	1.332335	1.944013
9.270075	2.711220	1 204772
9.710000	3.657420	1.504775
11.10000	2.400309	2.051053
9.321324	4.803214	1.014066
11.8/0/55	2.340479	3.451352
10.34/338	-0.928723	-0.418903
12.243637	-2.842847	-1.4438/3
11.502523	-0.523302	-1.14/243
10.1/36/9	-2.329878	-0.232/9/
11.104406	-3.246967	-0./19992
12.401941	-1.459176	-1.65/961
10.931335	-4.299709	-0.528152
13.242474	-1.094698	-2.237291
-10.072022	1.103847	-0.798891
-11.473823	3.083576	-2.356734
-11.307401	0.812082	-1.445550
-9.561045	2.421796	-0.971786
-10.254114	3.376614	-1.715210
-11.966081	1.770910	-2.215216
-9.827484	4.370067	-1.793046
-12.882821	1.480666	-2.715503
-10.071322	-0.879452	1.099325
-11.441541	-2.479708	3.067128
-10.966108	-0.300684	2.045033
-9.894693	-2.290492	1.173840
-10.579769	-3.058825	2.114669
-11.613155	-1.082680	3.001653
-10.434559	-4.132877	2.099084
-12.264750	-0.584924	3.710702
11.808883	0.934027	-1.448247
12.143601	1.472251	-0.555518
10.937023	1.475489	-1.829244
12.600164	1.010725	-2.201645
8.263232	2.956141	-0.492382
7.271881	2.578288	-0.222507

Н	8.540694	2.467397	-1.432192
Н	8.167941	4.027936	-0.695988
С	11.386916	0.018683	2.374488
Н	10.645563	-0.774508	2.514933
н	11.920310	0.143198	3.322905
н	12.102602	-0.352366	1.633818
C	8 994902	-2 908946	0 529486
н	9 155794	-3 972220	0 736216
ц	8 060540	-2 815424	-0.033065
	0,000,040	2.013424	1 400557
	0.054290	-2.409109	1.490557
	-8.991124	-3.048030	0.217042
н	-9.161342	-4.126619	0.300336
н	-7.932587	-2.860359	0.423636
Н	-9.161897	-2.768791	-0.827972
С	-11.248874	1.191207	2.097207
Н	-11.873774	1.517537	1.259566
Н	-10.334722	1.792001	2.055480
Н	-11.770991	1.448904	3.024861
С	-11.963148	-0.556552	-1.375270
Н	-11.256674	-1.370185	-1.568657
Н	-12.766581	-0.634105	-2.115618
н	-12.397239	-0.749342	-0.388854
С	-8.259286	2.879279	-0.337611
н	-7.388910	2.425577	-0.822346
н	-8.198910	2.618942	0.724346
Н	-8.155848	3.966733	-0.414802
N	13 168600	-3 763375	-1 916487
N	11 049251	4 868304	3 073853
N	-12 160308	4 044163	-3 086339
N	-12 083589	-3 246235	4 029367
C	-13 125357	-2 645929	4.023307
н	-13 504058	-3 391820	5 546601
н	-13 972698	-2 272169	1 248074
н	-12 732386	-1 202100	5/133396
C	-12.752500	-4 695280	2 052/20
с u	12.010490	-4.033280 E 133603	1 910426
	-12.541100	-5.122092	4.010420
	-10.977405	-5.042729	3.994905
H	-12.4/2050	-5.098147	3.034384
L 	12.854321	-5.181212	-1.870410
н	12.692343	-5.515904	-0.838/5/
н	13.697766	-5./4/21/	-2.2/1103
Н	11.956763	-5.439188	-2.454867
С	14.226924	-3.321866	-2.808119
Н	14.846785	-2.553604	-2.331082
Н	13.845197	-2.908920	-3.755905
Н	14.874615	-4.169593	-3.041158
С	-13.315101	3.653692	-3.876248
Н	-14.089509	3.204697	-3.243268
Н	-13.067155	2.932250	-4.671625
Н	-13.745598	4.542114	-4.342991
С	-11.511722	5.307472	-3.393857
Н	-11.248479	5.848980	-2.477314
н	-12.202985	5.935421	-3.959676
Н	-10.593031	5.182462	-3.988917
С	10.641868	6.188413	2.625107
н	11.011380	6.935456	3.330671
н	9.549172	6.273048	2.596068
Н	11.027862	6.439261	1.623818

С	12.169519	4.768530	3.993515
Н	12.327432	5.737895	4.470681
Н	13.106408	4.472630	3.495036
Н	11.965181	4.039368	4.786782
С	-0.002838	0.415091	0.469858
Н	-0.006642	0.241916	1.555075
Н	-0.008587	1.505267	0.330964

Compound 4

DFT B3LYP/6-31G*, hexane, S0

Point group: C₁ Total energy: -2075924.33 kcal mol⁻¹ Dipole moment: 4.27 D Imaginary frequencies: 0

Symbol	х	Y	Z
С	-1.194946	5.048349	0.023218
С	-3.026125	2.908277	0.004686
С	-0.739984	3.710238	0.008320
С	-2.563475	5.325740	0.026829
С	-3.452573	4.253034	0.017367
С	-1.648711	2.652284	-0.000003
Н	-2.932976	6.339946	0.027430
Н	-4.517311	4.465537	-0.007134
Н	-1.287254	1.628197	0.016694
С	0.710865	3.739387	0.011259
С	1.106209	5.093136	0.028301
Ν	-0.059822	5.906618	0.034333
С	2.457785	5.442910	0.038460
Н	2.765537	6.478261	0.041821
С	3.395082	4.412081	0.032295
Н	4.449144	4.672758	0.013017
С	1.667970	2.724509	0.005982
Н	1.357155	1.683866	0.020336
С	3.031203	3.048097	0.016515
С	4.067302	1.985508	0.010299
С	6.062280	-0.067486	0.000946
С	3.894911	0.805781	-0.724195
С	5.255018	2.121118	0.739586
С	6.233123	1.122861	0.758705
С	4.864176	-0.200698	-0.752139
Н	2.993272	0.681011	-1.319270
Н	5.409135	3.016430	1.337181
С	-4.010270	1.797664	-0.003585

С	-5.903566	-0.349488	-0.014056	Н	8.170961	-4.248862	0.212471
С	-5.208837	1.880225	0.715853	Н	7.413549	-5.188518	-1.082080
С	-3.775803	0.623525	-0.729732	Н	6.475319	-4.005150	-0.165921
С	-4.694913	-0.428973	-0.757830	С	8.070089	0.636749	-2.297699
С	-6.137837	0.836118	0.734058	н	8.612077	1.114801	-3.120500
н	-5.410374	2.770161	1.307411	н	8.519636	0.985748	-1.362155
н	-2.864817	0.538740	-1.317499	н	7.042187	1.013111	-2.312100
В	7.172317	-1.209448	-0.004882	C	-5.070272	-2.287179	2.300602
B	-6 955068	-1 545987	-0.017430	с Н	-4 775386	-1 233014	2 318653
c	7 726390	-1 748379	-1 380990	н	-4 676690	-2 707925	1 369453
c	8 693863	-2 751520	-3 904421	н	-4 560639	-2 790214	3 129146
c	0 110201	0 974765	2.304421	n C	0.010561	2.750214	0 559610
C C	0.110291	2 144025	-2.434621	L L	-9.919301	-2.005327	1 015424
C C	7.843800	-3.144925	-1.03/033	п	-10.914405	-2.095823	1.015424
C	8.300289	-3.619498	-2.866565	н	-9.904330	-2.786964	-0.262946
C	8.606/18	-1.369/12	-3.643778	Н	-9./9/31/	-1.074919	0.104422
н	8.34/283	-4.692550	-3.013020	C	-7.085411	-4.551061	-0.601276
Н	8.925324	-0.656382	-4.395152	н	-7.802788	-4.627755	0.222102
С	7.702505	-1.785923	1.365369	Н	-6.118737	-4.305819	-0.149562
С	8.691395	-2.794981	3.878132	Н	-6.993316	-5.541606	-1.059378
С	9.096483	-1.945033	1.612771	C	-7.927285	0.233387	-2.332358
С	6.823845	-2.157631	2.422342	Н	-8.484937	0.677016	-3.163938
С	7.311247	-2.666412	3.625956	Н	-6.919066	0.659837	-2.341478
С	9.564545	-2.421401	2.837250	Н	-8.401808	0.567651	-1.403742
Н	6.593226	-2.967926	4.379917	C	-4.335217	-1.640532	-1.598542
Н	10.636599	-2.500057	2.977303	Н	-4.963620	-1.716911	-2.491864
С	-7.464118	-2.136173	1.354892	Н	-4.456412	-2.581067	-1.049790
С	-8.417752	-3.167822	3.872155	Н	-3.291561	-1.583394	-1.925478
С	-6.574827	-2.453330	2.420753	C	-7.389159	1.036501	1.569565
С	-8.850052	-2.362238	1.595592	н	-7.466063	2.077821	1.900078
С	-9.301695	-2.848773	2.822210	н	-7.389571	0.400147	2.460495
С	-7.044060	-2.973521	3.626672	н	-8.304192	0.799232	1.015611
н	-10.369381	-2.979354	2.956727	Ν	9.137385	-3.235307	-5.127377
н	-6.316761	-3.231939	4.387705	Ν	-8.782614	-3.711360	-5.133280
С	-7.472299	-2.123573	-1.391948	Ν	-8.879578	-3.642110	5.091894
Ċ	-8.371772	-3.195520	-3.912291	N	9,169061	-3.258590	5.096037
c	-7 518778	-3 526485	-1 636002	C.	10 578125	-3 583576	5 235130
c	-7 899683	-1 279773	-2 456256	н	10.576125	-3 918181	6 256967
c	-8 35/803	-1 808777	-3 663712	н	10.000410	-// 378853	1 515169
c	-7 0/2752	-1.000777	-2 864055	н	11 205072	-2 702884	5 052607
L L	9 702226	1 110700	-2.804033		11.203973	2 707015	6 072514
п	-0.705250	-1.110709 E 100069	-4.423397	L L	0.230203	-3.797013	6.075650
п С	-7.955428	-5.109008	-5.001197	п	0.707000 7.490602	-4.071692	6.375059
C	4.569903	-1.422/14	-1.603157	н	7.489602	-3.047766	6.355746
н	5.207522	-1.462504	-2.492322	н	7.703560	-4.689484	5.708929
H	3.52/014	-1.41418/	-1.937443	C	-10.271512	-4.035907	5.226008
Н	4./32/63	-2.359954	-1.059496	н	-10.552045	-4.853306	4.542623
С	7.467063	1.377979	1.605128	н	-10.451332	-4.369520	6.250048
Н	7.489810	2.418979	1.944533	н	-10.941565	-3.189679	5.031892
Н	8.396703	1.191186	1.056127	C	-7.929431	-4.122143	6.080258
Н	7.492843	0.734961	2.490916	Н	-7.221005	-3.333215	6.358975
С	5.313625	-2.064499	2.294476	Н	-8.469813	-4.413578	6.983310
Н	4.967555	-1.026157	2.317536	Н	-7.348665	-4.990973	5.730504
Н	4.824682	-2.597514	3.116741	C	-9.378141	-2.828015	-6.120673
Н	4.946254	-2.497622	1.358254	Н	-8.684928	-2.025075	-6.397809
С	10.155800	-1.581892	0.585994	Н	-9.598528	-3.399490	-7.024697
Н	11.148311	-1.568975	1.048951	Н	-10.313595	-2.362257	-5.770712
Н	9.986583	-0.595796	0.141552	C	-8.992709	-5.142160	-5.271880
Н	10.181984	-2.296216	-0.243205	Н	-9.300598	-5.360462	-6.296489
С	7.455103	-4.199058	-0.614303	Н	-8.066757	-5.697591	-5.079796

Н	-9.766658	-5.528280	-4.589447
С	9.697900	-2.314720	-6.101177
Н	9.952591	-2.866019	-7.008736
Н	8.969283	-1.543152	-6.376501
Н	10.607135	-1.808202	-5.738885
С	9.420441	-4.652381	-5.276270
Н	10.209448	-5.004804	-4.592752
Н	8.522754	-5.255356	-5.093753
Н	9.744063	-4.846312	-6.300959
С	-0.008764	7.300675	0.053261
0	1.035616	7.925072	0.063504
0	-1.242136	7.832696	0.058159
С	-1.433636	9.300378	0.077085
С	-2.958679	9.433063	0.076117
Н	-3.240369	10.491023	0.089884
Н	-3.388546	8.973898	-0.820087
Н	-3.391680	8.949881	0.958065
С	-0.839282	9.888061	1.360598
Н	-1.255234	9.382798	2.239056
Н	0.246870	9.789524	1.376147
Н	-1.097605	10.950934	1.426422
С	-0.834746	9.921563	-1.188416
Н	0.251470	9.823536	-1.202700
Н	-1.247490	9.439494	-2.081307
Н	-1.093037	10.985768	-1.227261

Compound 5

DFT B3LYP/6-31G*, hexane, S0

Point group: C₁ Total energy: -2968846.10 kcal mol⁻¹ Dipole moment: 3.34 D Imaginary frequencies: 0

Symbol	х	Y	Z
С	1.374695	-1.219918	-0.622890
Ν	0.625081	-0.086907	-0.233258
С	-0.808036	-0.391054	-0.159122
0	-1.667888	0.442059	0.057226
С	-0.861280	-1.801159	-0.478008
С	0.456922	-2.258575	-0.766481
С	-1.768028	-2.853359	-0.517807
Ν	-1.008898	-3.991672	-0.881034
С	0.397932	-3.679061	-1.029279
0	1.240624	-4.526275	-1.294647
С	-3.189039	-2.839269	-0.294964

-4.065626	-3.879718	-0.002597
-3.735528	-4.897670	0.143024
-5.402416	-3.466435	0.143459
-6.205607	-4.144384	0.409553
-5.591767	-2.105670	-0.029413
-4.076908	-1.315713	-0.372021
2.805220	-1.306137	-0.707143
3.498710	-2.472677	-1.029792
2.987324	-3.390999	-1.296566
4.893428	-2.346833	-0.926372
5.577500	-3.165526	-1.118052
5 315437	-1 093504	-0 511640
3 947422	-0.032100	-0 296069
6 684350	-0 624027	-0 298170
9 372913	0.024027	0.111864
7 766192	-1 278074	-0 907998
6 071/50	0 470647	0 519424
0.371433	0.479047	0.318424
8.270058	0.934086	0.714661
9.084940	-0.870529	-0.703197
7.573644	-2.114328	-1.5/4332
6.158086	0.990241	1.028411
-6.842146	-1.349586	0.058018
-9.303115	0.094534	0.231708
-6.861011	0.020956	0.354578
-8.074905	-1.985518	-0.154105
-9.285509	-1.298443	-0.054962
-8.053418	0.743869	0.426200
-5.923767	0.535499	0.552572
-8.089216	-3.038618	-0.421813
8.462202	2.145737	1.609121
8.765375	3.027828	1.035938
9.232268	1.987992	2.372033
7.528574	2.385878	2.128430
10.172553	-1.661789	-1.405978
10.875024	-1.017632	-1.946011
9,734808	-2.353291	-2.133547
10 766813	-2 248693	-0 698207
-7 947756	2 223808	0 744540
-8 198461	2.223000	-0 123423
-6 020010	2.042105	1 055520
-8.624002	2.477145	1.055525
	2.327180	0.2027/2
-10.555079	-2.095919	-0.295745
-10.318112	-3.083773	-0.097559
-11.229511	-1.602192	-1.003748
-11.124456	-2.234890	0.631035
10.8/2995	0.751939	0.339840
-10.676416	0.899575	0.332393
11.956096	-0.276631	0.844834
13.235850	-0.366779	0.223898
11.708424	-1.175174	1.921871
12.679114	-2.079888	2.350005
14.178917	-1.304269	0.643782
12.447813	-2.712227	3.199415
15.126646	-1.343942	0.119154
11.243384	2.257808	0.055728
12.010261	3.018414	0.985848
10.817058	2.937412	-1.121311
11.152085	4.271258	-1.350546

C H C H C S C C H C H C S C

C C C C

C H H C C C C C C C

H H

C H H H C H H C H

Н

Н

C H

H H B B C C C C C H H C C C C

С	12.302688	4.362036	0.754279	Н	16.730399	-2.108084	1.808701
Н	10.832528	4.724628	-2.281756	Н	16.814485	-3.872776	2.000609
Н	12.868854	4.897663	1.507663	Н	16.218682	-3.182562	0.488662
С	-10.871273	2.210010	-0.522203	С	14.646647	-3.897542	3.323510
С	-10.518112	2.278674	-1.900360	Н	13.720370	-4.479189	3.246487
С	-11.395779	3.400946	0.059221	Н	15.469226	-4.603438	3.454917
С	-11.531227	4.571133	-0.686996	Н	14.580560	-3.273194	4.228949
С	-10.696270	3.448570	-2.637641	С	11.866330	6.971932	-1.914758
н	-11.912940	5.453600	-0.186415	Н	10.794962	6.898418	-2.136098
н	-10.445490	3.430279	-3.691974	н	12.124249	8.032389	-1.881683
C	-11.815217	0.368803	1.285643	Н	12.417367	6.509303	-2.749200
C	-13 165764	0 271507	0 841045	C	13 104363	7 051281	0 252387
C	-11 553777	-0.056828	2 619369	н	12 738415	7 053717	1 286416
C C	-12 574950	-0 526659	3 444443	н	14 107727	6 596819	0 249553
C	-14 165501	-0 235900	1 670428	н	13 199558	8 091380	-0.065679
н	-12 3229/2	-0.800031	1.070420	C	-16 290528	-1 072023	3 377274
ц	-15 170615	-0.3080031	1 2711/0	ц	-16 078133	-1 522275	1 12/680
C C	10 015060	2 2/0865	-2 211066	Ц	-16 625500	-0.033068	3 220666
L L	0.026250	2.249805	2 115566	н Ц	16 440686	1 61 4 2 0 4	3.223000
п	9.960239	2.007030	1 002222	n C	-10.449080	-1.014204 1 /1005/	5 207260
	0.901091	2.000725	-1.902225	C II		1 05 45 20	5.207200
н с	10.437348	1.279295	-2.492259	н	-15.515/72	-1.854538	5.671693
	12.526881	2.436770	2.290961	н	-13.808926	-2.138021	5.320296
н	13.353441	1./3/810	2.12/28/	H	-14.359822	-0.507756	5.765542
н	11.755997	1.883754	2.83/102	C	-11.104944	5.784496	-4.218523
Н	12.888299	3.234913	2.948029	н	-11.208822	6.798689	-4.609455
C	10.401308	-1.176880	2.694534	Н	-10.093012	5.438445	-4.460341
Н	9.580175	-1.595941	2.104000	Н	-11.820708	5.136006	-4.748792
Н	10.092401	-0.170056	2.994497	C	-12.018951	6.936982	-2.200672
Н	10.494309	-1.775971	3.606369	Н	-13.066020	6.706453	-1.948003
С	13.644089	0.516478	-0.942998	Н	-11.520410	7.283797	-1.287256
Н	14.562024	0.138226	-1.405294	Н	-12.013661	7.764276	-2.913137
Н	13.828362	1.548751	-0.628441	C	-1.450642	-5.321658	-1.170562
Н	12.876788	0.561623	-1.722485	С	1.058697	1.267353	-0.299424
С	-9.970506	1.083271	-2.659842	0	-2.040065	-6.023229	-0.378343
Н	-10.556475	0.174504	-2.487050	0	1.792662	1.682074	-1.171388
Н	-8.940065	0.854378	-2.369324	0	0.534659	1.943267	0.714014
Н	-9.976578	1.276916	-3.737577	0	-1.086482	-5.632537	-2.406858
С	-11.806929	3.487373	1.519357	С	0.516906	3.425044	0.729190
Н	-12.736606	2.943083	1.714528	С	-0.319686	3.719525	1.975341
Н	-11.962736	4.531489	1.810863	Н	-1.312598	3.270339	1.880713
Н	-11.053130	3.066240	2.192202	Н	0.161305	3.309212	2.869114
С	-13.598626	0.677265	-0.557698	Н	-0.429580	4.801320	2.105407
Н	-14.612723	0.318183	-0.762908	С	1.944738	3.956484	0.876171
Н	-12.941737	0.271211	-1.333619	Н	2.425589	3.520571	1.758582
н	-13.595813	1.764453	-0.686202	Н	2.545470	3.724243	-0.004850
С	-10.168819	0.013122	3.237931	Н	1.916176	5.044232	1.007103
н	-9.499264	-0.747330	2.823175	С	-0.180291	3.937952	-0.533804
н	-10.222432	-0.145688	4.320039	Н	-0.330781	5.020035	-0.451130
н	-9.686028	0.981982	3.072777	н	0.414381	3.739704	-1.428023
C	-11.187511	4.632630	-2.052406	Н	-1.157902	3.457837	-0.642542
N	-11 319072	5 804313	-2 781877	C	-1 096696	-7 035843	-2 892375
C	-13 903801	-0 649542	2 991982	C	-0 242774	-7 901741	-1 962459
č	11 885260	5 028599	-0 415266	н	-0 717251	-8 033843	-0 988033
C C	13 932465	-2 186708	1 714716	н	-0 102082	-8 888940	-2 416347
N	-14 90/1755	-1 160600	3 804584	н	0.728278	-7 <u>1</u> 29100	-1 8170/1
N	1/ 875120	_2 120120	2 117761	C III	-7 5/1225	-7 527566	-3 006333
N	12 175/02	6 367021	-0 630642		-2.541333	-8 520160	-3.000322
C C	16 2225	-2 0E0134	1 570/15	п	-2.331/03	-7 506061	-2 02/0220
C	10.222/32	-3.030134	1.3/0413	П	-2.012000	-1.230001	-2.024005

Н	-3.128046	-6.851136	-3.637203
С	-0.443877	-6.899660	-4.268719
Н	-1.026923	-6.229865	-4.908938
Н	0.567421	-6.493406	-4.172713
н	-0.385836	-7.879975	-4.753146

C B C C C C C

C C

H H C C C C C C C C

H H

С

C C

Compound 1M

DFT B3LYP/6-31G*, water, S₀

Point group: C₁ Total energy: -1923472.14 kcal mol⁻¹ Imaginary frequencies: 0

Symbol	х	Y	Z	C
c	7.202000	1.029646	-0.661782	C
С	5.806970	1.001786	-0.667812	C
С	5.071793	0.026002	0.020497	Н
С	5.798649	-0.952999	0.713125	н
С	7.193453	-0.989458	0.711149	C
С	7.942237	0.016678	0.024372	C
Н	5.272940	1.783541	-1.200498	C
Н	5.258284	-1.730784	1.245288	C
С	3.589766	0.028813	0.015387	C
С	2.856576	-0.358803	1.150972	C
С	2.866716	0.418181	-1.126126	н
С	1.465570	-0.352988	1.146125	н
н	3.379524	-0.647082	2.058311	C
С	1.475728	0.414665	-1.133056	н
н	3.397747	0.705675	-2.029010	н
С	0.742102	0.031150	0.003379	н
н	0.932612	-0.671457	2.037196	C
Н	0.950789	0.734057	-2.028550	н
С	-0.742221	0.031145	-0.003169	н
С	-1.465683	-0.353183	-1.145853	н
С	-1.475853	0.414860	1.133197	L L
С	-2.856689	-0.359000	-1.150704	н
Н	-0.932723	-0.671799	-2.036869	н
С	-2.866840	0.418375	1.126261	н
Н	-0.950916	0.734410	2.028636	L L
С	-3.589884	0.028805	-0.015187	н
Н	-3.379631	-0.647434	-2.057997	н
Н	-3.397875	0.706028	2.029092	н
С	-5.071910	0.025978	-0.020306	L L
С	-5.807108	1.001873	0.667815	п
С	-5.798744	-0.953175	-0.712750	п
С	-7.202144	1.029714	0.661762	H C
Н	-5.273092	1.783721	1.200379	L L
С	-7.193544	-0.989666	-0.710772	н
Н	-5.258357	-1.731054	-1.244750	н

-7.942355	0.016609	-0.024212
-9.509013	0.006613	-0.018858
9.508900	0.006656	0.018935
-10.339761	1.360048	-0.245825
-10.094118	2.153167	-1.395948
-11.339120	1.799845	0.663938
-10.827459	3.330310	-1.623259
-12.039218	2.988842	0.430388
-11.785717	3.747665	-0.709557
-10.610812	3.892642	-2.522251
-12.781190	3.296592	1.159944
10 339803	1 360026	0 245773
10 094351	2 153203	1 395910
11 339152	1 799679	-0 664057
10.827919	3 330207	1 623186
12 039/83	2 988553	-0.430541
11 786211	2 7/7201	0.430341
10 611/22	2 202521	2 522100
10.011433	2 206107	1 160162
10,210016	1 259/00	0.215057
-10.519010	-1.556499	1 262446
-10.045498	-2.153942	1.302440
-11.319/06	-1.810247	-0.681407
-10.756107	-3.339321	1.586291
-12.003518	-3.014970	-0.448565
-11./21810	-3.//1445	0.681137
-10.524388	-3.910979	2.479181
-12.746677	-3.322627	-1.172582
10.318831	-1.358501	-0.215053
10.045019	-2.154072	-1.362274
11.319763	-1.810150	0.681198
10.755590	-3.339471	-1.586186
12.003522	-3.014889	0.448311
11.721531	-3.771489	-0.681244
10.523630	-3.911225	-2.478950
12.746860	-3.322468	1.172176
-7.840830	-2.118639	-1.492337
-8.659715	-1.777153	-2.133279
-7.104940	-2.601795	-2.141238
-8.248517	-2.892185	-0.831967
-7.858372	2.155969	1.439683
-7.123466	2.655524	2.077105
-8.284099	2.917233	0.776636
-8.665727	1.808043	2.091887
7.840766	-2.118268	1.492926
7.104991	-2.601053	2.142235
8.248103	-2.892135	0.832713
8.659920	-1.776704	2.133477
7.858232	2.155742	-1.439921
7.123244	2.655456	-2.077124
8 284352	2 916915	-0 777026
8.665297	1.807609	-2.092377
-11 682344	-1 053380	-1 942878
-12 108497	-0 072027	-1 714702
-10 200524	-0 887682	-7 582007
-10.005054	-0.00700Z	-2.303332
0 006200	-1.004/93	2.33/300
-0.59020U	1 052660	2.390925
-7.985855	-1.323008	
-9.048362	-0.727229	2.678524

Н	-9.114062	-2.375325	3.301645
С	-9.048811	1.796311	-2.434733
Н	-8.038859	2.007888	-2.068299
Н	-9.070483	0.737361	-2.705515
Н	-9.198206	2.372351	-3.352608
С	-11.672800	1.041032	1.931611
н	-12 071746	0 046540	1 711608
н	-10 791367	0 904262	2 567983
н	-12/18365	1 575070	2 527264
C C	14 057945	1.575070	0.072121
с u	-14.037843	4.710301	-0.973131
	-14.507799	4.252265	-0.050090
н	-14.604554	5.641/38	-1.130223
н	-14.230797	4.022460	-1.800951
C	-12.213340	5.739613	-2.196408
Н	-12.423655	5.089072	-3.044613
Н	-12.827041	6.638272	-2.260580
Н	-11.159492	6.014668	-2.172118
С	-12.304391	5.980815	0.232020
Н	-12.615459	5.519863	1.167432
Н	-11.235092	6.191583	0.257884
Н	-12.871075	6.897664	0.061334
С	-13.178759	-4.978689	2.286286
н	-13.894023	-4.158306	2.223813
н	-13.696010	-5.922832	2.464766
н	-12.463953	-4.789601	3.084691
C	-13.462012	-5.421940	-0.098198
н	-13 926865	-6 366905	0 183687
н	-14 218500	-4 639245	-0 143886
н	-12 960298	-5 531085	-1 059066
C	-11 //0825	-6 211029	1.033600
с u	10 024470	-0.211029	0.062004
	-10.924479	-0.203041	1 010047
п 	-10.725774	-0.021400	1.819847
Н	-11.980466	-7.139220	1.216826
C	11.672648	1.040822	-1.931752
н	12.0/1944	0.046468	-1./11/45
Н	10.791076	0.903744	-2.567857
Н	12.417902	1.574997	-2.527672
С	9.049034	1.796530	2.434744
Н	8.039050	2.007492	2.068061
Н	9.071100	0.737734	2.706124
Н	9.198081	2.373124	3.352324
С	12.305116	5.980483	-0.232144
Н	12.871908	6.897269	-0.061475
Н	12.616071	5.519516	-1.167588
Н	11.235838	6.191372	-0.257935
С	12.214258	5.739229	2.196292
н	11.160474	6.014538	2.172058
н	12.424452	5.088582	3.044444
н	12.828166	6.637746	2,260478
C	14 058506	4 709906	0 972826
н	14 605355	5 641063	1 129903
н	14 221/27	2.0712005 2 021200	1 800602
н	14 268321431	4.021009	0 025727
() (2 00EE00	-1 701012	-7 2005737
с u	0.3333008 7 005400	-1./01210	-2.33U321
л 11	7.302130		-2.005947
	9.04/390	-0.727555	-2.0/820/
п	9.113135	-2.3/5690	-3.301224
L	11.682805	-1.053118	1.942461

Н	12.109562	-0.072089	1.713995
Н	10.810099	-0.886692	2.583515
Н	12.416232	-1.604792	2.537055
С	11.440444	-6.211088	-1.021463
Н	10.725206	-6.021590	-1.819526
Н	11.980006	-7.139314	-1.216670
Н	10.924291	-6.263602	-0.062607
С	13.461895	-5.421945	0.097835
Н	14.218402	-4.639258	0.143275
Н	12.960403	-5.531002	1.058832
Н	13.926660	-6.366946	-0.184077
С	13.178094	-4.978902	-2.286624
Н	13.893436	-4.158572	-2.224364
Н	13.695221	-5.923100	-2.465170
Н	12.463105	-4.789803	-3.084863
Ν	12.443223	-5.073441	-0.962463
Ν	12.575357	5.024316	0.915126
Ν	-12.443581	-5.073360	0.962313
Ν	-12.574658	5.024709	-0.915294

Compound 1M

DFT B3LYP/6-31G*, water, S₀

Point group: Ci Total energy: -1923554.01 kcal mol⁻¹

Symbol	х	Y	Z
С	-0.885060	-7.227200	-0.830590
С	-0.852860	-5.832250	-0.831010
С	-0.011800	-5.099680	0.018900
С	0.827780	-5.829140	0.873010
С	0.860300	-7.224040	0.876900
С	-0.010950	-7.970140	0.023130
Н	-1.527000	-5.296140	-1.492980
Н	1.500960	-5.290850	1.534230
С	-0.009720	-3.617650	0.014010
С	0.173510	-2.885450	1.200470
С	-0.189750	-2.893610	-1.177970
С	0.172350	-1.494440	1.195270
Н	0.295870	-3.409130	2.144200
С	-0.181360	-1.502630	-1.183570
Н	-0.314930	-3.423900	-2.117630
С	-0.002320	-0.769990	0.003000
Н	0.330110	-0.962300	2.128770
Н	-0.336430	-0.976880	-2.121130
В	-0.004290	-9.536820	0.018870
С	-1.378660	-10.364060	0.003130
С	-2.361580	-10.116420	0.995470
С	-1.653640	-11.362270	-0.970400

С	-3.562170	-10.846800	1.011310	Н	4.479570	-13.932680	-1.456610
С	-2.866920	-12.059380	-0.950500	Н	6.259430	-13.739240	-1.382380
С	-3.814220	-11.804010	0.037900	н	5.256470	-12.504100	-2.191690
Н	-4.273690	-10.628750	1.797140	N	5.161420	-12.484880	-0.052530
Н	-3.043050	-12.800530	-1.723260	N	-5.109510	-12.589700	0.014840
С	1.378570	-10.350440	0.028950	С	0.002320	0.769990	-0.003000
С	2.364710	-10.078830	-0.959870	С	-0.172350	1.494440	-1.195270
С	1.662420	-11.352550	0.990380	С	0.181360	1.502630	1.183570
С	3.569120	-10.792610	-0.971540	С	-0.173510	2.885450	-1.200470
С	2.887520	-12.039560	0.973300	н	-0.330110	0.962300	-2.128770
С	3.832210	-11.759670	-0.005000	С	0.189750	2.893610	1.177970
н	4.289970	-10.562230	-1.749380	н	0.336430	0.976880	2.121130
н	3.060650	-12.783690	1.739740	С	0.009720	3.617650	-0.014010
C	1.831820	-7.874360	1.845210	н	-0.295870	3.409130	-2.144200
н	2 194490	-7 139850	2 569800	н	0 314930	3 423900	2 117630
н	2 708900	-8 283810	1 331640	C.	0.011800	5 099680	-0.018900
н	1 380470	-8 692550	2 415140	C C	0.852860	5 832250	0.831010
Ċ	-1 858030	-7 880430	-1 795400	C C	-0.827780	5 829140	-0.873010
с ц	-2 225580	-7.000430	-2 510420	C C	0.827760	7 227200	0.875010
ц	-2.235380	-8 204470	-2.310430	с ц	1 527000	5 206140	1 /02080
п	-2.723300	-0.304470	-1.277510	П	1.327000	7 224040	0.976000
п С	-1.402440	-0.000470	-2.370560	L L	-0.600500	7.224040	-0.870900
	-0.684000	-11.697870	-2.084540	п	-1.500960	5.290850	-1.534230
н	0.254900	-12.099830	-1.692800	C	0.010950	7.970140	-0.023130
н	-0.434550	-10.816700	-2.686130	C	1.858030	7.880430	1.795400
Н	-1.106/00	-12.441/10	-2.765640	C	-1.831820	7.874360	-1.845210
С	-2.190910	-9.072020	2.081380	В	0.004290	9.536820	-0.018870
н	-2.331210	-8.061480	1.683670	н	2.235580	7.144130	2.510430
Н	-1.196630	-9.096920	2.535210	н	2.725300	8.304470	1.277310
Н	-2.920680	-9.219460	2.882830	Н	1.402440	8.688470	2.376580
С	-5.847640	-12.316930	-1.282950	н	-2.194490	7.139850	-2.569800
Н	-6.781660	-12.881240	-1.276880	Н	-2.708900	8.283810	-1.331640
Н	-5.229760	-12.629170	-2.122580	Н	-1.380470	8.692550	-2.415140
Н	-6.047830	-11.247090	-1.345070	C	1.378660	10.364060	-0.003130
С	-6.038180	-12.226610	1.150010	C	-1.378570	10.350440	-0.028950
Н	-6.302100	-11.172090	1.078050	C	2.361580	10.116420	-0.995470
Н	-5.547870	-12.438520	2.099520	C	1.653640	11.362270	0.970400
Н	-6.935570	-12.838090	1.054470	C	-2.364710	10.078830	0.959870
С	-4.814150	-14.073680	0.126450	C	-1.662420	11.352550	-0.990380
Н	-5.759870	-14.618010	0.116620	C	3.562170	10.846800	-1.011310
Н	-4.283280	-14.248430	1.062520	C	2.190910	9.072020	-2.081380
Н	-4.198690	-14.384780	-0.715280	C	2.866920	12.059380	0.950500
С	2.181830	-9.028370	-2.037310	C	0.684000	11.697870	2.084540
Н	2.286840	-8.018510	-1.627850	C	-3.569120	10.792610	0.971540
Н	1.195280	-9.077420	-2.506320	С	-2.181830	9.028370	2.037310
Н	2.927270	-9.147640	-2.828950	С	-2.887520	12.039560	-0.973300
С	0.693860	-11.713490	2.098210	С	-0.693860	11.713490	-2.098210
н	-0.232630	-12.137610	1.700140	С	3.814220	11.804010	-0.037900
Н	0.419320	-10.840300	2.700250	н	4.273690	10.628750	-1.797140
н	1.130080	-12.448370	2.780460	н	2.331210	8.061480	-1.683670
С	6,294310	-11,485180	0.090450	н	1,196630	9.096920	-2.535210
H	6.250430	-10.769470	-0.728210	н	2.920680	9.219460	-2.882830
н	7,240980	-12.027250	0.061770	н	3.043050	12.800530	1.723260
н	6 178280	-10.969120	1.043760	н	-0 254900	12 099830	1.692800
C	5 314770	-13 504440	1 052180	н	0.434550	10 816700	2 686130
н	Δ 52Δ220	-14 258830	0 958550	н	1 106700	12 441710	2.000100
н	5 252020	-13 003200	2 017560	n C	-2 827210	11 759670	0 005000
н	6 202/120	-13 971760	0 941120	с µ	-3.832210 - <u>1</u> 720070	10 562220	1 749380
c	5 200020	-13 210560	-1 272020	Ц	-7 7868/10	8 012510	1 677250
C	5.255550	-12.512200	T.212320	п	-2.200640	0.010210	1.02/030

Н	-1.195280	9.077420	2.506320
Н	-2.927270	9.147640	2.828950
Н	-3.060650	12.783690	-1.739740
Н	0.232630	12.137610	-1.700140
Н	-0.419320	10.840300	-2.700250
Н	-1.130080	12.448370	-2.780460
Ν	5.109510	12.589700	-0.014840
Ν	-5.161420	12.484880	0.052530
С	5.847640	12.316930	1.282950
С	6.038180	12.226610	-1.150010
С	4.814150	14.073680	-0.126450
С	-6.294310	11.485180	-0.090450
С	-5.314770	13.504440	-1.052180
С	-5.299930	13.219560	1.372920
Н	6.781660	12.881240	1.276880
Н	5.229760	12.629170	2.122580
Н	6.047830	11.247090	1.345070
Н	6.302100	11.172090	-1.078050
Н	5.547870	12.438520	-2.099520
Н	6.935570	12.838090	-1.054470
Н	5.759870	14.618010	-0.116620
Н	4.283280	14.248430	-1.062520
Н	4.198690	14.384780	0.715280
Н	-6.250430	10.769470	0.728210
Н	-7.240980	12.027250	-0.061770
Н	-6.178280	10.969120	-1.043760
Н	-4.534320	14.258830	-0.958550
Н	-5.253980	13.003200	-2.017560
Н	-6.293430	13.971760	-0.941130
Н	-4.479570	13.932680	1.456610
Н	-6.259430	13.739240	1.382380
Н	-5.256470	12.504100	2.191690

Compound 2M

DFT B3LYP/6-31G*, water, S₀

Point group: C₁ Total energy: -2019094.10 kcal mol⁻¹ Imaginary frequencies: 0

Symbol	х	Y	z
С	0.712897	0.027240	0.071685
С	3.545794	0.024793	0.059944
С	1.429377	-1.203978	0.160054
С	1.430765	1.257366	-0.020720
С	2.832034	1.230939	-0.029167
С	2.830707	-1.179938	0.156861
Н	3.370759	2.173550	-0.074053
Н	3.368217	-2.123456	0.196854

-0.711158	0.028223	0.074262
-3.544068	0.029632	0.072091
-1.428988	-1.201933	0.165920
-1.427669	1.259263	-0.016285
-2.829003	1.234486	-0.020568
-2.830293	-1.175708	0.168129
-3.366914	2.177545	-0.066484
-3.369238	-2.118237	0.212778
-5.028577	0.028921	0.064443
-7.898460	0.018338	0.036469
-5.755122	0.932804	-0.723525
-5 763647	-0 876834	0 842817
-7 158633	-0 911654	0.830991
-7 150505	0.911034	-0 738329
-5 21/1500	1 620787	-0.750525
5.214555	1.020787	1 109212
-3.230019	-1.339030	1.490342
3.029944	0.022452	0.046704
7.900609	0.011830	0.018178
5.765518	-0.883092	0.825916
5./55616	0.924987	-0.741180
7.150351	0.925140	-0.787089
7.161022	-0.893216	0.842511
5.231987	-1.584525	1.461077
5.213962	1.631217	-1.364013
-7.818377	-1.936498	1.736242
-8.235880	-2.775692	1.168797
-8.632316	-1.513925	2.334232
-7.087834	-2.350290	2.437059
-7.798260	1.985123	-1.650075
-8.598239	1.563316	-2.266648
-7.056099	2.408231	-2.332863
-8.231357	2.818024	-1.084740
7.793911	1.955883	-1.697361
8.225199	1.498469	-2.594432
8.593933	2.518526	-1.204870
7.049081	2.684029	-2.030284
7.816397	-1.925343	1.742577
8 596373	-2 501218	1 233533
7 072180	-2 641718	2 101359
8 277356	-1 466548	2 624099
-9 465222	-0.000254	0.005681
9.466872	-0.002371	-0.007761
10 207806	1 2627/1	0.007701
11 790065	2 771202	0.061004
-11.760905	5.771292	0.201295
-11.295323	1.691546	-0.8/9896
-10.079765	2.281999	1.143100
-10.825517	3.463770	1.226482
-12.014267	2.895027	-0.790242
-10.627772	4.132989	2.057392
-12.744396	3.106765	-1.560293
-10.265966	-1.385527	-0.110064
-11.662803	-3.832553	-0.368367
-11.295782	-1.741546	0.802379
-9.962694	-2.294830	-1.156160
-10.672015	-3.501492	-1.282539
-11.972311	-2.959489	0.671346
-10.410846	-4.155900	-2.103800
-12.740402	-3.199700	1.399073

С C C С С С Н Н С С С С С С Н Н С С С С С С Н Н С Н Н Н С Н Н Н

C H

H H

C H H B C C

С

C C

C H H C C C C C H H

С	10.314223	-0.124951	1.349287	Н	-12.580958	-5.394715	1.653524
С	11.791241	-0.298177	3.756880	н	-11.144286	-6.140741	0.902581
С	11.307711	-1.118715	1.530382	С	-11.992661	-5.987473	-1.636872
С	10.085383	0.788852	2.415407	Н	-12.592933	-6.897469	-1.628982
С	10.833316	0.699660	3.595506	Н	-10.938838	-6.240769	-1.526520
С	12.027072	-1.206634	2.733609	Н	-12.163980	-5.442134	-2.564349
н	10.633727	1.422617	4.379797	С	-11.567887	6.239790	0.339599
Н	12.760232	-1.997347	2.826506	н	-11.033263	6.198794	-0.609633
С	10.265106	0.102978	-1.395598	Н	-10.865108	6.159238	1.166578
С	11.650421	0.240784	-3.858991	Н	-12.133776	7.169404	0.420270
С	11.273298	1.079764	-1.615573	С	-13.549601	5.280731	-0.716185
С	9.979876	-0.804602	-2.447660	Н	-14.281559	4.474260	-0.690297
С	10.683421	-0.735826	-3.662179	Н	-13.034266	5.305150	-1.675693
С	11.942812	1.146984	-2.842570	н	-14.046994	6.234971	-0.541651
Н	10.434948	-1.458203	-4.428926	С	-13.296016	5.104364	1.705398
н	12.691620	1.921414	-2.974121	Н	-13.987000	4.261297	1.722451
С	-11.693218	-0.855657	1.965163	н	-13.842082	6.046763	1.772221
Н	-12.155982	0.074594	1.621484	Н	-12.590633	5.025091	2.530208
Н	-10.831481	-0.580509	2.582495	C	13.323924	0.927997	5.272828
н	-12 409097	-1 361097	2 619365	с Н	14 014473	1 054143	4 438676
C	-9 042550	2 047852	2 223330	н	13 871188	0.857890	6 214312
н	-8 027638	2 139338	1 824461	н	12 626849	1 762855	5 309058
н	-9 118286	1 049798	2 665394	C C	11 583452	-0 564165	6 213564
н	-9 152508	2 773499	3 034356	с	11.000452	-1 492882	6 042973
Ċ	-11 613305	0 794338	-2 059150	н	10 889655	0 273309	6 252182
н	-10 711537	0./94330	-2 602/158	н	12 152922	-0.620039	7 1/2730
н	-12 2667/6	1 300912	-2.002458	C C	13 5/196//	-0.020033	5 108/11
н	-12.200740	-0 122624	-1 739778	ч	1/ 2831/19	-1.450151	1 313617
Ċ	-8 877511	-2 039870	-2 18/322	н	13 022782	-2 1/5128	4.915017
с ц	-8.077511	-2.039870	-2.104522	н Н	14 048258	-2.445128	6.077404
п	-0.9/15/0	-2.720404	-5.029045		14.046236	-1.400/94	4 017000
п	-7.001955	-2.1/0425	-1.749750	L L	13.092393	0.10/430	-4.917090
п С	-0.900074	-1.025225	-2.365599	п	14.41/502	0.244425	-5.870091
	0.913033	-1.8/92/0	-2.341068	н	14.045585	-0.817754	-4.476015
	9.028347	-2.021227	-3.137050	П	14.243808	0.940076	-4.236041
н	7.912250	-1.449407	-2.423706	C U	11.984018	-0.682636	-0.181527
н	8.950957	-2.413097	-1.38/621	н	12.5/38/0	-0.524675	-7.084671
C II	11.053200	2.102824	-0.565367	н	10.925547	-0.555995	-6.406190
н	12.148237	1.632670	0.290091	н	12.1/8426	-1.6/8443	-5.784770
н	10.779029	2.637686	-0.180283	C	12.165254	1./19292	-5./82139
Н	12.336248	2.853329	-0.9/31//	н	12./11004	1.//6151	-6./252/4
C	11.632008	-2.14/526	0.466310	н	12.518559	2.491001	-5.101154
н	10.734613	-2.654041	0.09/05/	Н	11.094484	1.833930	-5.951989
н	12.300644	-2.920401	0.855614	C	0.680220	-2.429952	0.242794
Н	12.123343	-1.68/951	-0.39/21/	Н	1.227065	-3.36/22/	0.305160
C	9.040253	1.884224	2.346032	С	-0.681139	-2.428864	0.245890
Н	8.029737	1.471136	2.425977	Н	-1.228988	-3.365383	0.310906
Н	9.078655	2.440793	1.405300	C	0.682975	2.484538	-0.098273
Н	9.173278	2.604497	3.158530	Н	1.230865	3.421129	-0.161691
N	-12.428265	-5.136598	-0.467012	С	-0.678390	2.485339	-0.096406
Ν	-12.540926	5.076086	0.389474	Н	-1.225161	3.422680	-0.158487
N	12.407394	0.353265	-5.166315				
N	12.553687	-0.362708	5.064188				
С	-13.908882	-4.852064	-0.637631				
Н	-14.439078	-5.802975	-0.711569				
Н	-14.043294	-4.268508	-1.548645				
Н	-14.270791	-4.291313	0.221918				
С	-12.212602	-5.952267	0.794579				
Н	-12.759162	-6.891924	0.698274				

Compound 2M

DFT B3LYP/6-31G*, water, S0

Point group: Ci Total energy: -2019170.38 kcal mol⁻¹

Symbol	Х	Y	Z	C
С	0.689110	0.025360	-0.025090	н
С	3.521930	0.009360	-0.007430	н
С	1.406530	-0.870400	-0.873610	H
С	1.406000	0.914340	0.830980	L L
С	2.807230	0.885290	0.825720	н
С	2.807830	-0.857160	-0.850830	н
Н	3.345310	1.583000	1.461660	H
Н	3.345950	-1.561200	-1.479710	N
С	-0.689110	-0.025360	0.025090	N
С	-3.521930	-0.009360	0.007430	C
С	-1.406000	-0.914340	-0.830980	н
С	-1.406530	0.870400	0.873610	н
С	-2.807830	0.857160	0.850830	H
С	-2.807230	-0.885290	-0.825720	C
Н	-3.345950	1.561200	1.479710	н
Н	-3.345310	-1.583000	-1.461660	н
С	-5.052350	0.035500	-0.039010	Н
С	-7.922330	0.021870	-0.026080	C
С	-5.783560	0.895900	0.792140	н
С	-5.782780	-0.828080	-0.868040	н
С	-7.177780	-0.864250	-0.865090	Н
С	-7.179020	0.919910	0.801260	C
Н	-5.246820	1.549050	1.474220	н
Н	-5.245930	-1.474850	-1.556170	н
С	-7.832160	-1.839980	-1.826750	Н
Н	-8.251800	-2.708330	-1.306740	C
Н	-8.643440	-1.386720	-2.405570	н
Н	-7.097780	-2.215600	-2.544850	н
С	-7.832160	1.896450	1.762920	H
Н	-8.634860	1.442080	2.352210	C
Н	-7.093760	2.283140	2.470920	н
Н	-8.263110	2.757930	1.240400	н
В	-9.489210	0.000810	-0.004210	H
С	-10.332510	1.365450	-0.012000	C
С	-11.806720	3.779330	-0.071000	H
С	-11.325090	1.642230	0.960670	C
С	-10.099920	2.339860	-1.022010	Н
С	-10.846220	3.523980	-1.046330	C
С	-12.044560	2.848370	0.931380	Н
Н	-10.644870	4.236450	-1.839550	C
Н	-12.778700	3.018550	1.707890	Н
С	-10.289390	-1.389100	0.033850	C
С	-11.685500	-3.847150	0.154920	С

С	-11.314340	-1.696770	-0.901370
С	-9.990600	-2.352460	1.031740
С	-10.699560	-3.564520	1.090350
С	-11.990520	-2.920320	-0.838550
н	-10 441960	-4 261440	1 877030
н	-12 754770	-3 122000	-1 581850
C	11 706600	0.750650	2 017500
L L	12 171020	-0.750050	1 627290
п	-12.171920	0.159800	-1.02/280
н	-10.842100	-0.442660	-2.615020
Н	-12.418880	-1.221060	-2./01190
С	-9.057130	2.163930	-2.107910
Н	-8.044300	2.234680	-1.699650
Н	-9.129850	1.190700	-2.602680
Н	-9.163630	2.931530	-2.879840
С	-11.648220	0.683540	2.089040
Н	-10.748940	0.355610	2.620200
Н	-12.305650	1.151050	2.827430
н	-12.151580	-0.215470	1.718930
С	-8.910780	-2.151820	2.077430
Н	-9.008490	-2.884330	2.883940
н	-7 912930	-2 264570	1 641240
н	-8 9//170	-1 157910	2 531920
N	12 450290	E 155010	0.190200
	-12.450560	-5.155010	0.180590
N C	-12.56/100	5.088670	-0.133590
C	-13.932060	-4.880750	0.358410
Н	-14.461840	-5.834540	0.3/9130
Н	-14.071500	-4.346430	1.298420
Н	-14.290130	-4.275380	-0.471980
С	-12.227750	-5.902480	-1.121600
Н	-12.774020	-6.846220	-1.078040
Н	-12.592260	-5.300340	-1.951600
Н	-11.158750	-6.084370	-1.234070
С	-12.019930	-6.066520	1.305630
Н	-12.619410	-6.975150	1.246450
Н	-10.965360	-6.313030	1.187300
н	-12.196320	-5.571260	2.259860
С	-11.595270	6.248620	-0.017150
н	-11 065360	6 157610	0 931250
н	-10 888310	6 212450	-0.843690
н	-12 161510	7 180890	-0.051230
C C	-13 581/150	5 233800	0.031230
L L	14 212610	1 4 2 0 4 4 0	0.070200
	12 070040	4.429440 E 207E60	1 029210
п	-13.070940	5.207560	1.938310
н	-14.078750	6.195680	0.850120
C	-13.315630	5.186310	-1.449950
Н	-14.005830	4.344960	-1.515180
Н	-13.862130	6.130630	-1.469420
Н	-12.606070	5.151300	-2.274240
С	0.658310	-1.762250	-1.719690
Н	1.205860	-2.447270	-2.361840
С	-0.703020	-1.756250	-1.726270
н	-1.250150	-2.436440	-2.373900
С	0.703020	1.756250	1.726270
н	1.250150	2.436440	2.373900
С	-0.658310	1.762250	1,719690
H	-1.205860	2,447270	2.361840
C	5 052350	-0.035500	0.039010
C C	5 782560	-0 892000	_0 702110
<u> </u>	5.705500	0.0555500	0.752140

С	5.782780	0.828080	0.868040
С	7.179020	-0.919910	-0.801260
Н	5.246820	-1.549050	-1.474220
С	7.177780	0.864250	0.865090
Н	5.245930	1.474850	1.556170
С	7.922330	-0.021870	0.026080
С	7.832160	-1.896450	-1.762920
С	7.832160	1.839980	1.826750
В	9.489210	-0.000810	0.004210
н	8.634860	-1.442080	-2.352210
н	7.093760	-2.283140	-2.470920
Н	8.263110	-2.757930	-1.240400
Н	8.251800	2.708330	1.306740
Н	8.643440	1.386720	2.405570
н	7.097780	2.215600	2.544850
С	10.332510	-1.365450	0.012000
C	10.289390	1.389100	-0.033850
C	11.325090	-1.642230	-0.960670
C	10 099920	-2 339860	1 022010
C	11 314340	1 696770	0 901370
C C	9 990600	2 352460	-1 031740
C	12 044560	-2 848370	-0.931380
C C	11 648220	-0.683540	-2 089040
C C	10.846220	-3 523980	1 0/6330
C C	9 057130	-2 163930	2 107910
C C	11 000520	2.103930	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C C	11.990320	0.750650	2 017500
C C	10,600560	2 564520	2.017300
C C	2 010790	2.504520	2 077420
C C	11 906720	2.131620	-2.077430
	11.600720	-3.779550	1 707800
	12.778700	-3.018550	-1.707890
	10.748940	-0.355610	-2.820200
н	12.305650	-1.151050	-2.827430
н	12.151580	0.215470	-1./18930
н	10.644870	-4.236450	1.839550
н	8.044300	-2.234680	1.699650
н	9.129850	-1.190700	2.602680
H	9.163630	-2.931530	2.879840
C	11.685500	3.847150	-0.154920
н	12.754770	3.122000	1.581850
н	12.1/1920	-0.159800	1.627280
н	10.842100	0.442660	2.615020
н	12.418880	1.221060	2.701190
н	10.441960	4.261440	-1.877030
Н	9.008490	2.884330	-2.883940
Н	7.912930	2.264570	-1.641240
Н	8.944170	1.157910	-2.531920
N	12.567100	-5.088670	0.133590
Ν	12.450380	5.155010	-0.180390
С	11.595270	-6.248620	0.017150
С	13.581450	-5.233800	-0.976280
С	13.315630	-5.186310	1.449950
С	13.932060	4.880750	-0.358410
С	12.227750	5.902480	1.121600
С	12.019930	6.066520	-1.305630
Н	11.065360	-6.157610	-0.931250
Н	10.888310	-6.212450	0.843690
Н	12.161510	-7.180890	0.051230

Н	14.312610	-4.429440	-0.903950
Н	13.070940	-5.207560	-1.938310
Н	14.078750	-6.195680	-0.850120
Н	14.005830	-4.344960	1.515180
Н	13.862130	-6.130630	1.469420
Н	12.606070	-5.151300	2.274240
Н	14.461840	5.834540	-0.379130
Н	14.071500	4.346430	-1.298420
Н	14.290130	4.275380	0.471980
Н	12.774020	6.846220	1.078040
Н	12.592260	5.300340	1.951600
Н	11.158750	6.084370	1.234070
Н	12.619410	6.975150	-1.246450
Н	10.965360	6.313030	-1.187300
Н	12.196320	5.571260	-2.259860

Compound 3M

DFT B3LYP/6-31G*, water, S₀

Point group: C₁

Total energy: -1947382.60 kcal mol-1

Imaginary frequencies: 0

Symbol	х	Y	Z
С	-0.722957	-1.395965	-0.506400
С	-3.478062	-0.881140	-0.327342
С	-1.632553	-2.392732	-0.868008
С	-1.187115	-0.143453	-0.050765
С	-2.548027	0.113164	0.042941
С	-2.995565	-2.127301	-0.778429
Н	-2.900854	1.088362	0.368570
Н	-3.702625	-2.910844	-1.033028
С	0.741409	-1.382584	-0.509275
С	3.487756	-0.817872	-0.339974
С	1.667591	-2.362492	-0.874593
С	1.184666	-0.121904	-0.055414
С	2.541108	0.159222	0.033428
С	3.025744	-2.072145	-0.789702
Н	2.877151	1.140280	0.359253
Н	3.745847	-2.842339	-1.048487
С	4.943213	-0.547138	-0.265133
С	7.773937	-0.081449	-0.104046
С	5.496418	0.261444	0.739124
С	5.832900	-1.100428	-1.199052
С	7.211597	-0.904357	-1.128702
С	6.865991	0.517144	0.824784
Н	4.841140	0.679158	1.498134
Н	5.433501	-1.685009	-2.022601
С	-4.937327	-0.634548	-0.248932
С	-7.773337	-0.203778	-0.088426

С	-5.818345	-1.189981	-1.188934	Н	10.824713	0.357813	-2.580073
С	-5.501543	0.153481	0.765239	Н	12.515438	-0.126053	-2.660567
С	-6.877538	0.358774	0.874115	С	8.631592	2.549334	-1.706410
С	-7.196255	-0.978426	-1.143051	Н	7.606292	2.405060	-1.352062
н	-5.412228	-1.786359	-2.000768	Н	8.864421	1.696368	-2.350850
н	-4.849157	0.593656	1.514379	Н	8.648405	3.446177	-2.332530
С	8.042279	-1.560709	-2.217180	С	11.276879	0.731923	2.318306
Н	8.569021	-2.449565	-1.851755	Н	10.421606	0.179504	2.719718
н	8 795866	-0.889586	-2 641450	Н	11 819057	1 150574	3 170891
н	7 399809	-1 882450	-3 041738	н	11 934568	0.003067	1 833451
C	7 3208/17	1 307510	1 97/912	C C	Q 01Q21Q	-2 /2/353	1 644062
с ц	9 15211 <i>1</i>	0.062005	2 520061	с ц	0 212044	-2.424555	2 222521
 L	6 501262	1 552575	2.555001		9.213044	2 614420	1 1/27/2
	7 645460	1.333373	1 620000	п	0.004304	1 520071	2 256064
	7.045409	2.385507	1.029999	П	8.879005	-1.530071	2.200904
C	-7.342633	1.225024	2.031188	C U	-9.001468	-2.469983	1.//8/89
н	-7.834540	0.6366//	2.813458	н	-9.2181/5	-3.372304	2.358073
Н	-8.047427	2.003962	1.721325	Н	-7.947128	-2.218194	1.934544
Н	-6.489934	1.730454	2.493204	Н	-9.109610	-2.724552	0.721318
С	-8.015669	-1.643059	-2.235139	C	-11.175260	2.162775	1.200144
Н	-8.871130	-2.203968	-1.844338	Н	-11.725454	1.999206	0.268302
Н	-7.397453	-2.350758	-2.794371	Н	-10.237720	2.664843	0.939161
н	-8.407961	-0.915808	-2.954318	Н	-11.755417	2.860262	1.810822
В	9.321466	0.131439	0.009795	C	-11.796658	-1.627543	-0.852536
В	-9.322178	-0.002008	0.018015	Н	-10.980315	-2.328897	-0.653270
С	9.943329	1.582676	0.292536	Н	-12.572433	-2.180922	-1.389170
С	11.044205	4.152131	0.730092	н	-12.211755	-1.330098	0.115842
С	10.850341	1.820587	1.354408	C	-8.653749	2.335363	-1.816113
С	9.600121	2.678218	-0.547758	Н	-7.715475	1.817269	-2.038424
С	10.162480	3.941117	-0.327231	Н	-8.602264	2.643587	-0.767865
С	11.383766	3.101618	1.572203	Н	-8.687091	3.244639	-2.423411
н	9.882446	4.746459	-0.998640	Ν	13.002822	-4.505463	-0.577393
н	12.059548	3.231889	2.407626	Ν	11.607628	5.543710	0.933982
С	10.325378	-1.109661	-0.152222	Ν	-12.136466	-0.611238	5.222859
C	12.061182	-3.331211	-0.402701	N	-12.484765	1.343709	-4.836276
C	11 412128	-1 091973	-1.068162	C	14 427668	-4 070323	-0.290069
C C	10 144349	-2 273792	0.638424	с Н	15 085264	-4 932717	-0.411061
C C	11 020180	-3 365976	0.030424	н	1/ /72305	-3 697069	0.733264
C C	12 256202	2 201009	1 102559		1/ 71/2007	2 205215	0.096001
с ц	10.84/036	-2.201008	1 1/17762	L C	12 000865	-5.285315	-2.000050
н ц	12 061250	-4.223340	1.147703	L L	12.909803	-5.025875	2.000030
п С	10 100922	-2.152197	-1.910407	п	12 109740	-3.070400	-2.102/19
C	-10.199625	0.541446	-1.279962	п	15.190740	-4.256062	-2.095001
C	-11./11690	0.979288	-3.585660	н	11.8/9320	-5.32/92/	-2.18//52
C	-11.333069	-0.424776	-1.649184	C	12.685954	-5.656530	0.348382
C	-9.849427	1.448698	-2.101631	н	13.409927	-6.448382	0.155224
С	-10.613895	1.760180	-3.232371	н	11.679887	-6.019923	0.141952
С	-12.070490	-0.109561	-2.802378	Н	12.772108	-5.323334	1.382085
Н	-10.316212	2.617920	-3.826806	C	10.474851	6.520872	1.188592
Н	-12.914838	-0.739911	-3.049358	Н	9.934174	6.194982	2.077487
С	-10.073278	-0.149629	1.427619	Н	9.807047	6.530909	0.329417
С	-11.405768	-0.475316	3.902463	Н	10.900384	7.513925	1.342425
С	-10.933049	0.861214	1.935916	C	12.553181	5.628216	2.109230
С	-9.904597	-1.327094	2.200343	Н	13.395609	4.957895	1.942585
С	-10.582286	-1.484015	3.421614	Н	12.020896	5.360878	3.021329
С	-11.577264	0.694845	3.166885	Н	12.908541	6.656542	2.178219
Н	-10.430120	-2.406458	3.966773	C	12.377621	5.972812	-0.301034
Н	-12.212142	1.498643	3.524893	Н	13.185273	5.259488	-0.466371
С	11.695218	0.091340	-1.970721	Н	12.780212	6.972418	-0.129385
Н	11.971109	0.978997	-1.393809	Н	11.708566	5.984007	-1.159031

С	-13.038649	2.750472	-4.707518
Н	-13.692551	2.783755	-3.835832
Н	-13.598162	2.987515	-5.613868
Н	-12.216787	3.452907	-4.584093
С	-11.566622	1.270353	-6.042642
Н	-11.178627	0.254210	-6.116443
Н	-10.746417	1.973928	-5.914719
Н	-12.142460	1.525798	-6.933717
С	-13.651298	0.419191	-5.097172
Н	-14.346059	0.468745	-4.259404
Н	-13.283800	-0.597148	-5.234875
Н	-14.147404	0.757262	-6.007134
С	-13.633418	-0.523662	4.991934
Н	-14.140083	-0.627490	5.952813
Н	-13.924181	-1.329982	4.318258
Н	-13.874844	0.439747	4.547218
С	-11.861148	-1.925699	5.915292
Н	-12.425789	-1.935333	6.847766
Н	-10.795852	-2.005221	6.129171
Н	-12.189597	-2.745900	5.277860
С	-11.704435	0.498002	6.164230
Н	-12.231100	0.373835	7.111894
Н	-11.952147	1.462586	5.725502
Н	-10.627130	0.421287	6.312634
Н	-1.291165	-3.365967	-1.209314
Н	1.342594	-3.341532	-1.215312
С	-0.008715	0.759996	0.264546
Н	-0.009669	1.085901	1.313694
Н	-0.018343	1.674269	-0.344474

Compound 4M

DFT B3LYP/6-31G*, water, S0

Point group: C₁ Total energy: -1957452.61 kcal mol⁻¹ Imaginary frequencies: 0

Symbol	х	Y	z
С	-0.722957	-1.395965	-0.506400
С	-3.478062	-0.881140	-0.327342
С	-1.632553	-2.392732	-0.868008
С	-1.187115	-0.143453	-0.050765
С	-2.548027	0.113164	0.042941
С	-2.995565	-2.127301	-0.778429
Н	-2.900854	1.088362	0.368570
Н	-3.702625	-2.910844	-1.033028
С	0.741409	-1.382584	-0.509275
С	3.487756	-0.817872	-0.339974
С	1.667591	-2.362492	-0.874593

1.184666	-0.121904	-0.055414
2.541108	0.159222	0.033428
3.025744	-2.072145	-0.789702
2.877151	1.140280	0.359253
3.745847	-2.842339	-1.048487
4.943213	-0.547138	-0.265133
7.773937	-0.081449	-0.104046
5.496418	0.261444	0.739124
5.832900	-1.100428	-1.199052
7.211597	-0.904357	-1.128702
6.865991	0.517144	0.824784
4.841140	0.679158	1.498134
5.433501	-1.685009	-2.022601
-4.937327	-0.634548	-0.248932
-7.773337	-0.203778	-0.088426
-5.818345	-1.189981	-1.188934
-5.501543	0.153481	0.765239
-6.877538	0.358774	0.874115
-7.196255	-0.978426	-1.143051
-5.412228	-1.786359	-2.000768
-4.849157	0.593656	1.514379
8.042279	-1.560709	-2.217180
8.569021	-2.449565	-1.851755
8.795866	-0.889586	-2.641450
7.399809	-1.882450	-3.041738
7 320847	1 397519	1 974912
8.153114	0.963905	2.539061
6 501263	1 553575	2 681928
7.645469	2.385567	1.629999
-7 342633	1 225024	2 031188
-7 834540	0.636677	2.031100
-8 047427	2 003962	1 721325
-6 489934	1 730454	2 493204
-8 015669	-1 643059	-2 235139
-8 871130	-2 203968	-1 844338
-7 397/53	-2 350758	-2 79/371
-8 407961	-0.915808	-2.754571
9 321/66	0.131/130	0 009795
-9 3221400	-0.002008	0.000700
0 0/2220	1 582676	0.010015
11 04/205	1.582070	0.292930
10 8502/1	1 820587	1 25//09
0 600121	1.820387	0 547750
10 162/20	2.078218	-0.347738
11 282766	3.941117	1 5727231
0 882446	3.101018 1 716150	-0.008640
12 050549	2 221000	-0.998040
10 225279	1 100661	2.407020
10.525576	-1.109001	-0.132222
12.001102	-3.331211	1 060162
11.412120	-1.091975	-1.000102
11 020100	2265076	0.030424
12.020180	-2.3029/0 2.201000	1 102550
10.944020	-2.201008	1 1/7762
12 061250	-4.22594U	1.14//03
10,100022	-2.15219/	-1.91040/
-10.199823	0.341448	-1.2/3385
-11./11090	0.3/3288	-5.56500
-11.333069	-0.424776	-1.049184

С С C Н Н С С С С С С Н Н С С С С С С Н Н С Н Н Н С Н Н Н

C H

H H

C H H B C C

С

C C

СННСССССННССС

С	-9.849427	1.448698	-2.101631	Н	13.409927	-6.448382	0.155224
С	-10.613895	1.760180	-3.232371	н	11.679887	-6.019923	0.141952
С	-12.070490	-0.109561	-2.802378	н	12.772108	-5.323334	1.382085
н	-10.316212	2.617920	-3.826806	C	10.474851	6.520872	1.188592
н	-12.914838	-0.739911	-3.049358	н	9.934174	6.194982	2.077487
С	-10.073278	-0.149629	1.427619	н	9.807047	6.530909	0.329417
С	-11.405768	-0.475316	3.902463	н	10.900384	7.513925	1.342425
С	-10.933049	0.861214	1.935916	С	12.553181	5.628216	2.109230
С	-9.904597	-1.327094	2.200343	н	13.395609	4.957895	1.942585
С	-10.582286	-1.484015	3.421614	н	12.020896	5.360878	3.021329
С	-11.577264	0.694845	3.166885	н	12.908541	6.656542	2.178219
н	-10.430120	-2.406458	3.966773	С	12.377621	5.972812	-0.301034
н	-12.212142	1.498643	3.524893	н	13.185273	5.259488	-0.466371
С	11.695218	0.091340	-1.970721	н	12.780212	6.972418	-0.129385
Н	11.971109	0.978997	-1.393809	н	11.708566	5.984007	-1.159031
н	10.824713	0.357813	-2.580073	С	-13.038649	2.750472	-4.707518
н	12.515438	-0.126053	-2.660567	Н	-13.692551	2.783755	-3.835832
C	8.631592	2.549334	-1.706410	н	-13.598162	2.987515	-5.613868
Н	7.606292	2.405060	-1.352062	н	-12.216787	3.452907	-4.584093
н	8.864421	1.696368	-2.350850	C	-11.566622	1.270353	-6.042642
Н	8.648405	3.446177	-2.332530	н	-11.178627	0.254210	-6.116443
C	11.276879	0.731923	2.318306	н	-10.746417	1.973928	-5.914719
н	10 421606	0 179504	2 719718	н	-12 142460	1 525798	-6 933717
н	11 819057	1 150574	3 170891	C.	-13 651298	0 419191	-5 097172
н	11 934568	0.003067	1 833451	с Н	-14 346059	0 468745	-4 259404
C	9 019219	-2 424353	1 644062	н	-13 283800	-0 597148	-5 234875
н	9 213044	-3 260303	2 322521	н	-14 147404	0 757262	-6 007134
н	8 064584	-2 614439	1 142742	C C	-13 633418	-0 523662	4 991934
н	8 879005	-1 530071	2 256964	н	-14 140083	-0 627490	5 952813
Ċ	-9 001468	-2 469983	1 778789	н	-13 924181	-1 329982	4 318258
н	-9 218175	-3 372304	2 358073	н	-13 87/8//	0 / 3 9 7 / 7	4.510250
н	-7 947128	-2 218194	1 934544	n C	-11 861148	-1 925699	5 915292
н	-9 109610	-2.210154	0 721318	ч	-12/25789	-1.925055	6 847766
Ċ	-11 175260	2 162775	1 200144	н	-10 795852	-2 005221	6 129171
н	-11 725/15/	1 999206	0.268302	н	-12 189597	-2 7/5900	5 277860
ц	-10 227720	2 664843	0.200302	n C	-11 704425	0 /08002	6 16/220
ц	-10.237720	2.004843	1 810822	с ц	-12 221100	0.498002	7 11120/
C II	11 706659	1 627542	0.952526		11 0521/7	1 462596	5 725502
ц	-10.080215	-1.027343	-0.652250	н	-10.627120	0 421287	6 212624
и Ц	10.580515	2.328837	1 200170		1 201165	2 265067	1 200214
ц	-12.372433	-2.180922	0 1158/2	н	1 2/250/	-3.303907	-1.209314
Ċ	-8 6527/0	2 225262	-1 916112	n C	-0.008715	0 750006	0.264546
ц	7 715/75	2.333303	-1.810113	L L	-0.008713	1 095001	1 212604
ц	-7.713473	2 6/2587	-2.038424	н	-0.009009	1.083901	-0 344474
п ц	-0.002204	2.043387	-0.707803	п	-0.010545	1.074209	-0.344474
N	-0.00/091	3.244039 4 E0E462	-2.423411				
N	11 607629	-4.303403 5 542710	0.022002				
N	12 126466	0.611220	0.933962 5 777950				
N	-12.130400	1 2/2700	1 926276				
IN C	-12.404/05	1.545709	-4.650270				
с ц	14.42/008 15 005264	-4.070323 _/ 022717	-0.290009				
n L	10.000204	-4.332/1/	-0.411001				
п Ц	14.4/2305	-2.03/009 2.105115	0.733204				
п С	12 000005	-3.283315	2 000050				
с D	12,909805	-3.0258/5	-2.000050				
п 	13.383209	-2.0/0400	-2.102/19				
	13.198/40	-4.238U82	-2.093001				
п С	11.8/9320	-5.32/92/	-2.18//52				
L	12.685954	-5.050530	0.348382				

Compound 5M

DFT B3LYP/6-31G*, water, S0

Point group: C₁ Total energy: - 2633343.06 kcal mol⁻¹ Imaginary frequencies: 0

Symbol	х	Y	Z	н
С	-0.722957	-1.395965	-0.506400	Ċ
С	-3.478062	-0.881140	-0.327342	C
С	-1.632553	-2.392732	-0.868008	C
С	-1.187115	-0.143453	-0.050765	C
С	-2.548027	0.113164	0.042941	C
С	-2.995565	-2.127301	-0.778429	C
Н	-2.900854	1.088362	0.368570	н
Н	-3.702625	-2.910844	-1.033028	н
С	0.741409	-1.382584	-0.509275	C C
С	3.487756	-0.817872	-0.339974	C C
С	1.667591	-2.362492	-0.874593	C
С	1.184666	-0.121904	-0.055414	C
С	2.541108	0.159222	0.033428	C
С	3.025744	-2.072145	-0.789702	C
Н	2.877151	1.140280	0.359253	н
Н	3.745847	-2.842339	-1.048487	н
С	4.943213	-0.547138	-0.265133	Ċ
С	7.773937	-0.081449	-0.104046	C
С	5.496418	0.261444	0.739124	C
С	5.832900	-1.100428	-1.199052	C C
С	7.211597	-0.904357	-1.128702	C
С	6.865991	0.517144	0.824784	C
Н	4.841140	0.679158	1.498134	н
Н	5.433501	-1.685009	-2.022601	н
С	-4.937327	-0.634548	-0.248932	C
С	-7.773337	-0.203778	-0.088426	ч
С	-5.818345	-1.189981	-1.188934	н
С	-5.501543	0.153481	0.765239	н
С	-6.877538	0.358774	0.874115	C
С	-7.196255	-0.978426	-1.143051	н
Н	-5.412228	-1.786359	-2.000768	н
Н	-4.849157	0.593656	1.514379	н
С	8.042279	-1.560709	-2.217180	C
Н	8.569021	-2.449565	-1.851755	н
Н	8.795866	-0.889586	-2.641450	н
Н	7.399809	-1.882450	-3.041738	н
С	7.320847	1.397519	1.974912	C
Н	8.153114	0.963905	2.539061	Ĥ
Н	6.501263	1.553575	2.681928	н
Н	7.645469	2.385567	1.629999	н
С	-7.342633	1.225024	2.031188	C

Н	-7.834540	0.636677	2.813458
н	-8.047427	2.003962	1.721325
н	-6.489934	1.730454	2.493204
С	-8.015669	-1.643059	-2.235139
н	-8.871130	-2.203968	-1.844338
н	-7.397453	-2.350758	-2.794371
н	-8.407961	-0.915808	-2.954318
В	9.321466	0.131439	0.009795
В	-9.322178	-0.002008	0.018015
С	9.943329	1.582676	0.292536
C C	11.044205	4.152131	0.730092
c C	10 850341	1 820587	1 354408
c c	9 600121	2 678218	-0 547758
c C	10 162480	3 941117	-0 327231
c c	11 383766	3 101618	1 572203
с ц	0 882446	1 7/6/50	-0.008640
н ц	12 050549	2 221000	-0.338040
n C	10 225270	1 100661	0 15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	10.525576	-1.109001	-0.132222
	12.001102	-5.551211	-0.402701
	11.412128	-1.091973	-1.068162
	10.144349	-2.2/3/92	0.638424
	11.020180	-3.365976	0.514687
C	12.256293	-2.201008	-1.192558
H	10.844936	-4.225940	1.147763
H	13.061259	-2.152197	-1.918487
C	-10.199823	0.341448	-1.279982
С	-11.711690	0.979288	-3.585660
С	-11.333069	-0.424776	-1.649184
С	-9.849427	1.448698	-2.101631
С	-10.613895	1.760180	-3.232371
С	-12.070490	-0.109561	-2.802378
Н	-10.316212	2.617920	-3.826806
Н	-12.914838	-0.739911	-3.049358
С	-10.073278	-0.149629	1.427619
С	-11.405768	-0.475316	3.902463
С	-10.933049	0.861214	1.935916
С	-9.904597	-1.327094	2.200343
С	-10.582286	-1.484015	3.421614
С	-11.577264	0.694845	3.166885
н	-10.430120	-2.406458	3.966773
н	-12.212142	1.498643	3.524893
С	11.695218	0.091340	-1.970721
н	11.971109	0.978997	-1.393809
н	10.824713	0.357813	-2.580073
н	12.515438	-0.126053	-2.660567
С	8.631592	2.549334	-1.706410
Н	7.606292	2,405060	-1.352062
Н	8.864421	1.696368	-2.350850
н	8 648405	3 446177	-2 332530
c	11 276879	0 731923	2 318306
ч Н	10 421606	0 179504	2.310300
 Н	11 210057	1 15057/	2.715710
н	11 02/1569	0 002067	1 833/121
ri C	0.010310	-2 12125007	1 611062
с ц	9.013014	-2.424333	1.044002 2.22251
н Ц	9.213044	-3.200303	1 1/27/2
п ц	0.004584 0.070005	-2.014439	1.142/42
п С	8.879005	-1.3300/1	2.20504
L	-9.001468	-2.469983	1.//8/89
Н	-9.218175	-3.372304	2.358073
--------	------------	----------------------	-----------
Н	-7.947128	-2.218194	1.934544
Н	-9.109610	-2.724552	0.721318
С	-11.175260	2.162775	1.200144
н	-11.725454	1.999206	0.268302
Н	-10.237720	2.664843	0.939161
н	-11.755417	2.860262	1.810822
С	-11.796658	-1.627543	-0.852536
н	-10.980315	-2.328897	-0.653270
н	-12.572433	-2.180922	-1.389170
Н	-12.211755	-1.330098	0.115842
C	-8 653749	2 335363	-1 816113
с Н	-7 715475	1 817269	-2 038424
н	-8 602264	2 6/3587	-0 767865
н	-8 687001	2 2445307	-0.707805
N	12 002822	J.244039	-2.423411
IN N	13.002622	-4.303403	-0.377393
IN NI	11.007028	5.543710	0.933982
N N	-12.136466	-0.611238	5.222859
N	-12.484765	1.343709	-4.836276
C	14.427668	-4.070323	-0.290069
н	15.085264	-4.932717	-0.411061
н	14.472305	-3.697069	0.733264
Н	14.714327	-3.285315	-0.986991
С	12.909865	-5.025875	-2.000050
Н	13.583209	-5.878486	-2.102719
Н	13.198740	-4.238082	-2.693061
Н	11.879320	-5.327927	-2.187752
С	12.685954	-5.656530	0.348382
Н	13.409927	-6.448382	0.155224
Н	11.679887	-6.019923	0.141952
н	12.772108	-5.323334	1.382085
С	10.474851	6.520872	1.188592
Н	9.934174	6.194982	2.077487
н	9.807047	6.530909	0.329417
н	10.900384	7.513925	1.342425
С	12.553181	5.628216	2.109230
н	13.395609	4.957895	1.942585
н	12 020896	5 360878	3 021329
н	12.020050	6 656542	2 178219
C	12.300541	5 972812	-0.30103/
ц	12 125272	5 250/88	-0.301034
н	12 780212	6 072/18	-0.400371
п u	12.700212	0.972418 E 094007	1 150021
	12.029640	3.364007	-1.139031
	-13.036049	2.750472	-4.707516
н	-13.692551	2.783755	-3.835832
н	-13.598162	2.98/515	-5.013808
н	-12.216/8/	3.452907	-4.584093
C	-11.566622	1.270353	-6.042642
Н	-11.178627	0.254210	-6.116443
Н	-10.746417	1.973928	-5.914719
Н	-12.142460	1.525798	-6.933717
С	-13.651298	0.419191	-5.097172
Н	-14.346059	0.468745	-4.259404
Н	-13.283800	-0.597148	-5.234875
Н	-14.147404	0.757262	-6.007134
С	-13.633418	-0.523662	4.991934
Н	-14.140083	-0.627490	5.952813
Н	-13.924181	-1.329982	4.318258

Н	-13.874844	0.439747	4.547218
С	-11.861148	-1.925699	5.915292
Н	-12.425789	-1.935333	6.847766
Н	-10.795852	-2.005221	6.129171
Н	-12.189597	-2.745900	5.277860
С	-11.704435	0.498002	6.164230
Н	-12.231100	0.373835	7.111894
Н	-11.952147	1.462586	5.725502
Н	-10.627130	0.421287	6.312634
Н	-1.291165	-3.365967	-1.209314
Н	1.342594	-3.341532	-1.215312
С	-0.008715	0.759996	0.264546
Н	-0.009669	1.085901	1.313694
Н	-0.018343	1.674269	-0.344474

Compound 5M

DFT B3LYP/6-31G*, water, S_0

Point group: Ci Total energy: -2633397.46 kcal mol⁻¹

Symbol	х	Y	Z
С	1.332320	0.994310	-0.567460
N	0.314620	1.831600	-1.017960
Н	0.450370	2.703510	-1.510550
С	-0.980160	1.338470	-0.729070
0	-2.020840	1.916790	-1.036130
С	-0.706900	0.088170	-0.039640
С	0.706900	-0.088170	0.039640
С	-1.332320	-0.994310	0.567460
N	-0.314620	-1.831600	1.017960
Н	-0.450370	-2.703510	1.510550
С	0.980160	-1.338470	0.729070
0	2.020840	-1.916790	1.036130
С	-2.714330	-1.314190	0.759080
С	-3.250230	-2.442200	1.365810
Н	-2.649200	-3.247080	1.774030
С	-4.658360	-2.453550	1.388310
Н	-5.235790	-3.270990	1.803720
С	-5.233700	-1.339090	0.800160
S	-3.997920	-0.246510	0.213050
С	-6.656220	-1.032850	0.643320
С	-9.442210	-0.467220	0.344540
С	-7.110530	-0.084470	-0.285180
С	-7.619130	-1.690600	1.425420
С	-8.983940	-1.443070	1.277300
С	-8.464290	0.220990	-0.430460
Н	-6.394540	0.423820	-0.925600
Н	-7.298680	-2.404660	2.177820

С	-8.819360	1.272510	-1.465040	Н	-14.450910	-5.045340	-2.524040
Н	-9.148450	2.205580	-0.996040	C	-16.245490	-3.925140	-0.913160
Н	-7.948510	1.504570	-2.085040	Н	-16.574300	-3.231960	-0.142080
Н	-9.620540	0.950420	-2.137730	Н	-16.101820	-3.400100	-1.857110
С	-9.923120	-2.228970	2.173110	н	-16.971650	-4.729930	-1.027690
Н	-9.360350	-2.737840	2.961160	C	-15.083560	-5.286990	0.802250
Н	-10.669030	-1.595240	2.663160	н	-14.118660	-5.714320	1.073300
Н	-10.469900	-2.994040	1.611900	н	-15.421640	-4.599210	1.573680
В	-10.981990	-0.162870	0.171540	н	-15.824220	-6.073020	0.653640
С	-11.505840	1.340630	0.152590	С	2.714330	1.314190	-0.759080
C	-12.417060	4.012210	0.126850	C	3.250230	2.442200	-1.365810
C	-11 149660	2 243080	1 191500	S	3 997920	0 246510	-0 213050
C C	-12 336470	1 818950	-0.891190	ч	2 649200	3 247080	-1 774030
C	-12 771350	3 152810	-0.903200	C I	4 658360	2 453550	-1 388310
C C	-11 620/70	3 559000	1 17//30	C	5 233700	1 339090	-0.800160
L L	12 206000	2 479020	1.174450	с ц	5.255700	2 270000	1 202720
	11 241220	1 212/00	1 002270		5.255790	1 022950	-1.803720
	-11.341230	4.213480	1.992370	C	0.050220	1.032850	-0.043320
	-12.020590	-1.352450	0.004250	C	7.110530	0.084470	0.285180
C	-13.891830	-3.443670	-0.341570	C	7.619130	1.690600	-1.425420
C	-13.204480	-1.419170	0.796820	C II	8.464290	-0.220990	0.430460
C	-11.814060	-2.368920	-0.961390	Н	6.394540	-0.423820	0.925600
C	-12./54250	-3.395910	-1.134250	C	8.983940	1.443070	-1.277300
С	-14.114100	-2.466240	0.623950	Н	7.298680	2.404660	-2.177820
Н	-12.557940	-4.140630	-1.893320	C	9.442210	0.467220	-0.344540
Н	-14.995170	-2.489420	1.255220	C	8.819360	-1.272510	1.465040
С	-10.270780	1.845530	2.360930	C	9.923120	2.228970	-2.173110
Н	-10.582950	0.900830	2.816640	В	10.981990	0.162870	-0.171540
Н	-9.227770	1.723840	2.051600	Н	9.148450	-2.205580	0.996040
Н	-10.300320	2.610650	3.141840	Н	7.948510	-1.504570	2.085040
С	-12.787090	0.948630	-2.048000	Н	9.620540	-0.950420	2.137730
Н	-13.558000	0.237060	-1.733780	Н	9.360350	2.737840	-2.961160
Н	-13.208760	1.561160	-2.849800	Н	10.669030	1.595240	-2.663160
Н	-11.967060	0.366910	-2.479350	Н	10.469900	2.994040	-1.611900
С	-13.533590	-0.396690	1.866110	C	11.505840	-1.340630	-0.152590
Н	-14.353470	-0.749920	2.497770	C	12.026590	1.352450	-0.004250
н	-12.681980	-0.191620	2.522180	С	11.149660	-2.243080	-1.191500
н	-13.840600	0.557460	1.425780	С	12.336470	-1.818950	0.891190
С	-10.594990	-2.411930	-1.862660	С	13.204480	1.419170	-0.796820
Н	-9.703430	-2.726560	-1.310270	C	11.814060	2.368920	0.961390
Н	-10.747370	-3.121810	-2.680640	C	11.620470	-3.559000	-1.174430
н	-10 368000	-1 440020	-2 310390	C	10 270780	-1 845530	-2 360930
N	-12 879660	5 448650	0 147580	C C	12 771350	-3 152810	0.903200
N	-1/ 918930	-/ 537190	-0 505700	C	12.771000	-0.948630	2 0/8000
C C	-13 707330	5 816290	-0.000700	C	1/ 11/100	2 466240	-0 623950
L L	14 600260	5.810290	1 099460	C	12 522500	0.206600	1 966110
п	12 000200	5.194400	-1.088400	C	13.355390	2 205010	-1.000110
	-13.990250	0.805020	-0.956450	C	12.754250	3.393910	1.154250
	-13.108070	5.080050	-1.959780	C	10.594990	2.411930	1.802000
	-13./31900	5.688350	1.379090	L L	12.417060	-4.012210	-0.126850
н	-13.13/940	5.498720	2.270430	н	11.341230	-4.213480	-1.992370
н	-14.06/6/0	6.725530	1.366970	н	10.582950	-0.900830	-2.816640
Н	-14.582950	5.009220	1.340900	н	9.227770	-1.723840	-2.051600
C	-11.675420	6.370340	0.172380	Н	10.300320	-2.610650	-3.141840
Н	-11.090100	6.176390	1.068040	Н	13.386880	-3.478920	1.730410
Н	-11.079280	6.174160	-0.718090	Н	13.558000	-0.237060	1.733780
Н	-12.032550	7.400020	0.176250	Н	13.208760	-1.561160	2.849800
С	-14.538820	-5.546920	-1.562030	Н	11.967060	-0.366910	2.479350
Н	-13.600850	-6.024120	-1.282810	C	13.891830	3.443670	0.341570
Н	-15.333640	-6.290070	-1.605980	Н	14.995170	2.489420	-1.255220

14.353470	0.749920	-2.497770	Н	13.108670	-5.680650	1.959780
12.681980	0.191620	-2.522180	Н	13.137940	-5.498720	-2.270430
13.840600	-0.557460	-1.425780	Н	14.067670	-6.725530	-1.366970
12.557940	4.140630	1.893320	Н	14.582950	-5.009220	-1.340900
9.703430	2.726560	1.310270	Н	11.090100	-6.176390	-1.068040
10.747370	3.121810	2.680640	Н	11.079280	-6.174160	0.718090
10.368000	1.440020	2.310390	Н	12.032550	-7.400020	-0.176250
12.879660	-5.448650	-0.147580	Н	13.600850	6.024120	1.282810
14.918930	4.537190	0.505700	Н	15.333640	6.290070	1.605980
13.707330	-5.816290	1.060530	Н	14.450910	5.045340	2.524040
13.731900	-5.688350	-1.379090	Н	16.574300	3.231960	0.142080
11.675420	-6.370340	-0.172380	Н	16.101820	3.400100	1.857110
14.538820	5.546920	1.562030	Н	16.971650	4.729930	1.027690
16.245490	3.925140	0.913160	Н	14.118660	5.714320	-1.073300
15.083560	5.286990	-0.802250	Н	15.421640	4.599210	-1.573680
14.600260	-5.194400	1.088460	Н	15.824220	6.073020	-0.653640
13.990250	-6.863020	0.958450				
	14.353470 12.681980 13.840600 12.557940 9.703430 10.747370 10.368000 12.879660 14.918930 13.707330 13.731900 11.675420 14.538820 16.245490 15.083560 14.600260 13.990250	14.3534700.74992012.6819800.19162013.840600-0.55746012.5579404.1406309.7034302.72656010.7473703.12181010.3680001.44002012.879660-5.44865014.9189304.53719013.707330-5.81629013.731900-5.68835011.675420-6.37034014.5388205.54692016.2454903.92514015.0835605.28699014.600260-5.19440013.990250-6.863020	14.3534700.749920-2.49777012.6819800.191620-2.52218013.840600-0.557460-1.42578012.5579404.1406301.8933209.7034302.7265601.31027010.7473703.1218102.68064010.3680001.4400202.31039012.879660-5.448650-0.14758014.9189304.5371900.50570013.707330-5.8162901.06053013.731900-5.688350-1.37909011.675420-6.370340-0.17238014.5388205.5469201.56203015.0835605.286990-0.80225014.600260-5.1944001.08846013.990250-6.8630200.958450	14.3534700.749920-2.497770H12.6819800.191620-2.522180H13.840600-0.557460-1.425780H12.5579404.1406301.893320H9.7034302.7265601.310270H10.7473703.1218102.680640H10.3680001.4400202.310390H12.879660-5.448650-0.147580H13.707330-5.8162901.060530H13.731900-5.688350-1.379090H11.675420-6.370340-0.172380H14.5388205.5469201.562030H15.0835605.286990-0.802250H14.600260-5.1944001.088460H13.990250-6.8630200.958450	14.3534700.749920-2.497770H13.10867012.6819800.191620-2.522180H13.13794013.840600-0.557460-1.425780H14.06767012.5579404.1406301.893320H14.5829509.7034302.7265601.310270H11.09010010.7473703.1218102.680640H11.07928010.3680001.4400202.310390H12.03255012.879660-5.448650-0.147580H13.60085014.9189304.5371900.505700H15.33364013.707330-5.8162901.060530H14.45091013.731900-5.688350-1.379090H16.57430011.675420-6.370340-0.172380H16.10182014.5388205.5469201.562030H14.11866015.0835605.286990-0.802250H15.42164014.600260-5.1944001.088460H15.82422013.990250-6.8630200.958450	14.3534700.749920-2.497770H13.108670-5.68065012.6819800.191620-2.522180H13.137940-5.49872013.840600-0.557460-1.425780H14.067670-6.72553012.5579404.1406301.893320H14.582950-5.0092209.7034302.7265601.310270H11.090100-6.17639010.7473703.1218102.680640H11.079280-6.17416010.3680001.4400202.310390H12.032550-7.40002012.879660-5.448650-0.147580H13.6008506.02412014.9189304.5371900.505700H15.3336406.29007013.707330-5.8162901.060530H14.4509105.04534013.731900-5.688350-1.379090H16.5743003.23196011.675420-6.370340-0.172380H16.1018203.40010014.5388205.5469201.562030H14.1186605.71432015.0835605.286990-0.802250H15.4216404.59921014.600260-5.1944001.088460H15.8242206.07302013.990250-6.8630200.958450

References

- 1. S. S. Zalesskiy and V. P. Ananikov, *Organometallics*, 2012, **31**, 2302-2309.
- S. Griesbeck, Z. Zhang, M. Gutmann, T. Lühmann, R. M. Edkins, G. Clermont, A. N. Lazar, M. Haehnel, K. Edkins, A. Eichhorn, M. Blanchard-Desce, L. Meinel and T. B. Marder, *Chem. Eur. J.*, 2016, **22**, 14701-14706.
- 3. A. G. Crawford, Z. Liu, I. A. I. Mkhalid, M.-H. Thibault, N. Schwarz, G. Alcaraz, A. Steffen, J. C. Collings, A. S. Batsanov, J. A. K. Howard and T. B. Marder, *Chem. Eur. J.*, 2012, **18**, 5022-5035.
- 4. Y. Shi, K. Hou, Y. Wang, K. Wang, H. Ren, M. Pang, F. Chen and S. Zhang, *J. Mater. Chem. A*, 2016, **4**, 5415-5422.
- 5. K. Yang, T. He, X. Chen, S. Z. D. Cheng and Y. Zhu, *Macromolecules*, 2014, **47**, 8479-8486.
- 6. P. Harrisson, J. Morris, T. B. Marder and P. G. Steel, *Org. Lett.*, 2009, **11**, 3586-3589.
- 7. S.-F. Liu, Q. Wu, H. L. Schmider, H. Aziz, N.-X. Hu, Z. Popović and S. Wang, *J. Am. Chem. Soc.*, 2000, **122**, 3671-3678.
- 8. N. S. Makarov, M. Drobizhev and A. Rebane, *Opt. Express*, 2008, **16**, 4029-4047.
- 9. S. de Reguardati, J. Pahapill, A. Mikhailov, Y. Stepanenko and A. Rebane, *Opt. Express*, 2016, **24**, 9053-9066.
- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. P. Jr., F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- 11. A. D. Becke, J. Chem. Phys., 1993, **98**, 5648-5652.
- 12. C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785-789.
- 13. P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem.*, 1994, **98**, 11623-11627.
- 14. G. A. Petersson and M. A. Al-Laham, J. Chem. Phys., 1991, **94**, 6081-6090.
- 15. G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley and J. Mantzaris, *J. Chem. Phys.*, 1988, **89**, 2193-2218.
- 16. T. Yanai, D. P. Tew and N. C. Handy, *Chem. Phys. Lett.*, 2004, **393**, 51-57.
- 17. S. Jungsuttiwong, R. Tarsang, T. Sudyoadsuk, V. Promarak, P. Khongpracha and S. Namuangruk, *Organic Electronics*, 2013, **14**, 711-722.
- 18. J. Preat, J. Phys. Chem. C, 2010, **114**, 16716-16725.
- 19. P. Wiggins, J. A. G. Williams and D. J. Tozer, *J. Chem. Phys.*, 2009, **131**, 091101.
- 20. M. J. G. Peach, P. Benfield, T. Helgaker and D. J. Tozer, *J. Chem. Phys.*, 2008, **128**, 044118.
- 21. M. J. G. Peach, A. J. Cohen and D. J. Tozer, *Phys. Chem. Chem. Phys.*, 2006, **8**, 4543-4549.
- 22. J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999-3094.