

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

High prevalence of hyperuricemia and the impact on nonvalvular atrial fibrillation: Results from the Guangzhou Heart Study

- · ·	
Journal:	BMJ Open
Manuscript ID	bmjopen-2018-028007
Article Type:	Research
Date Submitted by the Author:	20-Nov-2018
Complete List of Authors:	Lin, Wei-dong; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences Deng, Hai; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Guo, Pi Liu, Fangzhou; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Chen, Ruyin; Shantou University Medical College, Preventive Medicine Fang, Xianhong; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Zhan, xianzhang; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Liao, Hongtao; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Liao, Hongtao; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Liao, Hongtao; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Liu, Yang; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Liu, Yang; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Wang, Feng; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Wai, Jun; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Wei; Wei; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Wei; Wei; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Wei, Wei; Guangdong Provincial Cardiovascular In
Keywords:	Cardiac Epidemiology < CARDIOLOGY, EPIDEMIOLOGY, CARDIOLOGY

SCHOLARONE [™] Manuscripts
For noar roviow only http://bmionan.hmi.com/site/about/guidalines.yhtml
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

High prevalence of hyperuricemia and the impact on non-valvular atrial fibrillation: Results from the Guangzhou Heart Study

Weidong Lin^{1, a}, Hai Deng^{1, a}, Pi Guo^{1, b}, Fangzhou Liu^a, Ruyin Chen^c, Xianhong Fang^a, Xianzhang Zhan^a, Hongtao Liao^a, Wenxiang Huang^a, Yang Liu^a, Feng Wang^a, Murui Zheng^d, Huazhang Liu^d, Jun Huang^a, Wei Wei^a, Yumei Xue^{*, a}, Shulin Wu^{*, a}.

^a Department of cardiology, Guangdong Provincial Cardiovascular Institute, Guangdong General

Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China

^b Department of Preventive Medicine, Shantou University Medical College, Shantou, China

^c Department of Clinical Medicine, Shantou University Medical College, Shantou, China

^d Guangzhou Center for Disease Control and Prevention, Guangzhou, China

Address for correspondence:

Yumei Xue, MD

Department of Cardiology

96 Dongchuan Road, Yuexiu District, Guangzhou City, Guangdong Province, China

é lev

Phone: +8613570082363

E-Mail: xymgdci@163.com

Shulin Wu, MD, FACC

Department of Cardiology

96 Dongchuan Road, Yuexiu District, Guangzhou City, Guangdong Province, China

Phone: +8613902255336

1 2 3 4 5 6 7	E-Mail: drwushulin@163.com
8 9 10 11 12	Word count: 2980
12131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960	

ABSTRACT

Objectives: Epidemiological features of hyperuricemia (HUA) have regional difference. The prevalence of HUA and non-valvular atrial fibrillation (NVAF) in southern China is not reported. **Design:** A cross-sectional study.

Setting and participants: A total of 11488 permanent residents aged 35 or above from urban and rural areas of Guangzhou city were enrolled in this study. A questionnaire was used to compile each participant's demographic information and relevant epidemiological factors for HUA and NVAF. A range of blood tests were assessed and single-lead 24 hours ECG was performed for all participants.

Main outcome measures: The criterion of diagnosis of NVAF followed the 2014 AHA/ACC/HRS guideline. HUA was defined as serum uric acid (SUA) >420µmol/L in males and >360µmol/L in females.

Results: The incidence of HUA was 39.6% (44.8% in male and 36.7% in female, respectively) and 144 residents (1.25%) were found with NVAF. Prevalence of HUA of women increased with age but maintained a steady high level in men. After adjusting for potential confounding factors, factors including age, living in urban areas, alcohol consumption, central obesity, elevated fasting plasma glucose, elevated blood pressure, reduced HDL cholesterol and raised triglycerides level were associated with the increased risk of HUA. Residents with HUA had a markedly higher risk of NVAF. According to subgroup analysis separated by sex, the variable of SUA had a modest predictive value of NVAF in females while the value was mild in males.

Conclusions: The prevalence of HUA was extremely high among citizens of southern China. HUA was strongly related to NVAF especially in Chinese females according to our study.

Strengths and limitations of this study:

- The study investigates the prevalence of hyperuricemia and its impact on non-valvular atrial fibrillation.
- This cross-sectional study includes a large cohort from urban and rural areas of Guangzhou.
- The surveyed areas are all randomized to increase reliability.
- This study doesn't include resident under age 35.
- This is a cross-Sectional study and the results need to be further clarified through prospective studies.

INTRODUCTION

The prevalence of hyperuricemia (HUA) ranged from 13.3% to 21.6% and showed sex related difference according to reports from different countries or regions ^[1, 2]. Regional difference could also be observed in same country, which strongly implied the impact of surrounding. climate, economic state and especially the dietary habits [3, 4]. A number of epidemiologic studies have reported a relation between SUA level and variety cardiovascular conditions such as hypertension, coronary artery disease, vascular dementia, metabolic syndrome, cerebrovascular disease and kidney disease, but the relative association remains controversial according to other studies like Framingham Heart Study which argued that uric acid is not a risk factor for cardiovascular disease ^[5]. Prevalence of HUA in typical southern China city like Guangzhou has not been reported. As a region with unique dietary habit and climate, prevalence of HUA and its association with cardiovascular disease should provide additional information in this study field. Atrial fibrillation (AF) has been well known as the most common clinical cardiac arrhythmia which contributes to increased morbidity and mortality especially in those with cardiovascular risk factors ^[6]. As previously reported, number of AF patients is estimated to rise to 9 million by 2050 in China ^[7] and the increasing prevalence of AF also makes it a global health problem ^[8, 9]. The association between AF and HUA has been reported a lot^[10], but whether SUA is one of risk factors of AF remains under discussion.

We conducted this cross-sectional population-based study to reveal the prevalence of HUA and its association with non-valvular AF(NVAF) in Guangzhou residents.

Materials and methods

Study population

We conducted a cardiovascular epidemiological survey (the Guangzhou Heart Study) from July 2015 to August 2017 in Guangzhou. Two streets (Dadong Street and Baiyun Street) were randomized selected to stand for urban areas while one street and two towns (Xiaoguwei Street, Xinzao Town and Nancun Town) were chosen as rural areas. A sample of permanent residents aged 35 and above was selected by cluster sampling in each community of the selected areas demonstrated above.

The residents in the study sites were invited to participate in this study by 3-round mobilization via door-to-door visits or telephone appointments. Individuals enrolled need to meet the criterions as: 1) Residents who were registered in the Guangzhou Household Register; 2) Aged 35 years or older; 3) Living in the selected communities for at least 6 months by the day they participant the survey. Residents were excluded when meet criterions as: 1) mental or cognitive disorders including dementia, disturbance of understanding, and deaf-mutters; 2) mobility difficulties including high paraplegia; 3) pregnant or lactating women; 4) malignant tumors under treatment; 5) floating people including those who rented the houses or apartments;6) non-responders during the 3-round mobilization.

This study was approved by the Guangzhou Medical Ethics Committee of the Chinese Medical Association. All procedures performed in studies involving human participants were in accordance with the ethical standards of the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Data collection

The residents in the study sites were invited to participate in this study by 3-round mobilization via door-to-door visits or telephone appointments. A structured and interviewer-administered questionnaire was used to survey each participant's demographic information, personal history of disease, living habit, family history and emotional status. Physical examination including measurement of waist circumference, height, weight, blood pressure, heart rate and body fat were performed by standard instruments and protocols. Blood samples were collected and tested according standardized procedure by authorized medical laboratory. Electrocardiograph (ECG) and 24-hour single-lead ECG were recorded in each participant and reports were assessed by two independent cardiologists. Detailed method has been reported in Deng et al's work which was accepted by *Scientific Reports* just now.

Cohort definition

Subjects were diagnosed with NVAF meeting any one criterion as following: 1) ECG screening of subject shows AF pattern; 2) ECG screening does not find AF but subject has AF history with evidence; 3) 24 hours single-lead ECG record shows AF episodes. The criterion of diagnosis of NVAF followed the 2014 AHA/ACC/HRS guideline¹6¹. ECG and single-lead 24 hours ECG record were performed by well-trained physicians and AF diagnosis were determined by two specific electrophysiological experts. HUA was defined as serum uric acid (SUA) >420µmol/L in males and >360µmol/L in females. The metabolic syndrome (MetS) is defined as having at least three or five characteristic signs as following^[7]: Abdominal obesity (defined as waist circumference≥90cm for men and≥80cm for women). Raised Triglycerides level: Triglycerides > 150 mg/dL (1.7 mmol/L) or specific treatment for this lipid abnormality. Reduced HDL

Page 9 of 26

BMJ Open

cholesterol: < 40 mg/dL (1.03 mmol/L) in males and < 50 mg/dL (1.29 mmol/L) in females or specific treatment for this lipid abnormality. Raised blood pressure (BP): systolic BP > 130 mmHg or diastolic BP > 85 mmHg or treatment for previously diagnosed HTN. Raised fasting plasma glucose (FPG): FPG > 100 mg/dL (5.6 mmol/L) or previously diagnosed type 2 DM.

Patient and Public Involvement

The role of patients in this study was residents. They were not involved in the development of the research question and outcome measures. All residents were informed of the right to inquire their data and test results. If residents were diagnosed with cardiovascular disease, they were notified to Guangdong general hospital for further treatment by phone.

Statistical analysis

Numerical variables were expressed as mean±standard deviation and categorical variables were expressed as percentage. Comparison between two groups were made using the Student *t* test or chi-square tests, as appropriate. Multivariate logistic regression models were developed to investigate the risk factors for HUA and the associations between the prevalence of Non-valvular AF and HUA. The odds ratios (ORs) and corresponding 95% confidence intervals (95% CIs) were calculated to assess the associations. Receiver-operating characteristic (ROC) analyses were used to detect the cutoff value of SUA in prediction of non-valvular AF. SAS software version 9.3 (SAS Institute Inc.; Cary, NC) was used for the statistical analyses. All statistical tests were 2-sided, and a P<0.05 was statistically significant.

RESULTS

Baseline characteristics

The study recruited 11488 residents and the incidence of HUA was 39.6% (44.8% in male and 36.7% in female). Among women, the SUA value and the incidence of HUA increased with age. In contrast, the SUA value and incidence of HUA were not affected by age among men [Figure 1]. The incidence of HUA in urban areas is higher than rural areas (Table 1). According to the medical history, the proportion of male with HUA was significantly higher than female. The age was significantly higher in residents with HUA. Regardless of gender, the abdominal circumference and body mass index were significantly greater in residents with HUA. Larger proportion of Non-valvular AF, HTN, DM, Central obesity, Elevated BP, Stroke/Transient Ischemic Attack (TIA) were observed in residents with HUA. According to laboratory examinations, the Hemoglobin (HGB), Platelet (PLT), Red blood cell counts (RBC), Low-density lipoprotein (LDL), Cholesterol (CHOL), fasting plasma glucose (FGP) were significantly higher while Creatinine, High-density lipoprotein were significantly lower in residents with HUA. Significant larger proportion of Reduced HDL cholesterol, Raised TG level and MetS were observed in residents with HUA.

	Total	HUA	No HUA	
	(<i>n</i> =11488)	(<i>n</i> =4547)	(<i>n</i> =6941)	<i>P</i> -value
Clinical characteristics				
Male (n, %)	4047(35.2)	1814(39.9)	2233(32.2)	< 0.01
Age (yrs)	58.22±11.74	59.98±11.44	57.06±11.79	< 0.01
Urban (n, %)	5403(46.9)	2210(48.6)	3193(46.0)	0.01
Systolic Bp (mmhg)	130.51±20.52	134.16±20.39	128.13±20.25	< 0.01

BMJ Open

2					
3 4	Diastolic Bp (mmhg)	80.70±11.61	82.30±11.60	79.62±11.49	< 0.01
5 6	Non-valvular AF (n, %)	144(1.3)	91(2.0)	53(0.8)	< 0.01
7 8	Hypertension (n, %)	3377(29.4)	1744(38.4)	1633(23.5)	< 0.01
9 10	Diabetes mellitus (n, %)	1050(9.1)	528(11.6)	522(7.5)	< 0.01
11 12	Elevated BP (n, %) &	6698(58.3)	3092(68.0)	3606(52.0)	< 0.01
13 14	BMI (kg/m2)	24.01±3.55	25.08±3.55	23.32±3.37	< 0.01
15 16	Abdominal circumference (cm)	84.41±10.10	87.69±9.61	82.26±9.83	< 0.01
17 18	Male	84.41±10.11	87.71±9.63	82.26±9.83	< 0.01
19 20	Female	82.76±9.98	86.36±9.64	80.66±9.56	< 0.01
21 22	Central obesity (n, %) §	6183(53.8)	2984(65.6)	3199(46.1)	< 0.01
23 24	Heart failure (n, %)	114(1.0)	50(1.1)	64(0.9)	0.39
25 26	Stroke/TIA (n, %)	274(2.4)	128(2.8)	146(2.1)	0.02
20 27 28	Alcohol consumption (n, %)	2467(21.5)	1060(23.3)	1391(20.0)	< 0.01
28 29 30	Smoking (n, %)	2451(21.3)	1114(24.5)	1353(19.5)	< 0.01
31	Laboratory examinations				
32 33	HGB (g/L)	138.74±14.07	140.14±14.11	137.83±13.97	< 0.01
34 35	PLT (10 ⁹ /L)	243.78±60.67	245.42±61.76	242.71±59.93	0.019
36 37	RBC (10 ¹² /L)	4.76±0.64	4.80±0.65	4.73±0.63	< 0.01
38 39	HDL cholesterol(mmol/L)	1.49±0.55	1.36±0.51	1.58±0.56	< 0.01
40 41	Reduced HDL cholesterol (n, %) \Box	2589(22.5)	1369(30.1)	1220(17.6)	< 0.01
42 43	LDL (mmol/L)	3.64±1.03	3.72±1.04	3.58±1.01	< 0.01
44 45	CHOL (mmol/L)	5.486±1.13	5.57±1.17	5.42±1.11	< 0.01
46 47	TG (mmol/L)	1.696±1.43	1.47±1.06	2.05±1.18	< 0.01
48 49	Raised TG level (n, %) f	3787(33.0)	2140(47.1)	1647(23.7)	< 0.01
50 51	FPG (mmol/L)	5.586±1.57	5.69±1.52	5.51±1.60	< 0.01
52 53	Elevated FPG (n, %) ¶	3375(29.4)	1653(36.4)	1722(24.8)	< 0.01
54 55	Uric acid (umol/L)	367.20±98.39	460.60±72.77	306.01±55.62	< 0.01
56 57	Male	367.00±98.30	460.60±72.70	306.01±55.63	< 0.01
58 59	Female	340.76±89.40	434.37±64.43	286.30±46.52	<0.01
CO					

Creatinine(umol/L)	76.89±25.45	83.78±33.25	72.36±17.22	< 0.01
Mets (n, %)	3519(30.6)	2014(44.3)	1505(21.7)	< 0.01

BP: Blood pressure; TIA: Transient Ischemic Attack; BMI: Body Mass Index; HGB: Hemoglobin; PLT: Platelet; RBC: Red blood cell counts; FPG: fasting plasma glucose; TG: Triglycerides; HDL: High-density lipoprotein; LDL: Low-density lipoprotein; CHOL: Cholesterol; Mets: Metabolic syndrome

§: Central obesity was defined as waist circumference >85cm for men and >80cm for women

¶: Elevated FPG was defined as fasting plasma glucose > 100 mg/dL (5.6 mmol/L) or previously diagnosed type 2 diabetes.

&: Elevated BP was defined as systolic BP > 130 or diastolic BP > 85 mm Hg or history of hypertension

 \Box : Reduced HDL was defined as HDL <40 mg/dL (1.03 mmol/L) in men or <50 mg/dL (1.29 mmol/L) in women or specific treatment for this lipid abnormality.

 \pounds : Raised Triglycerides level was defined as Triglycerides > 150 mg/dL (1.7 mmol/L) or specific treatment for this lipid abnormality.

Analysis of prevalence risk of hyperuricemia.

We performed logistic regression analyses to evaluate the risk factors for hyperuricemia (Table 2). After adjusting for possible confounding factors, age (per 10years, OR 1.10, 95% CI 1.06-1.14), living region (urban, OR 1.15, 95% CI 1.06-1.25), alcohol consumption(OR 1.12, 95% CI 1.01-1.24), central obesity(OR 1.82, 95% CI 1.67-1.99), Elevated FPG(OR 1.18, 95% CI 1.08-1.29), Elevated BP(OR 1.34, 95% CI 1.22-1.46), Reduced HDL(OR 1.27, 95% CI 1.15-1.71), Raised Triglycerides level (OR 2.14, 95% CI 1.97-2.35) were strongly associated with the risk of hyperuricemia.

Model [‡]	Odds ratio	95% confidence interval	<i>P</i> -value
Age (per 10years)	1.10	1.06-1.14	<0.01
Living area(urban)	1.15	1.06-1.25	< 0.01
Alcohol consumption	1.12	1.01-1.24	0.03
Central obesity	1.82	1.67-1.99	< 0.01
Elevated FPG	1.18	1.08-1.29	< 0.01
Elevated BP	1.34	1.22-1.46	<0.01
Reduced HDL	1.27	1.15-1.41	< 0.01

Table2. Analysis of prevalence risk of hyperuricemia in multiple logistic regression model.

Raised Triglycerides level	2.14	1.96-2.35	< 0.01
-----------------------------------	------	-----------	--------

FPG: fasting plasma glucose; TG: Triglycerides; HDL: High-density lipoprotein; LDL: Low-density lipoprotein; CHOL: Cholesterol;

[‡] Adjusted risk factors: age (per 10years), living region, education level, marriage status, smoking status, alcohol consumption, central obesity, Elevated FPG, Elevated BP, Reduced HDL, Raised Triglycerides level

Predictive Value of Hyperuricemia on Non-valvular AF.

The adjusted multivariate logistic regression analysis showed that age (per 10 years) (OR 2.31, CI 1.93-2.78), female gender (OR 2.21, CI 1.45-3.36), central obesity (OR 1.93, CI 1.29-2.90,P<0.01), HUA (OR 2.19, 95% CI 1.53-3.12) and history of heart failure (OR 5.13, CI 2.52-10.43) were risk factors for AF prevalence (Table3). ROC curves were generated for the SUA in different gender to determine their diagnostic capability for NVAF. The area under the ROC curve (AUC) for SUA was 0.72 (95% CI: 0.79–0.91) in female and 0.58 (95% CI: 0.51-0.62) in male [Figure 2].

Variables®	Odds ratio	95% confidence interval	<i>P</i> -value
Age (per 10years)	2.31	1.93-2.78	<0.01
Gender(female)	2.21	1.45-3.36	<0.01
Central obesity	1.93	1.29-2.87	<0.01
HUA	2.19	1.53-3.12	<0.01
Heart failure	5.13	2.53-10.43	<0.01

AF: atrial fibrillation; HUA: Hyperuricemia

M Adjusted risk factors: age (per 10years), gender, heart failure, smoking status, alcohol consumption, central obesity, Elevated
 FPG, Elevated BP, Reduced HDL, Raised Triglycerides level and Hyperuricemia

DISCUSSION

Three main findings can be obtained from this study. Firstly, the prevalence of HUA was 39.6% (44.8% in male and 36.7% in female) and sex related differences were found in residents with HUA; Secondly, the age, living in urban, alcohol consumption, central obesity, elevated FPG, elevated BP, reduced HDL, raised and triglycerides level were strongly associated with risk of HUA; Thirdly, residents with HUA had a markedly increased risk of non-valvular AF, but SUA had moderate predictive value for Non-valvular AF only in female.

The incidence of Hyperuricemia

Regional differences of prevalence of HUA have been reported broadly. According to Liu's review^[11], the prevalence of HUA in mainland China from 2000-2014 was 13.3% (19.4% in men and 7.9% in women). Data of some Chinese literatures showed that prevalence in Guangdong province ranged from15 to 20%[11]. The National Health and Nutrition Examination Survey (NHANES) in United States demonstrated that prevalence of HUA was 21.2% in men and 21.6% in women^[2]. In other region of Asia like Japan and Taiwan, a similar prevalence as that of the USA was reported^[12, 13]. In this study, the prevalence of HUA in Guangzhou area was 39.6% (44.8% in male and 36.7% in female), which was extremely high compared to previous report. The traditional dietary habits of Guangzhou residents might be one of the important reasons. Sex related differences of prevalence of HUA was also observed in our study. The prevalence of HUA increased with age in women while maintained steady high level in men regardless age. A rapidly accelerated prevalence of HUA in women after 55 years old was observed and the prevalence was similar to or even higher than that of men after 65 years old. This situation can be possible explained by greatly decreased estrogen level in postmenopausal

Page 15 of 26

BMJ Open

women^[14]. Estrogen might promote excretion of SUA due to its effect on the post-secretory tubular reabsorption of SUA, which was confirmed by the effectiveness of hormone replacement therapy in reducing SUA^[15, 16].

Risk factors of Hyperuricemia

Due to the increasing incidence of HUA, it is of great clinical significance to search for risk factors for HUA. Risk factors for hyperuricemia might vary among different ethnic groups. In this study, age, alcohol consumption, central obesity, Elevated FPG, Elevated BP, Reduced HDL and Raised Triglycerides level were strongly associated with the risk of HUA. Previous studies showed that hypertriglyceridemia was strongly associated with risk of HUA^[17]. The Seychelles Heart Study II revealed the conclusion that high serum TG level was the strongest predictor of HUA^[18], our study reached the same conclusion. The mechanism of hypertriglyceridemia leading to HUA might be related to lifestyle^[18] or genetic factors^[19]. Central obesity, Elevated FPG, Elevated BP, Reduced HDL and Raised Triglycerides level were all the diagnostic component of MetS, it was easy to find that hyperuricemia was closely related to MetS. Yuan's study showed that MetS was 10 times higher in those having SUA ≥ 10 mg/dL compared to those with SUA <6 mg/dL in adults with normal body mass index^[20]. A meta-analysis of more than fifty-four thousand participants showed that elevated SUA was associated with increased risk of MetS^[21]. SUA and MetS often accompany each other and promote the occurrence of cardiovascular disease.

Hyperuricemia and Non-valvular Atrial fibrillation

HUA showed a strong relationship with AF in our study. As reported previously, HUA was associated with endothelial dysfunction, oxidative stress, abnormal high levels of inflammatory markers and insulin resistance^[22-24]. Result of the Atherosclerosis Risk In Communities (ARIC) study^[25] showed that HUA was associated with a greater risk of new onset AF. Unlike our study, the ARIC study enrolled patients aged from 45 to 64 years. Another study from Taiwan^[26] showed that serum UA was significantly correlated with left atrial diameter and HUA was a significant risk factor for new-onset AF in the multivariate Cox regression analysis, but patients were defined as HUA only when they suffered from gout attack while asymptomatic patients were not screened out in this study. Differently, we assessed uric acid metabolism status of residents by testing blood uric acid levels in the fasting state. A recent Chinese report also showed that HUA increased AF risk by 2 folds in elderly southwestern residents^[27]. Except for the age, only 7.6% AF residents of this study presented with HUA while there was 63.2% of our cohort. Interestingly, the prevalence of HUA was very high in our study, which might be related to eating habits with high intake of overcooked soup and seafood of Guangzhou citizens^[28]. Mechanisms underlying the association between urea acid and AF remain unclear but previous report showed that elevated UA was associated with vasoconstriction, vascular smooth muscle cell proliferation, endothelial dysfunction, oxidative stress, local inflammation and insulin resistance^[29].

Sex related difference with cardiovascular events has been reported^[30]. In Suzuki's and the Atherosclerosis Risk in Communities (ARIC) Study, the result showed that elevated SUA was associated with a higher risk of AF particularly in women. Both SUA and HUA had moderate predictive value of AF in the result of our study. It's worth noting that SUA had higher AUC than

Page 17 of 26

BMJ Open

HUA, which means continuous uric acid (UA) level had better predictive value of AF than a cutoff value. As reported previously, the relationship between UA and cardiovascular disease could be observed with normal to high serum level (310-330umol/L) of UA^[31-33] and each 1mg/ml increase in UA level was associated with 12% to 20% increase in the risk for cardiovascular and all-cause mortality respectively^[34]. Therefore, UA level might have very strong relation with AF. The underlying mechanisms of sex related difference of HUA and AF remains unknow. A study showed that HUA was associated with endothelial dysfunction in post-menopausal women, suggesting that HUA could be an independent risk factor for cardiovascular disease including AF, particularly in postmenopausal women^[35].

Limitations

There are two limitations of the study. This study doesn't include resident under age 35, it is unclear whether residents aged less than 35 also have a high incidence of HUA, which requires further research confirmation. Our research is only a cross-Sectional study, the results of this study need to be further clarified through prospective studies and follow-up.

CONCLUSIONS

This large-scale cross-sectional study demonstrates that there is a high prevalence of HUA with sex related difference in Guangzhou residents. Growing age, living in urban, alcohol consumption and component of MetS increase the risk of HUA. Residents with HUA had a markedly increased risk of AF and the uric acid level had moderate predictive value for NVAF only in women.

Contributors

W.L., H.D., Y.X. and S.W. conceived the study, analyzed data, interpreted results and drafted the manuscript. P.G., R.C., F.L., X.F., X.Z., H.L., W.H., Y.L., F.W., M.Z., H.L, J.H. collected data and completed the survey.

Acknowledgments

The authors thank all the residents involved in this study for their cooperation.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship or Liez publication of this article.

Funding

This work was supported by National Nature Science Foundation of China (No.81370295), Guangzhou Science and Technology Project (No. 201508020261 and No. 2014Y200196), Science and Technology Program of Guangdong Province, China (No.2017A020215054), Science and Technology Planning of Guangzhou City, China (No.2014B070705005).

DATA SHARING STATEMENT

The data is available from the corresponding author on reasonable request.

Figure legends

Figure 1. Different prevalence of HUA among male and female in stepwise age categories

HUA, hyperuricemia;

Age categories, every ten years from 35 years old.

Figure 2. Predictive value of HUA or SUA for AF in male and female.

A, receiver operating characteristic (ROC) curve of HUA or SUA for AF in male; B, ROC curve

of HUA or SUA for AF in female;

HUA, hyperuricemia; SUA, serum uric acid; A, AUC (area under curve).

References:

[1] B L, T W, Hn Z, Ww Y, et al. The prevalence of hyperuricemia in China: a meta-analysis. BMC public health. 2011;**11**(1):832 'doi': 10.1186/1471-2458-11-832.

[2] Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007-2008. Arthritis Rheum. 2011;**63**(10):3136-3141 'doi': 10.1002/art.30520.

[3] Strasak A, Ruttmann E, Brant L, Kelleher C, et al. Serum uric acid and risk of cardiovascular mortality: a prospective long-term study of 83,683 Austrian men. Clin Chem. 2008;**54**(2):273-284 'doi': 10.1373.

[4] Ndrepepa G. Uric acid and cardiovascular disease. Clinica Chimica Acta. 2018; **484:150-**163 'doi': 10.1016/j.cca.2018.05.046.

[5] Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008;359(17):1811-1821 'doi': 10.1056/NEJMra0800885.

[6] January CT, Wann LS, Alpert JS, Calkins H, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation. 2014;**130**(23):2071-2104 'doi': 10.1161/CIR.0000000000000040.

[7] Hajhosseiny R, Matthews GK, Lip GY. Metabolic syndrome, atrial fibrillation, and stroke: Tackling an emerging epidemic. Heart Rhythm. 2015;12(11):2332-2343 'doi': 10.1016/j.hrthm.2015.06.038.

[8] Jorgensen HS, Nakayama H, Reith J, Raaschou HO, Olsen TS. Acute stroke with atrial fibrillation. The Copenhagen Stroke Study. Stroke. 1996;**27**(10):1765-1769.

[9] Friberg J, Buch P, Scharling H, Gadsbphioll N, Jensen GB. Rising rates of hospital admissions for atrial fibrillation. Epidemiology. 2003;14(6):666-672 'doi': 10.1097/01.ede.0000091649. 26364.c0.

[10] Tamariz LMM, Agarwal SMM, Soliman EZMM, Chamberlain AMP, et al. Association of Serum Uric Acid With Incident Atrial Fibrillation (from the Atherosclerosis Risk in Communities [ARIC] Study). American Journal of Cardiology, The. 2011;**108**(9):1272-1276 'doi': 10.1016/j.amjcard.2011.06.043.

[11] Liu R, Han C, Wu D, Xia X, et al. Prevalence of Hyperuricemia and Gout in Mainland China from 2000 to 2014: A Systematic Review and Meta-Analysis. BioMed Research International. 2015;**2015**:1-12 'doi': 10.1155/2015/762820.

[12] Nagahama K, Iseki K, Inoue T, Touma T, Ikemiya Y, Takishita S. Hyperuricemia and cardiovascular risk factor clustering in a screened cohort in Okinawa, Japan. Hypertens Res. 2004;**27**(4):227-233.

[13] Chuang SY, Lee SC, Hsieh YT, Pan WH. Trends in hyperuricemia and gout prevalence: Nutrition and Health Survey in Taiwan from 1993-1996 to 2005-2008. Asia Pac J Clin Nutr. 2011;**20**(2):301-308.

[14] Guan S, Tang Z, Fang X, Wu X, et al. Prevalence of hyperuricemia among Beijing post-menopausal women in 10 years. Arch Gerontol Geriatr. 2016; **64:162-**166 'doi': 10.1016/j.archger.2016.02.002.

[15] Anton FM, Garcia PJ, Ramos T, Gonzalez P, Ordas J. Sex differences in uric acid metabolism in adults: evidence for a lack of influence of estradiol-17 beta (E2) on the renal handling of urate. Metabolism. 1986;**35**(4):343-348.

[16] Sumino H, Ichikawa S, Kanda T, Nakamura T, Sakamaki T. Reduction of serum uric acid by hormone replacement therapy in postmenopausal women with hyperuricaemia. Lancet. 1999;**354**(9179):650 'doi': 10.1016/S0140-6736(99)92381-4.

[17] Liu CS, Li TC, Lin CC. The epidemiology of hyperuricemia in children of Taiwan aborigines. J Rheumatol. 2003;**30**(4):841-845.

[18] Chelchowska M, Ambroszkiewicz J, Gajewska J, Laskowska-Klita T, Leibschang J. [The effect of tobacco

4

5

6 7

8

9

10 11

12

13

14 15

16

17

18 19

20

21

22

23 24

25

26

27 28

29

30

31 32

33

34

35

36 37

38

39

40 41

42

43

44

45 46

47

48

49 50

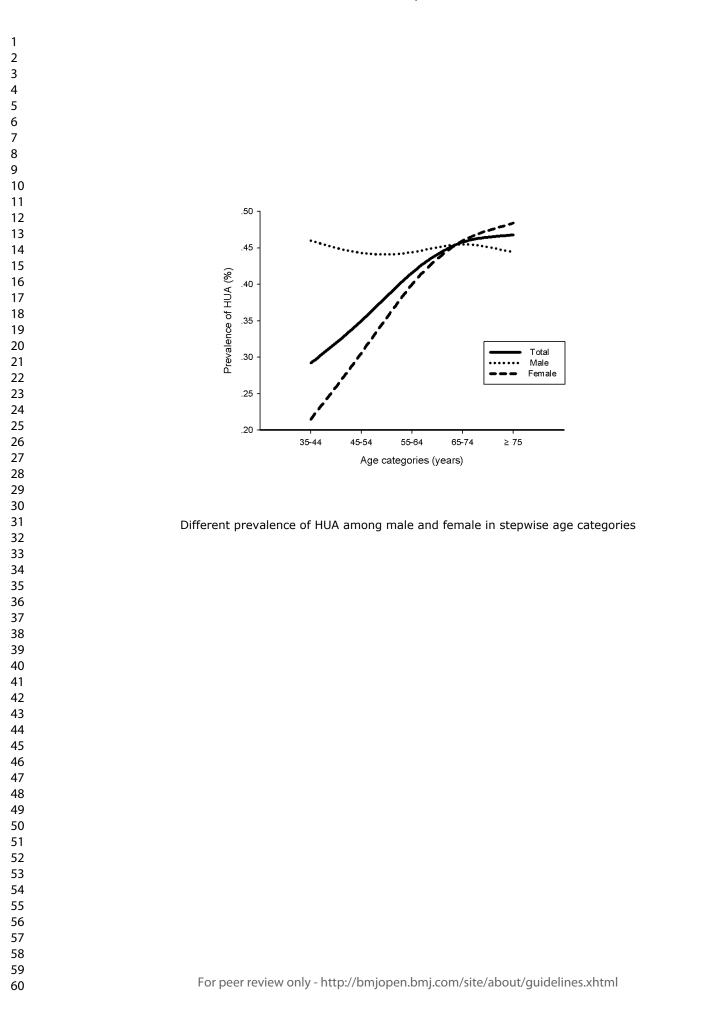
51

52

53 54

55

56


57

58 59

60

smoking during pregnancy on concentration of uric acid in matched-maternal cord pairs]. Przegl Lek. 2007;64(10):667-670. [19] Hakoda M. [Epidemiology of hyperuricemia and gout in Japan]. Nihon Rinsho. 2008;66(4):647-652. [20] Choi HK, Ford ES. Prevalence of the metabolic syndrome in individuals with hyperuricemia. Am J Med. 2007;120(5):442-447 'doi': 10.1016/j.amjmed.2006.06.040. [21] Yuan H, Yu C, Li X, Sun L, et al. Serum Uric Acid Levels and Risk of Metabolic Syndrome: A Dose-Response Meta-Analysis of Prospective Studies. J Clin Endocrinol Metab. 2015;100(11):4198-4207 'doi': 10.1210/jc.2015-2527. [22] Ruggiero C, Cherubini A, Ble A, Bos AJ, et al. Uric acid and inflammatory markers. Eur Heart J. 2006;27(10):1174-1181 'doi': 10.1093/eurheartj/ehi879. [23] Papezikova I, Pekarova M, Kolarova H, Klinke A, et al. Uric acid modulates vascular endothelial function through the down regulation of nitric oxide production. Free Radic Res. 2013;47(2):82-88 'doi': 10.3109/10715762.2012.747677. [24] Krishnan E, Pandya BJ, Chung L, Hariri A, Dabbous O. Hyperuricemia in young adults and risk of insulin resistance, prediabetes, and diabetes: a 15-year follow-up study. Am J Epidemiol. 2012;176(2):108-116 'doi': 10.1093/aje/kws002. [25] Tamariz L, Agarwal S, Soliman EZ, Chamberlain AM, et al. Association of serum uric acid with incident atrial fibrillation (from the Atherosclerosis Risk in Communities [ARIC] study). Am J Cardiol. 2011;108(9):1272-1276 'doi': 10.1016/j.amjcard.2011.06.043. [26] Chao TF, Hung CL, Chen SJ, Wang KL, et al. The association between hyperuricemia, left atrial size and new-onset atrial fibrillation. Int J Cardiol. 2013;168(4):4027-4032 'doi': 10.1016/j.ijcard.2013.06.067. [27] Huang G, Xu R, Xu J, Liu Y, et al. Hyperuricemia is associated with atrial fibrillation prevalence in very elderly - a community based study in Chengdu, China. Scientific Reports. 2018;8(1) 'doi': 10.1038/s41598-018-30321-z. [28] You L, Liu A, Wuyun G, Wu H, Wang P. Prevalence of hyperuricemia and the relationship between serum uric acid and metabolic syndrome in the Asian Mongolian area. J Atheroscler Thromb. 2014;21(4):355-365. [29] Ndrepepa G. Uric acid and cardiovascular disease. Clin Chim Acta. 2018; 484:150-163 'doi': 10.1016/j.cca.2018.05.046. [30] Baker JF, Krishnan E, Chen L, Schumacher HR. Serum uric acid and cardiovascular disease: Recent developments, and where do they leave us? The American Journal of Medicine. 2005;118(8):816-826 'doi': 10.1016/j.amjmed.2005.03.043. [31] Feig DI, Johnson RJ. Hyperuricemia in childhood primary hypertension. Hypertension (Dallas, Tex.: 1979). 2003;42(3):247-252 'doi': 10.1161/01.HYP.0000085858.66548.59. [32] Short RA, Nakagawa T, Tuttle KR, Johnson RJ. Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nature Clinical Practice Nephrology. 2005;1(2):80-86 'doi': 10.1038/ncpneph0019. [33] Niskanen LK, Laaksonen DE, Nyyssonen K, Alfthan G, et al. Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle-aged men: a prospective cohort study. Arch Intern Med. 2004;164(14):1546-1551 'doi': 10.1001/archinte.164.14.1546. [34] Wang R, Song Y, Yan Y, Ding Z. Elevated serum uric acid and risk of cardiovascular or all-cause mortality in people with suspected or definite coronary artery disease: A meta-analysis. Atherosclerosis. 2016;254:193-199 'doi': 10.1016/j.atherosclerosis.2016.10.006. [35] Maruhashi T, Nakashima A, Soga J, Fujimura N, et al. Hyperuricemia is independently associated with endothelial dysfunction in postmenopausal women but not in premenopausal women. BMJ Open. 2013;3(11):e3659

1 2 3 4 5 6	'doi': 10.1136/bmjopen-2013-003659.
7 8 9 10 11 12 13	
14 15 16 17 18 19	
20 21 22 23 24 25	
26 27 28 29 30 31	
32 33 34 35 36 37	
38 39 40 41 42 43 44	
45 46 47 48 49 50	
50 51 52	

STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies

	Item No	Recommendation
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
Objectives	3	State specific objectives, including any prespecified hypotheses
Methods		
Study design	4	Present key elements of study design early in the paper
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
		exposure, follow-up, and data collection
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of
1		participants
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there is
		more than one group
Bias	9	Describe any efforts to address potential sources of bias
Study size	10	Explain how the study size was arrived at
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		(b) Describe any methods used to examine subgroups and interactions
		(c) Explain how missing data were addressed
		(d) If applicable, describe analytical methods taking account of sampling strategy
		(<u>e</u>) Describe any sensitivity analyses
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially
		eligible, examined for eligibility, confirmed eligible, included in the study,
		completing follow-up, and analysed
		(b) Give reasons for non-participation at each stage
		(c) Consider use of a flow diagram
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
		information on exposures and potential confounders
		(b) Indicate number of participants with missing data for each variable of interest
Outcome data	15*	Report numbers of outcome events or summary measures
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and
		their precision (eg, 95% confidence interval). Make clear which confounders were
		adjusted for and why they were included
		(b) Report category boundaries when continuous variables were categorized
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		meaningful time period
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and
		sensitivity analyses

Key results	18	Summarise key results with reference to study objectives
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
		imprecision. Discuss both direction and magnitude of any potential bias
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations
		multiplicity of analyses, results from similar studies, and other relevant evidence
Generalisability	21	Discuss the generalisability (external validity) of the study results
Other information		
Funding	22	Give the source of funding and the role of the funders for the present study and, if
		applicable, for the original study on which the present article is based

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

High prevalence of hyperuricemia and its impact on nonvalvular atrial fibrillation: The cross-sectional Guangzhou Heart Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-028007.R1
Article Type:	Research
Date Submitted by the Author:	21-Feb-2019
Complete List of Authors:	Lin, Wei-dong; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences Deng, Hai; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Guo, Pi Liu, Fangzhou; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Chen, Ruyin; Shantou University Medical College, Preventive Medicine Fang, Xianhong; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Zhan, xianzhang; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Liao, Hongtao; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Liao, Hongtao; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Huang, Wenxiang; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Liu, Yang; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Liu, Yang; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences Zheng, Murui; Guangdong Academy of Medical Sciences Zheng, Murui; Guangdong Academy of Medical Sciences Zheng, Murui; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Wei, Wei; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Wei, Wei; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Wue; Yune; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, G
Primary Subject Heading :	Epidemiology

Secondary Subject Heading: Pu	ublic health
Keywords: C	ardiac Epidemiology < CARDIOLOGY, EPIDEMIOLOGY, CARDIOLOGY
	SCHOLARONE [™]
	Manuscripts

1
2
2
1
-
s c
0
/
8
3 4 5 6 7 8 9 10
10
11
12
13
14
15
16
17
14 15 16 17 18
19
19 20 21 22 23 24 25 26 27 28 29 30
21
22
22 22
23
24
25
26
27
28
29
30
31
32
33
34
35
34 35 36
37
38
39
40
40 41
41 42
42 43
43 44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
50 59
59 60
00

1	High prevalence of hyperuricemia and its impact on non-valvular atrial
2	fibrillation: The cross-sectional Guangzhou Heart Study
3	Weidong Lin ^{1, a} , Hai Deng ^{1, a} , Pi Guo ^{1, b} , Fangzhou Liu ^a , Ruyin Chen ^c , Xianhong Fang ^a ,
4	Xianzhang Zhan ^a , Hongtao Liao ^a , Wenxiang Huang ^a , Yang Liu ^a , Feng Wang ^a , Murui Zheng ^d ,
5	Huazhang Liu ^d , Jun Huang ^a , Wei Wei ^a , Yumei Xue ^{*, a} , Shulin Wu ^{*, a} .
6	^a Department of cardiology, Guangdong Provincial Cardiovascular Institute, Guangdong General
7	Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
8	^b Department of Preventive Medicine, Shantou University Medical College, Shantou, China
9	° Department of Clinical Medicine, Shantou University Medical College, Shantou, China
10	^d Guangzhou Center for Disease Control and Prevention, Guangzhou, China
11	
12	Address for correspondence:
13	Yumei Xue, MD
14	Department of Cardiology
15	96 Dongchuan Road, Yuexiu District, Guangzhou City, Guangdong Province, China
16	Phone: +8613570082363
17	E-Mail: xymgdci@163.com
18	
19	Shulin Wu, MD, FACC
20	Department of Cardiology
21	96 Dongchuan Road, Yuexiu District, Guangzhou City, Guangdong Province, China

22 Phone: +8613902255336

1		
2		
3		
4	23	E-Mail: drwushulin@163.com
5		
6	24	
7	24	
8		
9	25	Word count: 2493
10		
11	26	
12	26	
13		
14	27	
15		
16 17	20	
17	28	
18		
20	29	
20		
22	30	
23	50	
24		
25	31	
26		
27	32	
28	52	
29		
30	33	
31		
32	34	
33 34	51	
35		
36	35	
37		
38	36	
39		
40	27	
41	37	
42		
43	38	
44		
45	39	
46	57	
47		
48	40	
49 50		
50 51	41	
51	r 1	
53		
55	42	
55		
56	43	
57		
58		
59	44	
60		

45 ABSTRACT

Objectives: There are regional variations in hyperuricemia (HUA) epidemiology. The prevalence

- 47 of HUA and non-valvular atrial fibrillation (NVAF) in southern China is unknown.
- **Design:** A cross-sectional study.

49 Setting and participants: A total of 11,488 permanent residents aged 35 or older from urban and 50 rural areas of Guangzhou city were enrolled. A questionnaire was used to compile each 51 participant's demographic information and relevant epidemiological factors for HUA and NVAF.

52 All participants were assessed using a panel of blood tests and single-lead 24-hour ECG.

Main outcome measures: HUA was defined as serum uric acid level >420µmol/L in men and
 >360µmol/L in women. NVAF was diagnosed per 2014 AHA/ACC/HRS guidelines.

Results : The prevalence of HUA was 39.6% (44.8% in men and 36.7% in women), and 144 residents (1.25%) had NVAF. Prevalence of HUA increased with age in women but remained stably high in men. After adjusting for potential confounders, age, living in urban areas, alcohol consumption, central obesity, elevated fasting plasma glucose level, elevated blood pressure, lower HDL cholesterol level and elevated triglycerides level were associated with increased risk of HUA. Residents with HUA were at higher risk for NVAF. Serum uric acid level had a modest predictive value for NVAF in women but not men.

62 Conclusions: HUA was highly prevalent among citizens of southern China and was a predictor
63 of NVAF among women.

1 2		
3 4 5	67	Strengths and limitations of this study:
6 7	68	• This cross-sectional population-based study investigated the prevalence of hyperuricemia
8 9 10	69	and its impact on that of non-valvular atrial fibrillation.
11 12 13	70	• A large cohort from urban and rural areas of Guangzhou was studied.
14 15 16	71	• The surveyed areas were all randomized to increase reliability.
17 18	72	• Residents aged under 35 years were not included.
19 20 21	73	• The results of this cross-sectional study need to be validated in prospective studies.
22 23	74	
24 25 26	75	
27 28 29	76	
30 31	77	
32 33 34	78	
35 36	79	
37 38 39	80	
40 41 42	81	
43 44	82	
45 46 47	83	
48 49	84	
50 51 52	85	
53 54 55	86	
56 57	87	
58 59 60		

89 INTRODUCTION

The prevalence of hyperuricemia (HUA) ranges from 13.3% to 21.6% and varies by sex and among countries or regions ^[1, 2]. Local differences are apparent within countries, likely influenced by environmental, climatic, economic status and especially dietary habits variations ^[3, 4]. Although several epidemiological studies reported an association between serum uric acid (SUA) level and cardiovascular conditions such as hypertension, coronary artery disease, vascular dementia, metabolic syndrome, cerebrovascular disease and kidney disease, it was not apparent in others such as the Framingham Heart Study ^[5].

Atrial fibrillation (AF), the most common clinical cardiac arrhythmia, contributes to increased morbidity and mortality especially in the setting of other cardiovascular risk factors ^[6]. AF disease burden is estimated to reach 9 million cases by 2050 in China ^[7], with the increasing prevalence of AF being a global health problem ^[8, 9]. HUA has been associated with AF ^[10-13]; however, prevalence of HUA and its potential association with that of non-valvular AF (NVAF) in the typical southern Chinese city of Guangzhou with its particular combination of dietary habits, economic status and climate remain undefined.

104 The present cross-sectional population-based study aimed to assess the prevalence of HUA and105 its association with NVAF among Guangzhou residents.

107 Materials and methods

108 Study population

We conducted a cardiovascular epidemiological survey (the Guangzhou Heart Study) from July
2015 to August 2017 in Guangzhou. Two streets (Dadong Street and Baiyun Street) were

Page 7 of 26

BMJ Open

randomly selected to represent urban areas while one street and two towns (Xiaoguwei Street,
Xinzao Town and Nancun Town) were chosen as rural areas. A sample of permanent residents
aged 35 or older was selected by cluster sampling in each community of the aforementioned
selected areas.

The residents in the study sites were invited to participate in this study by 3-round mobilization via door-to-door visits or telephone appointments. Residents were enrolled if they met all of the following inclusion criteria: 1) registered in the Guangzhou Household Register; 2) aged 35 years or older; and 3) living in the selected communities for at least 6 months by the day they participated in the survey. Residents were excluded if they had any of the following conditions: 1) mental or cognitive disorders including dementia, disturbance of understanding, and deaf-mutters; 2) mobility difficulties including paraplegia; 3) pregnant or lactating women; 4) malignant tumors under treatment; 5) temporary residents including renters; or 6) non-responders during the 3-round mobilization.

This study was approved by the Guangzhou Medical Ethics Committee of the Chinese Medical
Association and was conducted in accordance with the ethical standards of the 1964 Helsinki
Declaration and its later amendments or comparable ethical standards.

128 Data collection

A structured and interviewer-administered questionnaire was used to survey each participant's
demographic information, medical history, social habits, family history and emotional status.
Physical examination including measurement of waist circumference, height, weight, blood
pressure, heart rate and body fat was performed using standard instruments and protocols. Blood

samples were collected and tested following standardized procedures by an authorized medical laboratory. Electrocardiogram (ECG) and 24-hour single-lead ECG were recorded for each participant and reports were assessed by two independent cardiologists; methodological details were as reported by Deng et al. ^[14]. A total of 29,196 residents were eligible for inclusion, of whom 12,013 residents participated in the study; the response rate was therefore 41.16%.

Cohort definition

Subjects were diagnosed with NVAF if they met any of the following criteria: 1) AF pattern in ECG screening; 2) No AF in ECG screening but positive AF history; and 3) AF episodes in 24 hours single-lead ECG recording. All residents with atrial fibrillation underwent cardiac ultrasonography for valvular AF. **NVAF** to assess was diagnosed as per 2014 AHA/ACC/HRS guidelines ^[6]. ECG and single-lead 24 hours ECG recordings were performed by well-trained physicians, and AF diagnosis was made by two specific electrophysiological experts. HUA was defined as serum uric acid (SUA) level >420µmol/L in men and $>360\mu$ mol/L in women. The metabolic syndrome (MetS) was defined as having at least three out of the five following characteristic signs ^[7]: abdominal obesity (defined as waist circumference >90 cm for men and >80 cm for women); elevated triglycerides level: >150 mg/dL (1.7 mmol/L), or specific treatment for this lipid abnormality; reduced HDL cholesterol: < 40mg/dL (1.03 mmol/L) in men and < 50 mg/dL (1.29 mmol/L) in women, or specific treatment for this lipid abnormality; elevated blood pressure (BP): systolic BP > 130 mmHg or diastolic BP >85 mmHg, or treatment for previously diagnosed hypertension; and elevated fasting plasma glucose (FPG): FPG > 100 mg/dL (5.6 mmol/L), or previously diagnosed type 2 diabetes

156

157

158

159

160

161

162

163

164

mellitus.

treatment.

Statistical analysis

Patient and Public Involvement

The role of patients in this study was residents. They were not involved in the development of the

research question and outcome measures. All residents were informed of their right to enquire

about their data and test results. If residents were diagnosed with cardiovascular disease, they

were notified by phone to present themselves to Guangdong General Hospital for further

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 20 21 22 24 25 27 28 30 312 33 34 35 36	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
34 35 36 37 38	
37	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
52	
54	
55	
56	
57	
58	
59	
60	

Continuous variables were expressed as mean \pm standard deviation and categorical variables as 165 166 number (percentage). Comparisons between groups were made using the Student t test or chi-square tests, as appropriate. Multivariable logistic regression models were developed to 167 investigate the risk factors for HUA and the associations between the prevalence of NVAF and 168 HUA. Odds ratio (OR) and corresponding 95% confidence interval (95% CI) were calculated to 169 assess the associations. Receiver-operating characteristic (ROC) analyses were used to calculate 170 the predictive value of SUA and HUA for NVAF. SAS software version 9.3 (SAS Institute Inc.; 171 Cary, NC) was used for the statistical analyses. All statistical tests were 2-sided, and a P < 0.05172 was statistically significant. 173

174

175 **RESULTS**

176 **Baseline characteristics**

177	A total of 12,013 patients were enrolled in the study; 175 patients had atrial fibrillation, which
178	was of valvular origin in 31. A total of 494 patients refused to have a blood test., and therefore
179	11,488 patients were included in the statistical analysis. The prevalence of HUA was 39.6%
180	(44.8% in men and 36.7% in women, Table 1). Prevalence of HUA increased with age in women
181	but maintained a steady high level in men [Figure 1]. The prevalence of HUA in urban areas was
182	higher than in rural areas (40.9% vs 38.6%, respectively, P=0.003, Figure 2). Based on medical
183	history, the proportion of men with HUA was significantly higher than that of women. Residents
184	with HUA were significantly older. Regardless of gender, abdominal circumference and body
185	mass index were significantly greater in residents with HUA. Larger proportion of NVAF, HTN,
186	DM, central obesity, and stroke/transient ischemic attack (TIA) were observed in residents with
187	HUA. In laboratory testing, hemoglobin (HGB), platelet count (PLT), red blood cell count (RBC),
188	and levels of low-density lipoprotein (LDL), cholesterol (CHOL), and fasting plasma glucose
189	(FGP) were significantly higher while those of creatinine and high-density lipoprotein were
190	significantly lower in residents with HUA. Significant larger proportion of reduced HDL
191	cholesterol, elevated TG level and MetS were observed in residents with HUA.

193 Table1 Baseline characteristics of residents with or without Hyperuricemia

Tablet baseline characteristics of residents with or without hyper uncenna					
	Total	HUA	No HUA		
	(<i>n</i> =11488)	(<i>n</i> =4547)	(<i>n</i> =6941)	<i>P</i> -value	
Clinical characteristics					
Male (n, %)	4047(35.2)	1814(39.9)	2233(32.2)	< 0.01	
Age (yrs)	58.22±11.74	59.98±11.44	57.06±11.79	< 0.01	
Urban (n, %)	5403(46.9)	2210(48.6)	3193(46.0)	0.01	
Systolic Bp (mmhg)	130.51±20.52	134.16±20.39	128.13±20.25	< 0.01	

BMJ Open

	Diastolic Bp (mmhg)	80.70±11.61	82.30±11.60	79.62±11.49	< 0.01
	Non-valvular AF (n, %)	144(1.3)	91(2.0)	53(0.8)	< 0.01
	Hypertension (n, %)	3377(29.4)	1744(38.4)	1633(23.5)	< 0.01
)	Diabetes mellitus (n, %)	1050(9.1)	528(11.6)	522(7.5)	< 0.01
1 2	Elevated BP (n, %) &	6698(58.3)	3092(68.0)	3606(52.0)	<0.01
3 4	BMI (kg/m ²)	24.01±3.55	25.08±3.55	23.32±3.37	<0.01
5	Abdominal circumference (cm)	84.41±10.10	87.69±9.61	82.26±9.83	< 0.01
7	Male	84.41±10.11	87.71±9.63	82.26±9.83	< 0.01
9	Female	82.76±9.98	86.36±9.64	80.66±9.56	<0.01
1	Central obesity (n, %) §	6183(53.8)	2984(65.6)	3199(46.1)	< 0.01
3	Heart failure (n, %)	114(1.0)	50(1.1)	64(0.9)	0.39
5	Stroke/TIA (n, %)	274(2.4)	128(2.8)	146(2.1)	0.02
7	Alcohol consumption (n, %)	2467(21.5)	1060(23.3)	1391(20.0)	< 0.01
9	Smoking (n, %)	2451(21.3)	1114(24.5)	1353(19.5)	< 0.01
1	Laboratory examinations				
2 3	HGB (g/L)	138.74±14.07	140.14±14.11	137.83±13.97	< 0.01
4 5	PLT (10 ⁹ /L)	243.78±60.67	245.42±61.76	242.71±59.93	0.019
5 7	RBC (10 ¹² /L)	4.76±0.64	4.80±0.65	4.73±0.63	< 0.01
3 9	HDL cholesterol(mmol/L)	1.49±0.55	1.36±0.51	1.58±0.56	< 0.01
) 1	Reduced HDL cholesterol (n, %) \Box	2589(22.5)	1369(30.1)	1220(17.6)	< 0.01
2 3	LDL (mmol/L)	3.64±1.03	3.72±1.04	3.58±1.01	< 0.01
4 5	CHOL (mmol/L)	5.486±1.13	5.57±1.17	5.42±1.11	< 0.01
5 7	TG (mmol/L)	1.696±1.43	1.47±1.06	2.05±1.18	< 0.01
3 9	Raised TG level (n, %) f	3787(33.0)	2140(47.1)	1647(23.7)	< 0.01
) 1	FPG (mmol/L)	5.586±1.57	5.69±1.52	5.51±1.60	< 0.01
<u>2</u> 3	Elevated FPG (n, %) \P	3375(29.4)	1653(36.4)	1722(24.8)	< 0.01
5	Uric acid (umol/L)	367.20±98.39	460.60±72.77	306.01±55.62	< 0.01
5	Male	367.00±98.30	460.60±72.70	306.01±55.63	< 0.01
3 9	Female	340.76±89.40	434.37±64.43	286.30±46.52	< 0.01

			BMJ Open		Pag
	Creatinine(umol/L)	76 89	±25.45 83.78±33.25	5 72.36±1	7.22 <0
94	BP: Blood pressure; TIA: Tr				
95	blood cell counts; FPG: fastin		-	-	
96	CHOL: Cholesterol; Mets: Me		i mgryceniaes, mbr. mgn ae	nong npoprotein, DDD. Dow	density inpopie
97	§: Central obesity was defined	-	ce >85cm for men and >80cm	for women	
98	¶: Elevated FPG was defined				e 2 diabetes.
99	&: Elevated BP was defined a	s systolic BP > 130 or	diastolic BP > 85 mm Hg or h	nistory of hypertension	
00	□: Reduced HDL was define	ed as HDL <40 mg/dI	(1.03 mmol/L) in men or <	50 mg/dL (1.29 mmol/L) in	women or spe
01	treatment for this lipid abnorn	nality.			
02	£: Raised Triglycerides lev	el was defined as Tr	iglycerides > 150 mg/dL (1.	7 mmol/L) or specific treat	ment for this
03	abnormality.				
04					
05	Analysis of prevalence	e risk of hyperu	ıricemia.		
06	We performed logistic	regression anal	yses to evaluate the ri	sk factors for hyperu	ricemia (Ta
07	2). After adjusting fo	r possible confo	unders age (per 10v	Pars OR 1 10 95%	CT 1.06-1.1
07	2). Alter aufusting to		• age (per royo	Cars, OK 1.10, 3570	CI 1.00-1.
08	living region (urban,	OR 1.15, 95%	CI 1.06-1.25), alcoho	ol consumption (OR	1.12, 95%
09	1.01-1.24), central ob	besity (OR 1.82,	, 95% CI 1.67-1.99),	elevated FPG (OR	1.18, 95%
10	1.08-1.29), elevated	BP (OR 1.34,	95% CI 1.22-1.46), 1	reduced HDL (OR	1.27, 95%
11	1.15-1.71), and eleva	ated triglyceride	es level (OR 2.14, 9	95% CI 1.97-2.35)	were stron
12	associated with risk fo	r hyperuricemia.			
13					
14	Table2. Analysis of preva	lence risk of hyper	uricemia in multiple logis	tic regression model.	
	Model [‡]	Odds ratio	95% confidence interval	<i>P</i> -value	
	Age (per 10years)	1.10	1.06-1.14	<0.01	
	Living area(urban)	1.15	1.06-1.25	<0.01	
	Alcohol consumption	1.12	1.01-1.24	0.03	
		1.82	1.67-1.99	< 0.01	
	Central obesity §				
	Central obesity § Elevated FPG ¶ Elevated BP &	1.18	1.08-1.29	<0.01 <0.01	

Model [‡]	Odds ratio	95% confidence interval	<i>P</i> -value	
Age (per 10years)	1.10	1.06-1.14	<0.01	
Living area(urban)	1.15	1.06-1.25	< 0.01	
Alcohol consumption	1.12	1.01-1.24	0.03	
Central obesity §	1.82	1.67-1.99	<0.01	
Elevated FPG ¶	1.18	1.08-1.29	<0.01	
Elevated BP &	1.34	1.22-1.46	<0.01	

	Reduced HDL	1.27	1.15-1.41	<0.01
	Raised Triglycerides level £	2.14	1.96-2.35	<0.01
215				; LDL: Low-density lipoprotein; CH
216	Cholesterol;			
217		vears) living regio	on education level marriage st	atus, smoking status, alcohol consump
218	central obesity, Elevated FPG, Eleva			
219	§: Central obesity was defined as was			
220				previously diagnosed type 2 diabetes.
220				
	&: Elevated BP was defined as syste		C C	
222			1.03 mmol/L) in men or $<50 m$	ng/dL (1.29 mmol/L) in women or spe
223	treatment for this lipid abnormality.			
224	£: Raised Triglycerides level wa	s defined as Trigh	ycerides > 150 mg/dL (1.7 m	mol/L) or specific treatment for this 1
225	abnormality.			
226				
227	Predictive value of hyper	uricemia on n	on-valvular AF.	
228	The adjusted multivariable	logistic regres	ssion analysis showed t	hat age (per 10 years) (OR 2.
229	CI 1.93-2.78), female g	ender (OR 2	2.21, CI 1.45-3.36), (central obesity (OR 1.93,
230	1.29-2.90,P<0.01), HUA (OR 2.19, 95%	CI 1.53-3.12) and histo	ory of heart failure (OR 5.13,
231	2.52-10.43) were risk facto	ors for AF prev	valence (Table 3). ROC	curves were generated for S
232	by gender to determine its	diagnostic capa	ability for NVAF. The a	rea under the ROC curve (AU
233	for SUA was 0.72 (95% C	I: 0.79–0.91) i	n women and 0.58 (959	% CI: 0.51–0.62) in men [Fig
234	3].			
235				
236	Table3. Increasing odds ratio	for non-valvular	AF with hyperuricemia.	
	Variables®	Odds ratio	95% confidence interval	<i>P</i> -value
	Age (per 10years)	2.31	1.93-2.78	<0.01

Gender(female)	2.21	1.45-3.36	<0.01	-
Central obesity	1.93	1.29-2.87	< 0.01	
HUA	2.19	1.53-3.12	< 0.01	
Heart failure	5.13	2.53-10.43	<0.01	

AF: atrial fibrillation; HUA: Hyperuricemia

a Adjusted risk factors: age (per 10years), gender, heart failure, smoking status, alcohol consumption, central obesity, Elevated
 FPG, Elevated BP, Reduced HDL, Raised Triglycerides level and Hyperuricemia

241 DISCUSSION

The present study had three main findings. Firstly, the prevalence of HUA was 39.6% (44.8% in men and 36.7% in women) with sex related differences in residents with HUA. Secondly, the age, living in urban, alcohol consumption, central obesity, elevated FPG, elevated BP, reduced HDL, and elevated triglycerides level were strongly associated with risk of HUA. Thirdly, residents with HUA had a markedly increased risk of NVAF, and SUA had moderate predictive value for NVAF only in women.

249 The prevalence of hyperuricemia

Regional differences in prevalence of HUA have been reported. According to Liu's review ^[15], the prevalence of HUA in mainland China from 2000-2014 was 13.3% (19.4% in men and 7.9% in women). In Chinese publications, prevalence of HUA in Guangdong province ranged from 15 to 20% ^[15]. The National Health and Nutrition Examination Survey (NHANES) in the United States documented a 21.2% HUA prevalence in men and 21.6% in women ^[2] which was similar to that in Japan and Taiwan ^[16, 17]. In this study, the prevalence of HUA in Guangzhou area was 39.6% (44.8% in men and 36.7% in women), which was considerably higher than that in Page 15 of 26

BMJ Open

previous reports. The traditional dietary habits of Guangzhou residents might be one of the important reasons. Sex related differences in HUA prevalence also were observed in our study. The prevalence of HUA increased with age in women while remaining at a steady high level in men regardless of age. A rapidly increasing prevalence of HUA in women older than 55 years old was observed; the prevalence was similar to or even higher than that of men after 65 years old. The latter finding might reflect greatly decreased estrogen level in postmenopausal women ^[18]. Estrogen might promote excretion of SUA via its effect on post-secretory tubular reabsorption of SUA, as confirmed by the effectiveness of hormone replacement therapy in reducing SUA^[19, 20].

Risk factors of hyperuricemia

Due to the increasing prevalence of HUA, it is of great clinical significance to search for its risk factors. Risk factors for hyperuricemia might vary among ethnic groups. In this study, age, alcohol consumption, central obesity, elevated FPG, elevated BP, reduced HDL and elevated triglycerides level were strongly associated with the risk of HUA. Previous studies showed that hypertriglyceridemia was strongly associated with risk of HUA^[21]. Consistent with our study, the Seychelles Heart Study II documented that high serum TG level was the strongest predictor of HUA^[22]. The mechanism of hypertriglyceridemia leading to HUA might be related to lifestyle ^[22] or genetic factors ^[23]. Central obesity, elevated FPG, elevated BP, reduced HDL and elevated triglycerides level are all diagnostic components of MetS; therefore, hyperuricemia was closely related to MetS. Yuan's study showed that MetS was 10 times higher in individuals with SUA \geq 10 mg/dL than in adults with SUA <6 mg/dL and normal body mass index ^[24]. A meta-analysis of more than fifty-four thousand participants showed that elevated SUA was associated with

increased risk of MetS ^[25]. SUA and MetS often accompany each other and promote the
 occurrence of cardiovascular disease.

282 Hyperuricemia and non-valvular atrial fibrillation

HUA showed a strong relationship with AF in our study. As reported previously, HUA was associated with endothelial dysfunction, oxidative stress, abnormal high levels of inflammatory markers and insulin resistance ^[26-28]. In the Atherosclerosis Risk In Communities (ARIC) study ^[29], HUA was associated with a greater risk of new onset AF. In contrast to our study, the ARIC study enrolled patients aged 45 to 64 years. Another study from Taiwan ^[30] showed that SUA significantly correlated with left atrial diameter and that HUA was a significant risk factor for new-onset AF in multivariable Cox regression analysis; however, HUA was diagnosed only when individuals suffered from a gout attack, while in the present study asymptomatic patients were not excluded and uric acid metabolism status of residents was assessed by measuring blood uric acid levels in the fasting state. A recent Chinese report also showed that HUA increased AF risk by 2-fold among elderly southwestern residents ^[31]. Only 7.6% AF residents in the latter study presented with HUA while 63.2% did not so in the present study cohort. Mechanisms underlying the association between uric acid level and AF remain unclear; however, elevated UA has been associated with vasoconstriction, vascular smooth muscle cell proliferation, endothelial dysfunction, oxidative stress, local inflammation and insulin resistance^[32].

Differences in cardiovascular events rates by gender have been reported^[33]. In the study by Suzuki and the Atherosclerosis Risk in Communities (ARIC) Study, elevated SUA was associated with a higher risk of AF particularly in women. Both SUA and HUA had moderate Page 17 of 26

BMJ Open

predictive value for AF in the present study. It is worth noting that SUA had higher AUC than HUA, which indicates a better predictive value for AF for continuous rather than a cutoff for uric acid (UA). As reported previously, the relationship between UA and cardiovascular disease is apparent with normal to high UA serum level (310-330umol/L) ^[34-36]; each 1mg/ml increase in UA level was associated with 12% to 20% increase in the risk for cardiovascular and all-cause mortality, respectively ^[37]. Therefore, UA level might be strongly associated with AF. The bases for sex related differences in HUA and AF remain unknow. HUA has been associated with endothelial dysfunction in post-menopausal women, suggesting that HUA could be an independent risk factor for cardiovascular disease including AF, particularly among postmenopausal women^[38].

312 Limitations

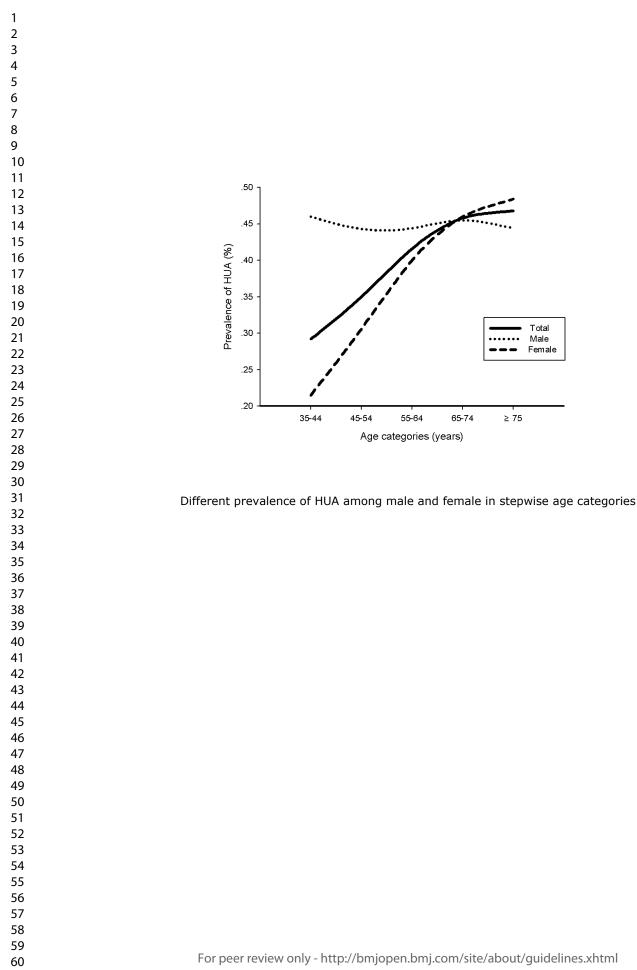
The present study is limited by its cross-sectional design, warranting prospective studies with appropriate follow-up to validate findings; and lack of inclusion of residents aged under 35 years whose HUA prevalence remains unknown.

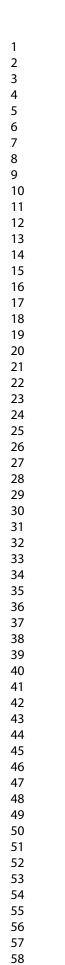
317 CONCLUSIONS

This large-scale cross-sectional study demonstrated a high prevalence of HUA with sex related differences among Guangzhou residents. Increasing age, living in an urban setting, alcohol consumption and components of MetS increase the risk of HUA. Residents with HUA had a markedly increased risk for AF and the uric acid level had moderate predictive value for NVAF only in women.

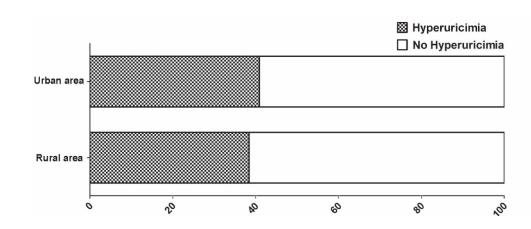
323	
324	Contributors
325	W.L., H.D., Y.X. and S.W. conceived the study, analyzed data, interpreted results and drafted the
326	manuscript. P.G., R.C., F.L., X.F., X.Z., H.L., W.H., Y.L., F.W., M.Z., H.L, J.H., W.W. collected
327	data and completed the survey.
328	
329	Acknowledgments
330	The authors thank all the residents involved in this study for their cooperation.
331	
332	Declaration of Conflicting Interests
333	The author(s) declared no potential conflicts of interest with respect to the research, authorship or
334	publication of this article.
335	
336	Funding
337	This work was supported by National Nature Science Foundation of China (No.81370295),
338	Guangzhou Science and Technology Project (No. 201508020261 and No. 2014Y200196),
339	Science and Technology Program of Guangdong Province, China (No.2017A020215054),
340	Science and Technology Planning of Guangzhou City, China (No.2014B070705005).
341	
342	DATA SHARING STATEMENT
343	The data are available from the corresponding author upon reasonable request.
344 345	

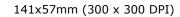
1		
2 3	246	
4	346	
5	347	
6 7	348	References:
8 9	349	[1] B L, T W, Hn Z, Ww Y, et al. The prevalence of hyperuricemia in China: a meta-analysis. BMC public health.
10	350	2011;11(1):832 'doi': 10.1186/1471-2458-11-832['BioMed Central Ltd:2011-01-01].
11	351	[2] Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National
12 13	352	Health and Nutrition Examination Survey 2007-2008. Arthritis Rheum. 2011;63(10):3136-3141 'doi':
14	353	10.1002/art.30520['Copyright (c) 2011 by the American College of Rheumatology.:2011-10-01].
15	354	[3] Strasak A, Ruttmann E, Brant L, Kelleher C, et al. Serum uric acid and risk of cardiovascular mortality: a
16 17	355	prospective long-term study of 83,683 Austrian men. Clin Chem. 2008;54(2):273-284 'doi':
17	356	10.1373/clinchem.2007.094425['2008-02-01].
19	357	[4] Ndrepepa G. Uric acid and cardiovascular disease. Clinica Chimica Acta. 2018; 484:150-163 'doi':
20	358	10.1016/j.cca.2018.05.046['.
21 22	359	[5] Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008;359(17):1811-1821 'doi':
23	360	10.1056/NEJMra0800885['2008-10-23].
24	361	[6] January CT, Wann LS, Alpert JS, Calkins H, et al. 2014 AHA/ACC/HRS guideline for the management of
25 26	362	patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart
27	363	Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation. 2014;130(23):2071-2104
28	364	'doi': 10.1161/CIR.00000000000000040['2014-12-02].
29 30	365	[7] Hajhosseiny R, Matthews GK, Lip GY. Metabolic syndrome, atrial fibrillation, and stroke: Tackling an
30	366	emerging epidemic. Heart Rhythm. 2015;12(11):2332-2343 'doi': 10.1016/j.hrthm.2015.06.038['Copyright (c) 2015
32	367	Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.:2015-11-01].
33 34	368	[8] Jorgensen HS, Nakayama H, Reith J, Raaschou HO, Olsen TS. Acute stroke with atrial fibrillation. The
35	369	Copenhagen Stroke Study. Stroke. 1996; 27 (10):1765-17691996-10-01].
36	370	[9] Friberg J, Buch P, Scharling H, Gadsbphioll N, Jensen GB. Rising rates of hospital admissions for atrial
37	371	fibrillation. Epidemiology. 2003;14(6):666-672 'doi': 10.1097/01.ede.0000091649.26364.c0['2003-11-01].
38 39	372	[10] Suzuki S, Sagara K, Otsuka T, Matsuno S, et al. Gender-Specific Relationship Between Serum Uric Acid Level
40	373	and Atrial Fibrillation Prevalence. Circulation Journal. 2012;76(3):607-611 'doi': 10.1253/circj.CJ-11-1111['.
41	374	[11] Tamariz L, Hernandez F, Bush A, Palacio A, Hare JM. Association between serum uric acid and atrial
42 43	375	fibrillation: A systematic review and meta-analysis. Heart Rhythm. 2014;11(7):1102-1108 'doi':
44	376	10.1016/j.hrthm.2014.04.003['.
45	377	[12] Xu X, Du N, Wang R, Wang Y, Cai S. Hyperuricemia is independently associated with increased risk of atrial
46 47	378	fibrillation: A meta-analysis of cohort studies. International Journal of Cardiology. 2015; 184:699-702 'doi':
48	379	10.1016/j.ijcard.2015.02.038['.
49	380	[13] Chen Y, Xia Y, Han X, Yang Y, et al. Association between serum uric acid and atrial fibrillation: a
50 51	381	cross-sectional community-based study in China. BMJ Open. 2017;7(12):e19037 'doi':
52	382	10.1136/bmjopen-2017-019037['.
53	383	[14] Deng H, Guo P, Zheng M, Huang J, et al. Epidemiological Characteristics of Atrial Fibrillation in Southern
54	384	China: Results from the Guangzhou Heart Study. Scientific Reports. 2018;8(1) 'doi': 10.1038/s41598-018-35928-w['.
55 56	385	[15] Liu R, Han C, Wu D, Xia X, et al. Prevalence of Hyperuricemia and Gout in Mainland China from 2000 to
57	386	2014: A Systematic Review and Meta-Analysis. BioMed Research International. 2015; 2015:1-12 'doi':
58	387	10.1155/2015/762820['.
59 60	388	[16] Nagahama K, Iseki K, Inoue T, Touma T, Ikemiya Y, Takishita S. Hyperuricemia and cardiovascular risk factor


3	389	clustering in a screened cohort in Okinawa, Japan. Hypertens Res. 2004;27(4):227-2332004-04-01].
4 5	390	[17] Chuang SY, Lee SC, Hsieh YT, Pan WH. Trends in hyperuricemia and gout prevalence: Nutrition and Health
6	391	Survey in Taiwan from 1993-1996 to 2005-2008. Asia Pac J Clin Nutr. 2011; 20 (2):301-3082011-01-20].
7	392	[18] Guan S, Tang Z, Fang X, Wu X, et al. Prevalence of hyperuricemia among Beijing post-menopausal women in
8	393	10 years. Arch Gerontol Geriatr. 2016; 64:162- 166 'doi': 10.1016/j.archger.2016.02.002['Copyright (c) 2016 Elsevier
9 10	394	Ireland Ltd. All rights reserved.:2016-05-01].
11	395	[19] Anton FM, Garcia PJ, Ramos T, Gonzalez P, Ordas J. Sex differences in uric acid metabolism in adults:
12	396	evidence for a lack of influence of estradiol-17 beta (E2) on the renal handling of urate. Metabolism.
13 14	397	1986; 35 (4):343-3481986-04-01].
15	398	[20] Sumino H, Ichikawa S, Kanda T, Nakamura T, Sakamaki T. Reduction of serum uric acid by hormone
16	399	replacement therapy in postmenopausal women with hyperuricaemia. Lancet. 1999;354(9179):650 'doi':
17	400	10.1016/S0140-6736(99)92381-4['1999-08-21].
18 19	401	[21] Liu CS, Li TC, Lin CC. The epidemiology of hyperuricemia in children of Taiwan aborigines. J Rheumatol.
20	402	2003; 30 (4):841-8452003-04-01].
21	403	[22] Chelchowska M, Ambroszkiewicz J, Gajewska J, Laskowska-Klita T, Leibschang J. [The effect of tobacco
22 23	404	smoking during pregnancy on concentration of uric acid in matched-maternal cord pairs]. Przegl Lek.
23	405	2007; 64 (10):667-6702007-01-20].
25	405	[23] Hakoda M. [Epidemiology of hyperuricemia and gout in Japan]. Nihon Rinsho.
26	400	2008; 66 (4):647-6522008-04-01].
27 28	407	[24] Choi HK, Ford ES. Prevalence of the metabolic syndrome in individuals with hyperuricemia. Am J Med.
29	408	2007; 120 (5):442-447 'doi': 10.1016/j.amjmed.2006.06.040['2007-05-01].
30	409	
31 22	410	[25] Yuan H, Yu C, Li X, Sun L, et al. Serum Uric Acid Levels and Risk of Metabolic Syndrome: A Dose-Response Meta Analysia of Prognative Studies I Clin Endearing Metabolic Syndrome: A 2015;100(11):4108 4207 Idai's
32 33	411	Meta-Analysis of Prospective Studies. J Clin Endocrinol Metab. 2015;100(11):4198-4207 'doi':
34	412	10.1210/jc.2015-2527['2015-11-01].
35		[26] Ruggiero C, Cherubini A, Ble A, Bos AJ, et al. Uric acid and inflammatory markers. Eur Heart J.
36 37	414	2006; 27 (10):1174-1181 'doi': 10.1093/eurheartj/ehi879['2006-05-01].
38	415	[27] Papezikova I, Pekarova M, Kolarova H, Klinke A, et al. Uric acid modulates vascular endothelial function
39	416	through the down regulation of nitric oxide production. Free Radic Res. 2013;47(2):82-88 'doi':
40	417	10.3109/10715762.2012.747677['2013-02-01].
41 42	418	[28] Krishnan E, Pandya BJ, Chung L, Hariri A, Dabbous O. Hyperuricemia in young adults and risk of insulin
43	419	resistance, prediabetes, and diabetes: a 15-year follow-up study. Am J Epidemiol. 2012;176(2):108-116 'doi':
44	420	10.1093/aje/kws002['2012-07-15].
45 46	421	[29] Tamariz L, Agarwal S, Soliman EZ, Chamberlain AM, et al. Association of serum uric acid with incident atrial
47	422	fibrillation (from the Atherosclerosis Risk in Communities [ARIC] study). Am J Cardiol. 2011; 108 (9):1272-1276
48	423	'doi': 10.1016/j.amjcard.2011.06.043['Published by Elsevier Inc.:2011-11-01].
49	424	[30] Chao TF, Hung CL, Chen SJ, Wang KL, et al. The association between hyperuricemia, left atrial size and
50 51	425	new-onset atrial fibrillation. Int J Cardiol. 2013;168(4):4027-4032 'doi': 10.1016/j.ijcard.2013.06.067['(c)
52	426	2013.:2013-10-09].
53	427	[31] Huang G, Xu R, Xu J, Liu Y, et al. Hyperuricemia is associated with atrial fibrillation prevalence in very
54 55	428	elderly - a community based study in Chengdu, China. Scientific Reports. 2018;8(1) 'doi':
56	429	10.1038/s41598-018-30321-z['.
57	430	[32] Ndrepepa G. Uric acid and cardiovascular disease. Clin Chim Acta. 2018; 484:150-163 'doi':
58	431	10.1016/j.cca.2018.05.046['Copyright (c) 2018 Elsevier B.V. All rights reserved.:2018-09-01].
59 60	432	[33] Baker JF, Krishnan E, Chen L, Schumacher HR. Serum uric acid and cardiovascular disease: Recent
50		


BMJ Open

- developments, and where do they leave us? The American Journal of Medicine. 2005;118(8):816-826 'doi': 10.1016/j.amjmed.2005.03.043['Elsevier Inc:2005-01-01]. [34] Feig DI, Johnson RJ. Hyperuricemia in childhood primary hypertension. Hypertension (Dallas, Tex.: 1979). 2003;42(3):247-252 'doi': 10.1161/01.HYP.0000085858.66548.59['American Heart Association, Inc:2003-01-01]. [35] Short RA, Nakagawa T, Tuttle KR, Johnson RJ. Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nature Clinical Practice Nephrology. 2005;1(2):80-86 'doi': 10.1038/ncpneph0019['Nature Publishing Group:2005-01-01]. [36] Niskanen LK, Laaksonen DE, Nyyssonen K, Alfthan G, et al. Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle-aged men; a prospective cohort study. Arch Intern Med. 2004;164(14):1546-1551 'doi': 10.1001/archinte.164.14.1546['2004-07-26].
 - [37] Wang R, Song Y, Yan Y, Ding Z. Elevated serum uric acid and risk of cardiovascular or all-cause mortality in
 people with suspected or definite coronary artery disease: A meta-analysis. Atherosclerosis. 2016;254:193-199 'doi':
 10.1016/j.atherosclerosis.2016.10.006['Copyright (c) 2016 Elsevier Ireland Ltd. All rights reserved.:2016-11-01].
 - 446 [38] Maruhashi T, Nakashima A, Soga J, Fujimura N, et al. Hyperuricemia is independently associated with
 - 447 endothelial dysfunction in postmenopausal women but not in premenopausal women. BMJ Open. 2013;**3**(11):e3659


448 'doi': 10.1136/bmjopen-2013-003659['2013-11-08].


2		
3	451	Figure legends
4 5	452	
6		
7	453	Figure 1. Differential prevalence of hyperuricemia (HUA) among men and women across
8		
9	454	10-year age intervals starting at 35.
10	434	10-year age mervals starting at 55.
11		
12	455	
13		
14	456	Figure 2. Prevalence of hyperuricemia in urban and rural areas.
15 16		
10	457	
18	437	
19		
20	458	Figure 3. Receiver operating characteristic (ROC) curves for determination of predictive value of
21		
22	459	hyperuricemia (HUA) or serum uric acid (SUA) for AF in men (A) and women (B). AUC (area
23		
24	460	under curve).
25 26	400	
20		
28		
29		under curve).
30		
31		
32		
33		
34 35		
36		
37		
38		
39		
40		
41		
42		
43 44		
44 45		
46		
47		
48		
49		
50		
51 52		
52 53		
55 54		
55		
56		
57		
58		
59		
60		

59

3
4
5 6
7 8
9
10 11
12
13
14
15 16
10
17 18
19
20 21
21 22
23
24
25 26
26 27
28
29
30
31 32
33
34
35
36 37
38
39
40 41
41 42
43
44
45
46 47
48
49
50
51 52
52 53
54
55
56 57
57 58
59
60

STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract
		L48
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found L49-L63
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
		L90-L100
Objectives	3	State specific objectives, including any prespecified hypotheses L101-L105
Methods		
Study design	4	Present key elements of study design early in the paper L109-L114
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
		exposure, follow-up, and data collection L115-137
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of
		participants L117-L123
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable L139-L155
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there is
		more than one group L164-L173
Bias	9	Describe any efforts to address potential sources of bias
Study size	10	Explain how the study size was arrived at L109-L114, L136-L137
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		L165-L166
		(b) Describe any methods used to examine subgroups and interactions L166-L171
		(c) Explain how missing data were addressed
		(d) If applicable, describe analytical methods taking account of sampling strategy
		(<u>e</u>) Describe any sensitivity analyses
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially
		eligible, examined for eligibility, confirmed eligible, included in the study,
		completing follow-up, and analysed L136-L137, L177-L179
		(b) Give reasons for non-participation at each stage L177-L179
		(c) Consider use of a flow diagram
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
-		information on exposures and potential confounders L179-L191
		(b) Indicate number of participants with missing data for each variable of interest
Outcome data	15*	Report numbers of outcome events or summary measures L179-191
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and
		their precision (eg, 95% confidence interval). Make clear which confounders were
		adjusted for and why they were included L206-L212, L228-L234
		(b) Report category boundaries when continuous variables were categorized
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 27 of 26

BMJ Open

		meaningful time period
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses
Discussion		
Key results	18	Summarise key results with reference to study objectives L242-L247
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias L312-L31
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations multiplicity of analyses, results from similar studies, and other relevant evidence L249-L309
Generalisability	21	Discuss the generalisability (external validity) of the study results L317-L321
Other information		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based L336-L339

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

High prevalence of hyperuricemia and its impact on nonvalvular atrial fibrillation: The cross-sectional Guangzhou Heart Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-028007.R2
Article Type:	Research
Date Submitted by the Author:	31-Mar-2019
Complete List of Authors:	Lin, Wei-dong; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences Deng, Hai; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Guo, Pi Liu, Fangzhou; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Chen, Ruyin; Shantou University Medical College, Preventive Medicine Fang, Xianhong; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Zhan, xianzhang; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Liao, Hongtao; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Huang, Wenxiang; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Huang, Wenxiang; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Liu, Yang; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Liu, Yang; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences Zheng, Murui; Guangdong Academy of Medical Sciences Zheng, Murui; Guangdong Academy of Medical Sciences Zheng, Murui; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Wei, Wei; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Wei, Wei; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Wue; Yune; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital,
Primary Subject Heading :	Epidemiology

Secondary Subject Heading:	Public health
Keywords:	Cardiac Epidemiology < CARDIOLOGY, EPIDEMIOLOGY, CARDIOLOGY
	·
	SCHOLARONE [™]
	Manuscripts
_	
For peer review	/ only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1
2
2
1
5
0
/
8
3 4 5 6 7 8 9 10
10
11
12
13
14
15
16
17
14 15 16 17 18
19
19 20 21 22 23 24 25 26 27 28 29 30
21
22
22 22
23
24
25
26
27
28
29
30
31
32
33
34
35
34 35 36
37
38
39
40
40 41
41 42
42 43
43 44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
00

1	High prevalence of hyperuricemia and its impact on non-valvular atrial
2	fibrillation: The cross-sectional Guangzhou Heart Study
3	Weidong Lin ^{1, a} , Hai Deng ^{1, a} , Pi Guo ^{1, b} , Fangzhou Liu ^a , Ruyin Chen ^c , Xianhong Fang ^a ,
4	Xianzhang Zhan ^a , Hongtao Liao ^a , Wenxiang Huang ^a , Yang Liu ^a , Feng Wang ^a , Murui Zheng ^d ,
5	Huazhang Liu ^d , Jun Huang ^a , Wei Wei ^a , Yumei Xue ^{*, a} , Shulin Wu ^{*, a} .
6	^a Department of cardiology, Guangdong Provincial Cardiovascular Institute, Guangdong General
7	Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
8	^b Department of Preventive Medicine, Shantou University Medical College, Shantou, China
9	° Department of Clinical Medicine, Shantou University Medical College, Shantou, China
10	^d Guangzhou Center for Disease Control and Prevention, Guangzhou, China
11	
12	Address for correspondence:
13	Yumei Xue, MD
14	Department of Cardiology
15	96 Dongchuan Road, Yuexiu District, Guangzhou City, Guangdong Province, China
16	Phone: +8613570082363
17	E-Mail: xymgdci@163.com
18	
19	Shulin Wu, MD, FACC
20	Department of Cardiology
21	96 Dongchuan Road, Yuexiu District, Guangzhou City, Guangdong Province, China

22 Phone: +8613902255336

1		
2		
3		
4	23	E-Mail: drwushulin@163.com
5		<u> </u>
6	2.4	
7	24	
8		
9	25	Word count: 2493
10		
11	26	
12	26	
13		
14	27	
15 16		
16 17	20	
18	28	
18		
20	29	
21		
22	30	
23	50	
24		
25	31	
26		
27	32	
28	52	
29		
30 21	33	
31 32		
33	34	
34		
35	35	
36	55	
37		
38	36	
39		
40	37	
41	27	
42	•	
43	38	
44 45		
45 46	39	
40 47		
48	40	
49	40	
50		
51	41	
52		
53	42	
54	+ ∠	
55		
56	43	
57		
58	44	
59 60	1.1	
00		

45 ABSTRACT

46 Objectives: There are country and regional variations in the prevalence of hyperuricemia (HUA).
47 The prevalence of HUA and non-valvular atrial fibrillation (NVAF) in southern China is
48 unknown.

Design: A cross-sectional study.

Setting and participants: A total of 11,488 permanent residents aged 35 or older from urban and rural areas of Guangzhou city were enrolled. A questionnaire was used to compile each participant's demographic information and relevant epidemiological factors for HUA and NVAF. All participants were assessed using a panel of blood tests and single-lead 24-hour electrocardiogram.

Main outcome measures: HUA was defined as serum uric acid level >420μmol/L in men and
 >360μmol/L in women. NVAF was diagnosed per guidelines.

Results : The prevalence of HUA was 39.6% (44.8% in men and 36.7% in women), and 144 residents (1.25%) had NVAF. Prevalence of HUA increased with age in women but remained stably high in men. After adjusting for potential confounders, age, living in urban areas, alcohol consumption, central obesity, elevated fasting plasma glucose level, elevated blood pressure, lower high-density lipoprotein cholesterol level and elevated triglycerides level were associated with increased risk of HUA. Residents with HUA were at higher risk for NVAF. Serum uric acid level had a modest predictive value for NVAF in women but not men.

64 Conclusions: HUA was highly prevalent among citizens of southern China and was a predictor
65 of NVAF among women.

1 2		
3 4 5	67	Strengths and limitations of this study:
6 7	68	• This cross-sectional population-based study investigated the prevalence of hyperuricemia
8 9 10	69	and its impact on that of non-valvular atrial fibrillation.
11 12 13	70	• A large cohort from urban and rural areas of Guangzhou was studied.
14 15 16	71	• The surveyed areas were all randomized to increase reliability.
17 18	72	• Residents aged under 35 years were not included.
19 20 21	73	• The results of this cross-sectional study need to be validated in prospective studies.
22 23	74	
24 25 26	75	
27 28 29	76	
30 31	77	
32 33 34	78	
35 36	79	
37 38 39	80	
40 41 42	81	
43 44	82	
45 46 47	83	
48 49	84	
50 51 52	85	
53 54 55	86	
56 57	87	
58 59 60		
-		

89 INTRODUCTION

The prevalence of hyperuricemia (HUA) ranges from 13.3% to 21.6% and varies by sex and among countries or regions ^[1, 2]. Local differences are apparent within countries, likely influenced by environmental, climatic, economic status and especially dietary habits variations ^[3, 4]. Although several epidemiological studies reported an association between serum uric acid (SUA) level and cardiovascular conditions such as hypertension, coronary artery disease, vascular dementia, metabolic syndrome, cerebrovascular disease and kidney disease, it was not apparent in others such as the Framingham Heart Study ^[5].

Atrial fibrillation (AF), the most common clinical cardiac arrhythmia, contributes to increased morbidity and mortality especially in the setting of other cardiovascular risk factors ^[6]. AF disease burden is estimated to reach 9 million cases by 2050 in China ^[7], with the increasing prevalence of AF being a global health problem ^[8, 9]. HUA has been associated with AF ^[10-13]; however, prevalence of HUA and its potential association with that of non-valvular AF (NVAF) in the typical southern Chinese city of Guangzhou with its particular combination of dietary habits, economic status and climate remain undefined.

104 The present cross-sectional population-based study aimed to assess the prevalence of HUA and105 its association with NVAF among Guangzhou residents.

107 Materials and methods

108 Study population

We conducted a cardiovascular epidemiological survey (the Guangzhou Heart Study) from July
2015 to August 2017 in Guangzhou. Two streets (Dadong Street and Baiyun Street) were

Page 7 of 26

BMJ Open

randomly selected to represent urban areas while one street and two towns (Xiaoguwei Street,
Xinzao Town and Nancun Town) were chosen as rural areas. A sample of permanent residents
aged 35 or older was selected by cluster sampling in each community of the aforementioned
selected areas.

The residents in the study sites were invited to participate in this study by 3-round mobilization via door-to-door visits or telephone appointments. Residents were enrolled if they met all of the following inclusion criteria: 1) registered in the Guangzhou Household Register; 2) aged 35 years or older; and 3) living in the selected communities for at least 6 months by the day they participated in the survey. Residents were excluded if they had any of the following conditions: 1) mental or cognitive disorders including dementia, disturbance of understanding, and deaf-mutters; 2) mobility difficulties including paraplegia; 3) pregnant or lactating women; 4) malignant tumors under treatment; 5) temporary residents including renters; or 6) non-responders during the 3-round mobilization.

This study was approved by the Guangzhou Medical Ethics Committee of the Chinese Medical Association and was conducted in accordance with the ethical standards of the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. All residents needed to sign an informed consent prior to the initiation of the study.

Data collection

A structured and interviewer-administered questionnaire was used to survey each participant's
demographic information, medical history, social habits, family history and emotional status.
Physical examination including measurement of waist circumference, height, weight, blood

pressure, heart rate and body fat was performed using standard instruments and protocols. Blood samples were collected and tested following standardized procedures by an authorized medical laboratory. Electrocardiogram (ECG) and 24-hour single-lead ECG were recorded for each participant and reports were assessed by two independent cardiologists; methodological details were as reported by Deng et al. ^[14]. A total of 29,196 residents were eligible for inclusion, of whom 12,013 residents participated in the study; the response rate was therefore 41.16%.

Cohort definition

Subjects were diagnosed with NVAF if they met any of the following criteria: 1) AF pattern in ECG screening; 2) No AF in ECG screening but positive AF history; and 3) AF episodes in 24 hours single-lead ECG recording. All residents with atrial fibrillation underwent cardiac ultrasonography to assess for valvular AF. NVAF was diagnosed as per guidelines ^[6]. ECG and single-lead 24 hours ECG recordings were performed by well-trained physicians, and AF diagnosis was made by two specific electrophysiological experts. HUA was defined as serum uric acid (SUA) level >420µmol/L in men and >360µmol/L in women. The metabolic syndrome (MetS) was defined as having at least three out of the five following characteristic signs ^[7]: abdominal obesity (defined as waist circumference \geq 90cm for men and \geq 80cm for women); elevated triglycerides level: > 150 mg/dL (1.7 mmol/L), or specific treatment for this lipid abnormality; reduced high-density lipoprotein (HDL) cholesterol: < 40 mg/dL (1.03 mmol/L) in men and < 50 mg/dL (1.29 mmol/L) in women, or specific treatment for this lipid abnormality; elevated blood pressure (BP): systolic BP > 130 mmHg or diastolic BP > 85 mmHg, or treatment for previously diagnosed hypertension; and elevated fasting plasma glucose (FPG): FPG > 100

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

1

Residents were not involved in the development of the research question and outcome measures.

All residents were informed of their right to enquire about their data and test results. If residents

were diagnosed with cardiovascular disease, they were notified by phone to present themselves to

Continuous variables were expressed as mean \pm standard deviation and categorical variables as

number (percentage). Comparisons between groups were made using the Student t test or

chi-square tests, as appropriate. Multivariable logistic regression models were developed to

investigate the risk factors for HUA and the associations between the prevalence of NVAF and

HUA. Odds ratio (OR) and corresponding 95% confidence interval (95% CI) were calculated to

assess the associations. Receiver-operating characteristic (ROC) analyses were used to calculate

the predictive value of SUA and HUA for NVAF. SAS software version 9.3 (SAS Institute Inc.;

Cary, NC) was used for the statistical analyses. All statistical tests were 2-sided, and a P < 0.05

A total of 12,013 patients were enrolled in the study; 175 patients had atrial fibrillation, which

2
3
4
•
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

155 mg/dL (5.6 mmol/L), or previously diagnosed type 2 diabetes mellitus.

Patient and Public Involvement

Statistical analysis

was statistically significant.

Baseline characteristics

RESULTS

Guangdong General Hospital for further treatment.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

177	was of valvular origin in 31. A total of 494 patients refused to have a blood test., and therefore
178	11,488 patients were included in the statistical analysis. The prevalence of HUA was 39.6%
179	(44.8% in men and 36.7% in women, Table 1). Prevalence of HUA increased with age in women
180	but maintained a steady high level in men [Figure 1]. The prevalence of HUA in urban areas was
181	higher than in rural areas (40.9% vs 38.6%, respectively, P=0.003, Figure 2). Based on medical
182	history, the proportion of men with HUA was significantly higher than that of women. Residents
183	with HUA were significantly older. Regardless of gender, abdominal circumference and body
184	mass index were significantly greater in residents with HUA. A higher proportion of NVAF,
185	HTN, DM, central obesity, and stroke/transient ischemic attack (TIA) were observed in residents
186	with HUA. In laboratory testing, hemoglobin (HGB), platelet count (PLT), red blood cell count
187	(RBC), and levels of low-density lipoprotein (LDL), cholesterol (CHOL), and fasting plasma
188	glucose (FGP) were significantly higher while those of creatinine and high-density lipoprotein
189	were significantly lower in residents with HUA. Significant larger proportion of reduced HDL
190	cholesterol, elevated TG level and MetS were observed in residents with HUA.

192 Table1 Baseline characteristics of residents with or without Hyperuricemia

	Total	HUA	No HUA	
	(<i>n</i> =11488)	(<i>n</i> =4547)	(<i>n</i> =6941)	<i>P</i> -value
Clinical characteristics				
Male (n, %)	4047(35.2)	1814(39.9)	2233(32.2)	<0.01
Age (yrs)	58.22±11.74	59.98±11.44	57.06±11.79	<0.01
Urban (n, %)	5403(46.9)	2210(48.6)	3193(46.0)	0.01
Systolic Bp (mmhg)	130.51±20.52	134.16±20.39	128.13±20.25	<0.01
Diastolic Bp (mmhg)	80.70±11.61	82.30±11.60	79.62±11.49	<0.01
Non-valvular AF (n, %)	144(1.3)	91(2.0)	53(0.8)	< 0.01

Hypertension (n, %)	3377(29.4)	1744(38.4)	1633(23.5)	<0.0
Diabetes mellitus (n, %)	1050(9.1)	528(11.6)	522(7.5)	<0.0
Elevated BP (n, %) &	6698(58.3)	3092(68.0)	3606(52.0)	<0.0
BMI (kg/m ²)	24.01±3.55	25.08±3.55	23.32±3.37	<0.0
Abdominal circumference (cm)	84.41±10.10	87.69±9.61	82.26±9.83	<0.0
Male	84.41±10.11	87.71±9.63	82.26±9.83	<0.0
Female	82.76±9.98	86.36±9.64	80.66±9.56	<0.0
Central obesity (n, %) §	6183(53.8)	2984(65.6)	3199(46.1)	<0.0
Heart failure (n, %)	114(1.0)	50(1.1)	64(0.9)	0.39
Stroke/TIA (n, %)	274(2.4)	128(2.8)	146(2.1)	0.02
Alcohol consumption (n, %)	2467(21.5)	1060(23.3)	1391(20.0)	<0.0
Smoking (n, %)	2451(21.3)	1114(24.5)	1353(19.5)	<0.0
Laboratory examinations				
HGB (g/L)	138.74±14.07	140.14±14.11	137.83±13.97	<0.0
PLT (10 ⁹ /L)	243.78±60.67	245.42±61.76	242.71±59.93	0.01
RBC (10 ¹² /L)	4.76±0.64	• 4.80±0.65	4.73±0.63	<0.0
HDL cholesterol(mmol/L)	1.49±0.55	1.36±0.51	1.58±0.56	<0.
Reduced HDL cholesterol (n, %) \square	2589(22.5)	1369(30.1)	1220(17.6)	<0.
LDL (mmol/L)	3.64±1.03	3.72±1.04	3.58±1.01	<0.
CHOL (mmol/L)	5.486±1.13	5.57±1.17	5.42±1.11	<0.
TG (mmol/L)	1.696±1.43	1.47±1.06	2.05±1.18	<0.
Raised TG level (n, %) £	3787(33.0)	2140(47.1)	1647(23.7)	<0.
FPG (mmol/L)	5.586±1.57	5.69±1.52	5.51±1.60	<0.
Elevated FPG (n, %) \P	3375(29.4)	1653(36.4)	1722(24.8)	<0.0
Uric acid (umol/L)	367.20±98.39	460.60±72.77	306.01±55.62	<0.
Male	367.00±98.30	460.60±72.70	306.01±55.63	<0.
Female	340.76±89.40	434.37±64.43	286.30±46.52	<0.0
Creatinine(umol/L)	76.89±25.45	83.78±33.25	72.36±17.22	<0.0

blood cell counts; FPG: fasting plasma glucose; TG: Triglycerides; HDL: High-density lipoprotein; LDL: Low-density lipoprotein;

1 2

59

60

3 195 CHOL: Cholesterol; Mets: Metabolic syndrome 4 196 §: Central obesity was defined as waist circumference >85cm for men and >80cm for women 5 197 6 9: Elevated FPG was defined as fasting plasma glucose > 100 mg/dL (5.6 mmol/L) or previously diagnosed type 2 diabetes. 7 198 &: Elevated BP was defined as systolic BP > 130 or diastolic BP > 85 mm Hg or history of hypertension 8 199 : Reduced HDL was defined as HDL <40 mg/dL (1.03 mmol/L) in men or <50 mg/dL (1.29 mmol/L) in women or specific 9 200 treatment for this lipid abnormality. 10 11 201 £: Raised Triglycerides level was defined as Triglycerides > 150 mg/dL (1.7 mmol/L) or specific treatment for this lipid 12 202 abnormality. 13 14 203 15 16 Analysis of prevalence risk of hyperuricemia. 17 204 18 19 We performed logistic regression analyses to evaluate the risk factors for hyperuricemia (Table 205 20 21 22 2). After adjusting for possible confounders, age (per 10years, OR 1.10, 95% CI 1.06-1.14), 206 23 24 207 living region (urban, OR 1.15, 95% CI 1.06-1.25), alcohol consumption (OR 1.12, 95% CI 25 26 27 1.01-1.24), central obesity (OR 1.82, 95% CI 1.67-1.99), elevated FPG (OR 1.18, 95% CI 208 28 29 1.08-1.29), elevated BP (OR 1.34, 95% CI 1.22-1.46), reduced HDL (OR 1.27, 95% CI 30 209 31 32 210 1.15-1.71), and elevated triglycerides level (OR 2.14, 95% CI 1.97-2.35) were strongly 33 34 35 associated with risk for hyperuricemia. 211 36 37 212 38 39 40 213 Table2. Analysis of prevalence risk of hyperuricemia in multiple logistic regression model. 41 42 **Model[‡] Odds** ratio 95% confidence interval **P-value** 43 44 Age (per 10years) 1.10 < 0.01 1.06-1.14 45 46 Living area(urban) 1.15 1.06-1.25 < 0.0147 **Alcohol consumption** 1.12 1.01-1.24 0.03 48 49 1.67-1.99 Central obesity § 1.82 < 0.01 50 51 **Elevated FPG** ¶ 1.18 1.08-1.29 < 0.01 52 53 Elevated BP & 1.34 1.22-1.46 < 0.01 54 55 Reduced HDL < 0.01 1.27 1.15-1.41 56 57 2.14 1.96-2.35 < 0.01 Raised Triglycerides level £ 58

214 FPG: fasting plasma glucose; TG: Triglycerides; HDL: High-density lipoprotein; LDL: Low-density lipoprotein; CHOL:

BMJ Open

2 3										
4 5	215	Cholesterol;								
6	216	[‡] Adjusted risk factors: age (pe	er 10years), living reg	gion, education level, marriage sta	atus, smoking status, alc	ohol consumption,				
7 8	217	central obesity, Elevated FPG, Elevated BP, Reduced HDL, Raised Triglycerides level								
9 10	218	§: Central obesity was defined a	: Central obesity was defined as waist circumference >85cm for men and >80cm for women							
11 12	219	¶: Elevated FPG was defined as	s fasting plasma gluco	ing plasma glucose > 100 mg/dL (5.6 mmol/L) or previously diagnosed type 2 diabetes.						
13 14	220	&: Elevated BP was defined as systolic BP > 130 or diastolic BP > 85 mm Hg or history of hypertension								
15 16	221	□: Reduced HDL was defined as HDL <40 mg/dL (1.03 mmol/L) in men or <50 mg/dL (1.29 mmol/L) in women or specific								
17 18	222	treatment for this lipid abnormality.								
19 20	223	£: Raised Triglycerides level was defined as Triglycerides > 150 mg/dL (1.7 mmol/L) or specific treatment for this lipid								
21 22	224	abnormality.								
23 24 25	225									
26 27	226	Predictive value of hy	peruricemia on	non-valvular AF.						
28 29 30	227	The adjusted multivaria	able logistic regi	e logistic regression analysis showed that age (per 10 years) (OR 2.31, gender (OR 2.21, CI 1.45-3.36), central obesity (OR 1.93, CI						
31 32 33	228	CI 1.93-2.78), female	e gender (OR							
34 35	229	1.29-2.90,P<0.01), HU	HUA (OR 2.19, 95% CI 1.53-3.12) and history of heart failure (OR 5.13, CI sk factors for AF prevalence (Table 3). ROC curves were generated for SUA							
36 37 38	230	2.52-10.43) were risk fa								
39 40	231	by gender to determine	ne its diagnostic capability for NVAF. The area under the ROC curve (AUC)							
41 42 43	232	for SUA was 0.72 (95%	% CI: 0.79–0.91)) in women and 0.58 (95%	8 (95% CI: 0.51–0.62) in men [Figure					
44 45	233	3].								
46 47	234									
48 49 50	235	Table3. Increasing odds ra	tio for non-valvula	AF with hyperuricemia.						
50 51 52		Variables®	Odds ratio	95% confidence interval	<i>P</i> -value					
52 53 54		Age (per 10years)	2.31	1.93-2.78	<0.01					
54 55 56		Gender(female)	2.21	1.45-3.36	< 0.01					
57		Central obesity	1.93	1.29-2.87	< 0.01					
58 59		HUA	2.19	1.53-3.12	< 0.01					
60										

Heart failure	5.13	2.53-10.43	<0.01		
AF: atrial fibrillation; HUA	Hyperuricemia				
o Adjusted risk factors: ag	e (per 10years), gender, he	eart failure, smoking status,	alcohol consumption, central obesity, Elevat		
FPG, Elevated BP, Reduced	HDL, Raised Triglyceride	es level and Hyperuricemia			
DISCUSSION					
The present study ha	d three main finding	gs. Firstly, the prevale	ence of HUA was 39.6% (44.8%		
men and 36.7% in w	omen) with sex rela	ted differences in resi	dents with HUA. Secondly, the ag		
living in urban, alcohol consumption, central obesity, elevated FPG, elevated BP, reduced HDL					
and elevated triglycerides level were strongly associated with risk of HUA. Thirdly, resident					
with HUA had a ma	kedly increased rist	k of NVAF, and SUA	had moderate predictive value f		
NVAF only in wome	n.				
The prevalence of h	yperuricemia				
Regional differences in prevalence of HUA have been reported. According to Liu's review [15					
the prevalence of HUA in mainland China from 2000-2014 was 13.3% (19.4% in men and 7.9%					
in women). In Chinese publications, prevalence of HUA in Guangdong province ranged from 15					
to 20% ^[15] . The National Health and Nutrition Examination Survey (NHANES) in the United					
States documented a 21.2% HUA prevalence in men and 21.6% in women ^[2] which was simila					
to that in Japan and Taiwan ^[16, 17] . In this study, the prevalence of HUA in Guangzhou area was					
39.6% (44.8% in men and 36.7% in women), which was considerably higher than that in					
previous reports. Th	previous reports. The traditional dietary habits of Guangzhou residents might be one of the				
important reasons. S	ex related differenc	es in HUA prevalenc	e also were observed in our stud		

BMJ Open

The prevalence of HUA increased with age in women while remaining at a steady high level in men regardless of age. A rapidly increasing prevalence of HUA in women older than 55 years old was observed; the prevalence was similar to or even higher than that of men after 65 years old. The latter finding might reflect greatly decreased estrogen level in postmenopausal women ^[18]. Estrogen might promote excretion of SUA via its effect on post-secretory tubular reabsorption of SUA, as confirmed by the effectiveness of hormone replacement therapy in reducing SUA ^[19, 20].

- - 265 Risk factors of hyperuricemia

Due to the increasing prevalence of HUA, it is of great clinical significance to search for its risk factors. Risk factors for hyperuricemia might vary among ethnic groups. In this study, age, alcohol consumption, central obesity, elevated FPG, elevated BP, reduced HDL and elevated triglycerides level were strongly associated with the risk of HUA. Previous studies showed that hypertriglyceridemia was strongly associated with risk of HUA^[21]. Consistent with our study, the Seychelles Heart Study II documented that high serum TG level was the strongest predictor of HUA^[22]. The mechanism of hypertriglyceridemia leading to HUA might be related to lifestyle ^[22] or genetic factors ^[23]. Central obesity, elevated FPG, elevated BP, reduced HDL and elevated triglycerides level are all diagnostic components of MetS; therefore, hyperuricemia was closely related to MetS. Yuan's study showed that MetS was 10 times higher in individuals with SUA \geq 10 mg/dL than in adults with SUA <6 mg/dL and normal body mass index ^[24]. A meta-analysis of more than fifty-four thousand participants showed that elevated SUA was associated with increased risk of MetS^[25]. SUA and MetS often accompany each other and promote the occurrence of cardiovascular disease.

281 Hyperuricemia and non-valvular atrial fibrillation

HUA showed a strong relationship with AF in our study. As reported previously, HUA was associated with endothelial dysfunction, oxidative stress, abnormal high levels of inflammatory markers and insulin resistance ^[26-28]. In the Atherosclerosis Risk In Communities (ARIC) study ^[29], HUA was associated with a greater risk of new onset AF. In contrast to our study, the ARIC study enrolled patients aged 45 to 64 years. Another study from Taiwan ^[30] showed that SUA significantly correlated with left atrial diameter and that HUA was a significant risk factor for new-onset AF in multivariable Cox regression analysis; however, HUA was diagnosed only when individuals suffered from a gout attack, while in the present study asymptomatic patients were not excluded and uric acid metabolism status of residents was assessed by measuring blood uric acid levels in the fasting state. A recent Chinese report also showed that HUA increased AF risk by 2-fold among elderly southwestern residents ^[31]. Only 7.6% AF residents in the latter study presented with HUA while 63.2% did not so in the present study cohort. Mechanisms underlying the association between uric acid level and AF remain unclear; however, elevated UA has been associated with vasoconstriction, vascular smooth muscle cell proliferation, endothelial dysfunction, oxidative stress, local inflammation and insulin resistance^[32].

297 Differences in cardiovascular events rates by gender have been reported^[33]. In the study by 298 Suzuki and the Atherosclerosis Risk in Communities (ARIC) Study, elevated SUA was 299 associated with a higher risk of AF particularly in women. Both SUA and HUA had moderate 300 predictive value for AF in the present study. It is worth noting that SUA had higher AUC than 301 HUA, which indicates a better predictive value for AF for continuous rather than a cutoff for uric

BMJ Open

acid (UA). As reported previously, the relationship between UA and cardiovascular disease is apparent with normal to high UA serum level (310-330umol/L) [34-36]; each 1mg/ml increase in UA level was associated with 12% to 20% increase in the risk for cardiovascular and all-cause mortality, respectively ^[37]. Therefore, UA level might be strongly associated with AF. The bases for sex related differences in HUA and AF remain unknow. HUA has been associated with endothelial dysfunction in post-menopausal women, suggesting that HUA could be an independent risk factor for cardiovascular disease including AF, particularly among postmenopausal women^[38].

311 Limitations

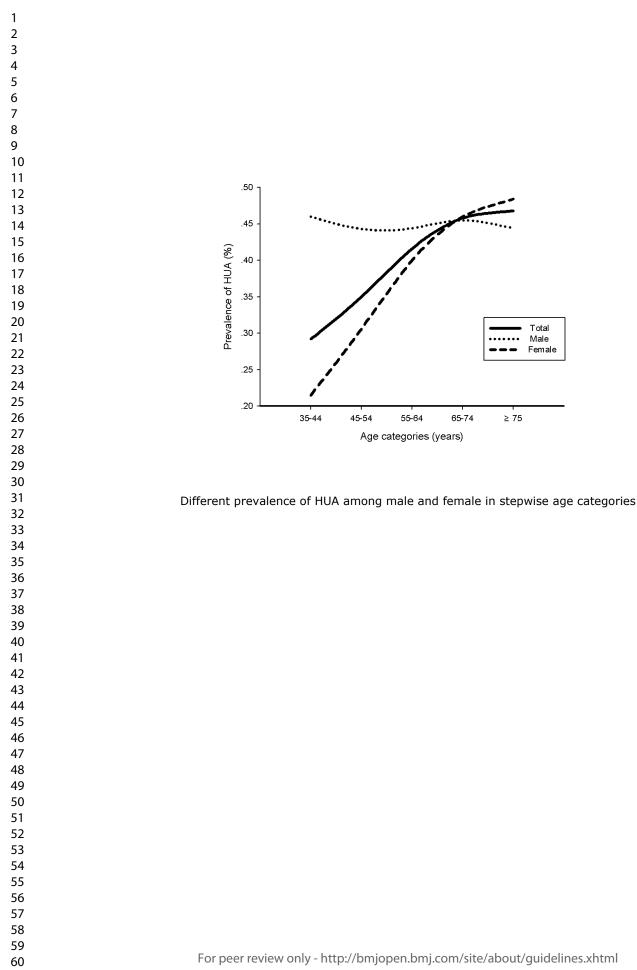
The present study is limited by its cross-sectional design, warranting prospective studies with appropriate follow-up to validate findings; and lack of inclusion of residents aged under 35 years whose HUA prevalence remains unknown.

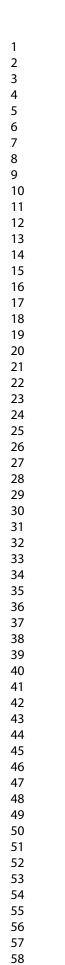
316 CONCLUSIONS

This large-scale cross-sectional study demonstrated a high prevalence of HUA with sex related differences among Guangzhou residents. Increasing age, living in an urban setting, alcohol consumption and components of MetS increase the risk of HUA. Residents with HUA had a markedly increased risk for AF and the uric acid level had moderate predictive value for NVAF only in women.

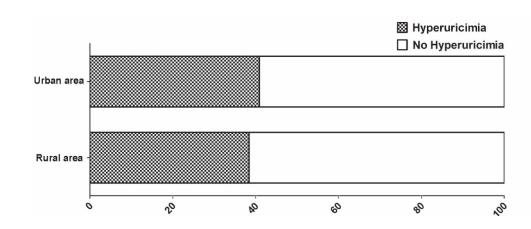
Contributors

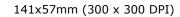
324	W.L., H.D., Y.X. and S.W. conceived the study, analyzed data, interpreted results and drafted the
325	manuscript. P.G., R.C., F.L., X.F., X.Z., H.L., W.H., Y.L., F.W., M.Z., H.L, J.H., W.W. collected
326	data and completed the survey.
327	
328	Acknowledgments
329	The authors thank all the residents involved in this study for their cooperation.
330	
331	Declaration of Conflicting Interests
332	The author(s) declared no potential conflicts of interest with respect to the research, authorship or
333	publication of this article.
334	
335	Funding
336	This work was supported by National Nature Science Foundation of China (No.81370295),
337	Guangzhou Science and Technology Project (No. 201508020261 and No. 2014Y200196),
338	Science and Technology Program of Guangdong Province, China (No.2017A020215054),
339	Science and Technology Planning of Guangzhou City, China (No.2014B070705005).
340	
341	DATA SHARING STATEMENT
342	The data are available from the corresponding author upon reasonable request.
343	
344	
345	
346	


1		
2 3	2.40	
4	348	[1] B L, T W, Hn Z, Ww Y, et al. The prevalence of hyperuricemia in China: a meta-analysis. BMC public health.
5	349	2011; 11 (1):832 'doi': 10.1186/1471-2458-11-832['BioMed Central Ltd:2011-01-01].
6	350	[2] Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National
7 8	351	Health and Nutrition Examination Survey 2007-2008. Arthritis Rheum. 2011;63(10):3136-3141 'doi':
9	352	10.1002/art.30520['Copyright (c) 2011 by the American College of Rheumatology.:2011-10-01].
10	353	[3] Strasak A, Ruttmann E, Brant L, Kelleher C, et al. Serum uric acid and risk of cardiovascular mortality: a
11	354	prospective long-term study of 83,683 Austrian men. Clin Chem. 2008;54(2):273-284 'doi':
12	355	10.1373/clinchem.2007.094425['2008-02-01].
13 14	356	[4] Ndrepepa G. Uric acid and cardiovascular disease. Clinica Chimica Acta. 2018; 484:150-163 'doi':
15	357	10.1016/j.cca.2018.05.046['.
16	358	[5] Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008; 359 (17):1811-1821 'doi':
17	359	10.1056/NEJMra0800885['2008-10-23].
18 19	360	[6] January CT, Wann LS, Alpert JS, Calkins H, et al. 2014 AHA/ACC/HRS guideline for the management of
20	361	patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart
21	362	Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation. 2014;130(23):2071-2104
22		
23 24	363	'doi': 10.1161/CIR.0000000000000040['2014-12-02].
25	364	[7] Hajhosseiny R, Matthews GK, Lip GY. Metabolic syndrome, atrial fibrillation, and stroke: Tackling an
26	365	emerging epidemic. Heart Rhythm. 2015;12(11):2332-2343 'doi': 10.1016/j.hrthm.2015.06.038['Copyright (c) 2015
27	366	Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.:2015-11-01].
28 29	367	[8] Jorgensen HS, Nakayama H, Reith J, Raaschou HO, Olsen TS. Acute stroke with atrial fibrillation. The
30	368	Copenhagen Stroke Study. Stroke. 1996;27(10):1765-17691996-10-01].
31	369	[9] Friberg J, Buch P, Scharling H, Gadsbphioll N, Jensen GB. Rising rates of hospital admissions for atrial
32	370	fibrillation. Epidemiology. 2003;14(6):666-672 'doi': 10.1097/01.ede.0000091649.26364.c0['2003-11-01].
33 34	371	[10] Suzuki S, Sagara K, Otsuka T, Matsuno S, et al. Gender-Specific Relationship Between Serum Uric Acid Level
34 35	372	and Atrial Fibrillation Prevalence. Circulation Journal. 2012;76(3):607-611 'doi': 10.1253/circj.CJ-11-1111['.
36	373	[11] Tamariz L, Hernandez F, Bush A, Palacio A, Hare JM. Association between serum uric acid and atrial
37	374	fibrillation: A systematic review and meta-analysis. Heart Rhythm. 2014;11(7):1102-1108 'doi':
38	375	10.1016/j.hrthm.2014.04.003['.
39 40	376	[12] Xu X, Du N, Wang R, Wang Y, Cai S. Hyperuricemia is independently associated with increased risk of atrial
41	377	fibrillation: A meta-analysis of cohort studies. International Journal of Cardiology. 2015; 184:699-702 'doi':
42	378	10.1016/j.ijcard.2015.02.038['.
43	379	[13] Chen Y, Xia Y, Han X, Yang Y, et al. Association between serum uric acid and atrial fibrillation: a
44 45	380	cross-sectional community-based study in China. BMJ Open. 2017;7(12):e19037 'doi':
46	381	10.1136/bmjopen-2017-019037['.
47	382	[14] Deng H, Guo P, Zheng M, Huang J, et al. Epidemiological Characteristics of Atrial Fibrillation in Southern
48	383	China: Results from the Guangzhou Heart Study. Scientific Reports. 2018;8(1) 'doi': 10.1038/s41598-018-35928-w['.
49 50		
51	384	[15] Liu R, Han C, Wu D, Xia X, et al. Prevalence of Hyperuricemia and Gout in Mainland China from 2000 to
52	385	2014: A Systematic Review and Meta-Analysis. BioMed Research International. 2015; 2015:1-12 'doi':
53	386	10.1155/2015/762820['.
54 55	387	[16] Nagahama K, Iseki K, Inoue T, Touma T, Ikemiya Y, Takishita S. Hyperuricemia and cardiovascular risk factor
56	388	clustering in a screened cohort in Okinawa, Japan. Hypertens Res. 2004;27(4):227-2332004-04-01].
57	389	[17] Chuang SY, Lee SC, Hsieh YT, Pan WH. Trends in hyperuricemia and gout prevalence: Nutrition and Health
58	390	Survey in Taiwan from 1993-1996 to 2005-2008. Asia Pac J Clin Nutr. 2011;20(2):301-3082011-01-20].
59 60	391	[18] Guan S, Tang Z, Fang X, Wu X, et al. Prevalence of hyperuricemia among Beijing post-menopausal women in


10 years. Arch Gerontol Geriatr. 2016; 64:162-166 'doi': 10.1016/j.archger.2016.02.002['Copyright (c) 2016 Elsevier Ireland Ltd. All rights reserved.:2016-05-01]. [19] Anton FM, Garcia PJ, Ramos T, Gonzalez P, Ordas J. Sex differences in uric acid metabolism in adults: evidence for a lack of influence of estradiol-17 beta (E2) on the renal handling of urate. Metabolism. 1986;35(4):343-3481986-04-01]. [20] Sumino H, Ichikawa S, Kanda T, Nakamura T, Sakamaki T. Reduction of serum uric acid by hormone replacement therapy in postmenopausal women with hyperuricaemia. Lancet. 1999;354(9179):650 'doi': 10.1016/S0140-6736(99)92381-4['1999-08-21]. [21] Liu CS, Li TC, Lin CC. The epidemiology of hyperuricemia in children of Taiwan aborigines. J Rheumatol. 2003;30(4):841-8452003-04-01]. [22] Chelchowska M, Ambroszkiewicz J, Gajewska J, Laskowska-Klita T, Leibschang J. [The effect of tobacco smoking during pregnancy on concentration of uric acid in matched-maternal cord pairs]. Przegl Lek. 2007;64(10):667-6702007-01-20]. [23] Hakoda of M. [Epidemiology hyperuricemia and gout in Japan]. Nihon Rinsho. 2008;66(4):647-6522008-04-01]. [24] Choi HK, Ford ES. Prevalence of the metabolic syndrome in individuals with hyperuricemia. Am J Med. 2007;120(5):442-447 'doi': 10.1016/j.amjmed.2006.06.040['2007-05-01]. [25] Yuan H, Yu C, Li X, Sun L, et al. Serum Uric Acid Levels and Risk of Metabolic Syndrome: A Dose-Response Studies. J Clin Endocrinol Metab. 2015;100(11):4198-4207 Meta-Analysis of Prospective 'doi': 10.1210/jc.2015-2527['2015-11-01]. [26] Ruggiero C, Cherubini A, Ble A, Bos AJ, et al. Uric acid and inflammatory markers. Eur Heart J. 2006;27(10):1174-1181 'doi': 10.1093/eurheartj/ehi879['2006-05-01]. [27] Papezikova I, Pekarova M, Kolarova H, Klinke A, et al. Uric acid modulates vascular endothelial function through the down regulation of nitric oxide production. Free Radic Res. 2013;47(2):82-88 'doi': 10.3109/10715762.2012.747677['2013-02-01]. [28] Krishnan E, Pandya BJ, Chung L, Hariri A, Dabbous O. Hyperuricemia in young adults and risk of insulin resistance, prediabetes, and diabetes: a 15-year follow-up study. Am J Epidemiol. 2012;176(2):108-116 'doi': 10.1093/aje/kws002['2012-07-15]. [29] Tamariz L, Agarwal S, Soliman EZ, Chamberlain AM, et al. Association of serum uric acid with incident atrial fibrillation (from the Atherosclerosis Risk in Communities [ARIC] study). Am J Cardiol. 2011;108(9):1272-1276 'doi': 10.1016/j.amjcard.2011.06.043['Published by Elsevier Inc.:2011-11-01]. [30] Chao TF, Hung CL, Chen SJ, Wang KL, et al. The association between hyperuricemia, left atrial size and new-onset atrial fibrillation. Int J Cardiol. 2013;168(4):4027-4032 'doi': 10.1016/j.ijcard.2013.06.067['(c) 2013.:2013-10-09]. [31] Huang G, Xu R, Xu J, Liu Y, et al. Hyperuricemia is associated with atrial fibrillation prevalence in very elderly - a community based study in Chengdu, China. Scientific Reports. 2018;8(1) 'doi': 10.1038/s41598-018-30321-z['. [32] Ndrepepa G. Uric acid and cardiovascular disease. Clin Chim Acta. 2018; 484:150-163 'doi': 10.1016/j.cca.2018.05.046['Copyright (c) 2018 Elsevier B.V. All rights reserved.:2018-09-01]. [33] Baker JF, Krishnan E, Chen L, Schumacher HR. Serum uric acid and cardiovascular disease: Recent developments, and where do they leave us? The American Journal of Medicine. 2005;118(8):816-826 'doi': 10.1016/j.amjmed.2005.03.043['Elsevier Inc:2005-01-01]. [34] Feig DI, Johnson RJ. Hyperuricemia in childhood primary hypertension. Hypertension (Dallas, Tex.: 1979). 2003;42(3):247-252 'doi': 10.1161/01.HYP.0000085858.66548.59['American Heart Association, Inc:2003-01-01].

BMJ Open


- [35] Short RA, Nakagawa T, Tuttle KR, Johnson RJ. Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nature Clinical Practice Nephrology. 2005;1(2):80-86 'doi': 10.1038/ncpneph0019['Nature Publishing Group:2005-01-01]. [36] Niskanen LK, Laaksonen DE, Nyyssonen K, Alfthan G, et al. Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle-aged men: a prospective cohort study. Arch Intern Med. 2004;164(14):1546-1551
- 'doi': 10.1001/archinte.164.14.1546['2004-07-26].
- [37] Wang R, Song Y, Yan Y, Ding Z. Elevated serum uric acid and risk of cardiovascular or all-cause mortality in
- people with suspected or definite coronary artery disease: A meta-analysis. Atherosclerosis. 2016;254:193-199 'doi':
 - 10.1016/j.atherosclerosis.2016.10.006['Copyright (c) 2016 Elsevier Ireland Ltd. All rights reserved.:2016-11-01].
 - [38] Maruhashi T, Nakashima A, Soga J, Fujimura N, et al. Hyperuricemia is independently associated with endothelial dysfunction in postmenopausal women but not in premenopausal women. BMJ Open. 2013;3(11):e3659 'doi': 10.1136/bmjopen-2013-003659['2013-11-08]. or opper texter only


2		
3	450	Figure legends
4 5	451	
6		
7	452	Figure 1. Differential prevalence of hyperuricemia (HUA) among men and women across
8		
9	453	10-year age intervals starting at 35.
10	433	10-year age mervais starting at 55.
11		
12	454	
13		
14	455	Figure 2. Prevalence of hyperuricemia in urban and rural areas.
15 16		8 71
16 17	456	
18	430	
19		
20	457	Figure 3. Receiver operating characteristic (ROC) curves for determination of predictive value of
21		
22	458	hyperuricemia (HUA) or serum uric acid (SUA) for AF in men (A) and women (B). AUC (area
23		
24	459	under curve).
25 26	439	
20		
28		under curve).
29		
30		
31		
32		
33 34		
34 35		
36		
37		
38		
39		
40		
41		
42 43		
44		
45		
46		
47		
48		
49		
50 51		
52		
53		
54		
55		
56		
57		
58 59		
60		

59

3
4
5 6
7 8
9
10 11
12
13
14
15 16
10
17 18
19
20 21
21 22
23
24
25 26
26 27
28
29
30
31 32
33
34
35
36 37
38
39
40 41
41 42
43
44
45
46 47
48
49
50
51 52
52 53
54
55
56 57
57 58
59
60

STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract
		L48
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found L49-L63
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
		L90-L100
Objectives	3	State specific objectives, including any prespecified hypotheses L101-L105
Methods		
Study design	4	Present key elements of study design early in the paper L109-L114
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
		exposure, follow-up, and data collection L115-137
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of
		participants L117-L123
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable L139-L155
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there is
		more than one group L164-L173
Bias	9	Describe any efforts to address potential sources of bias
Study size	10	Explain how the study size was arrived at L109-L114, L136-L137
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		L165-L166
		(b) Describe any methods used to examine subgroups and interactions L166-L171
		(c) Explain how missing data were addressed
		(d) If applicable, describe analytical methods taking account of sampling strategy
		(<u>e</u>) Describe any sensitivity analyses
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially
		eligible, examined for eligibility, confirmed eligible, included in the study,
		completing follow-up, and analysed L136-L137, L177-L179
		(b) Give reasons for non-participation at each stage L177-L179
		(c) Consider use of a flow diagram
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
-		information on exposures and potential confounders L179-L191
		(b) Indicate number of participants with missing data for each variable of interest
Outcome data	15*	Report numbers of outcome events or summary measures L179-191
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and
		their precision (eg, 95% confidence interval). Make clear which confounders were
		adjusted for and why they were included L206-L212, L228-L234
		(b) Report category boundaries when continuous variables were categorized
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 27 of 26

BMJ Open

		meaningful time period
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses
Discussion		
Key results	18	Summarise key results with reference to study objectives L242-L247
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias L312-L31
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations multiplicity of analyses, results from similar studies, and other relevant evidence L249-L309
Generalisability	21	Discuss the generalisability (external validity) of the study results L317-L321
Other information		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based L336-L339

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

High prevalence of hyperuricemia and its impact on nonvalvular atrial fibrillation: The cross-sectional Guangzhou (China) Heart Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-028007.R3
Article Type:	Research
Date Submitted by the Author:	02-May-2019
Complete List of Authors:	Lin, Wei-dong; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences Deng, Hai; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Guo, Pi; Shantou University Medical College Liu, Fangzhou; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Chen, Ruyin; Shantou University Medical College, Preventive Medicine Fang, Xianhong; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Zhan, xianzhang; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Liao, Hongtao; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Liao, Hongtao; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Liao, Hongtao; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Liu, Yang; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Liu, Yang; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences Zheng, Murui; Guangdong Academy of Medical Sciences Zheng, Murui; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Wei, Wei; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Wei, Wei; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, cardiology Wei, Wei; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of
Primary Subject Heading :	Epidemiology

Secondary Subject Heading:	Public health
Keywords:	Cardiac Epidemiology < CARDIOLOGY, EPIDEMIOLOGY, CARDIOLOGY
	·
	SCHOLARONE [™]
	Manuscripts
_	
For peer review	/ only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
~~

1	High prevalence of hyperuricemia and its impact on non-valvular atrial
2	fibrillation: The cross-sectional Guangzhou (China) Heart Study
3	Weidong Lin ^{1, a} , Hai Deng ^{1, a} , Pi Guo ^{1, b} , Fangzhou Liu ^a , Ruyin Chen ^c , Xianhong Fang ^a ,
4	Xianzhang Zhan ^a , Hongtao Liao ^a , Wenxiang Huang ^a , Yang Liu ^a , Feng Wang ^a , Murui Zheng ^d ,
5	Huazhang Liu ^d , Jun Huang ^a , Wei Wei ^a , Yumei Xue ^{*, a} , Shulin Wu ^{*, a} .
6	^a Department of cardiology, Guangdong Provincial Cardiovascular Institute, Guangdong General
7	Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
8	^b Department of Preventive Medicine, Shantou University Medical College, Shantou, China
9	° Department of Clinical Medicine, Shantou University Medical College, Shantou, China
10	^d Guangzhou Center for Disease Control and Prevention, Guangzhou, China
11	
12	Address for correspondence:
13	Address for correspondence: Yumei Xue, MD Department of Cardiology
14	Department of Cardiology
15	96 Dongchuan Road, Yuexiu District, Guangzhou City, Guangdong Province, China
16	Phone: +8613570082363
17	E-Mail: xymgdci@163.com
18	
19	Shulin Wu, MD, FACC
20	Department of Cardiology
21	96 Dongchuan Road, Yuexiu District, Guangzhou City, Guangdong Province, China
22	Phone: +8613902255336

1		
2		
3		
4	23	E-Mail: drwushulin@163.com
5		$\overline{\mathbf{U}}$
6	~ (
7	24	
8		
9	25	Word count: 2708
10		
11	•	
12	26	
13		
14	27	
15		
16 17	20	
17 18	28	
18 19		
20	29	
20		
22	30	
23	30	
24		
25	31	
26		
27	32	
28	52	
29		
30	33	
31		
32 33	34	
33		
35	25	
36	35	
37		
38	36	
39		
40	37	
41	51	
42		
43	38	
44 45		
45 46	39	
46 47	-	
47 48	40	
49	40	
50		
51	41	
52		
53	10	
54	42	
55		
56	43	
57		
58	44	
59	-1-1	
60		

45 ABSTRACT

46 Objectives: There are country and regional variations in the prevalence of hyperuricemia (HUA).
47 The prevalence of HUA and non-valvular atrial fibrillation (NVAF) in southern China is
48 unknown.

Design: A cross-sectional study.

Setting and participants: A total of 11,488 permanent residents aged 35 or older from urban and rural areas of Guangzhou, China were enrolled. A questionnaire was used to compile each participant's demographic information and relevant epidemiological factors for HUA and NVAF. All participants were assessed using a panel of blood tests and single-lead 24-hour electrocardiogram.

Main outcome measures: HUA was defined as serum uric acid level >420μmol/L in men and
 >360μmol/L in women. NVAF was diagnosed per guidelines.

Results : The prevalence of HUA was 39.6% (44.8% in men and 36.7% in women), and 144 residents (1.25%) had NVAF. Prevalence of HUA increased with age in women but remained stably high in men. After adjusting for potential confounders, age, living in urban areas, alcohol consumption, central obesity, elevated fasting plasma glucose level, elevated blood pressure, lower high-density lipoprotein cholesterol level and elevated triglycerides level were associated with increased risk of HUA. Residents with HUA were at higher risk for NVAF. Serum uric acid level had a modest predictive value for NVAF in women but not men.

64 Conclusions: HUA was highly prevalent among citizens of southern China and was a predictor
 65 of NVAF among women.

1 2		
3 4 5	67	Strengths and limitations of this study:
6 7	68	• This cross-sectional population-based study investigated the prevalence of hyperuricemia
8 9 10	69	and its impact on that of non-valvular atrial fibrillation.
11 12 13	70	• A large cohort from urban and rural areas of Guangzhou was studied.
14 15 16	71	• The surveyed areas were all randomized to increase reliability.
17 18	72	• Residents aged under 35 years were not included.
19 20 21	73	• The results of this cross-sectional study need to be validated in prospective studies.
22 23	74	
24 25 26	75	
27 28 29	76	
30 31	77	
32 33 34	78	
35 36	79	
37 38 39	80	
40 41 42	81	
43 44	82	
45 46 47	83	
48 49	84	
50 51 52	85	
53 54 55	86	
56 57	87	
58 59 60		
-		

89 INTRODUCTION

The prevalence of hyperuricemia (HUA) ranges from 13.3% to 21.6% and varies by sex and among countries or regions ^[1, 2]. Local differences are apparent within countries, likely influenced by environmental, climatic, economic status and especially dietary habits variations ^[3, 4]. Although several epidemiological studies reported an association between serum uric acid (SUA) level and cardiovascular conditions such as hypertension, coronary artery disease, vascular dementia, metabolic syndrome, cerebrovascular disease and kidney disease, it was not apparent in others such as the Framingham Heart Study ^[5].

Atrial fibrillation (AF), the most common clinical cardiac arrhythmia, contributes to increased morbidity and mortality especially in the setting of other cardiovascular risk factors ^[6]. AF disease burden is estimated to reach 9 million cases by 2050 in China ^[7], with the increasing prevalence of AF being a global health problem ^[8, 9]. HUA has been associated with AF ^[10-13]; however, prevalence of HUA and its potential association with that of non-valvular AF (NVAF) in the typical southern Chinese city of Guangzhou with its particular combination of dietary habits, economic status and climate remain undefined.

104 The present cross-sectional population-based study aimed to assess the prevalence of HUA and105 its association with NVAF among Guangzhou residents.

107 Materials and methods

108 Study population

109 We conducted a cardiovascular epidemiological survey (the Guangzhou Heart Study) from July

110 2015 to August 2017 in Guangzhou. Randomized multistage cluster sampling was used in this

Page 7 of 26

BMJ Open

study. We divide all the 11 districts in Guangzhou into 2 groups: urban group (Yuexiu, Haizhu, Liwan, Tianhe, and Huangpu District) and rurban group (Baiyun, Panyu, Nansha, Huadu, Conghua and Zengchen District). Sealed envelopes with the names of all the districts written on pieces of paper were prepared before the selection. Then, we randomly selected one envelope from each group. Yuexiu District was selected to represent the urban places while Panyu District was chosen for the rural regions. We selected Xinzao Town, Nancun Town and Xiaoguwei Street to conduct the survey in Panyu District using the same methods above while Dadong Street and Baiyun Street were chosen in Yuexiu District. Finally, in the same way, 7 residential committees in Dadong Street and Baiyun Street and 17 village committees in Xinzao Town, Nancun Town and Xiaoguwei Street based on population size. Every subject who was eligible to fit the inclusive criterions in Yuexiu and Panyu District was all included for the study. The residents in the study sites were invited to participate in this study by 3-round mobilization via door-to-door visits or telephone appointments. For the first-round mobilization, we made appointments for the survey from door to door. Responsive information was collected to identify who were eligible to join the survey and within the eligible subjects who were willing, reluctant In the second-round mobilization, we promoted the residents who were or indecisive to come. not connected in the same way. At the same time, we continued to have telephone appointments for people who were willing or indecisive to join the survey but had not come yet and collected the responsive information. During the last round of the mobilization, we mainly made telephone appointments for the eligible rest of the list who still did not come and sum up the latest

responsive information. Residents were enrolled if they met all of the following inclusion criteria:

1) registered in the Guangzhou Household Register; 2) aged 35 years or older; and 3) living in

the selected communities for at least 6 months by the day they participated in the survey. Residents were excluded if they had any of the following conditions: 1) mental or cognitive disorders including dementia, disturbance of understanding, and deaf-mutters; 2) mobility difficulties including paraplegia; 3) pregnant or lactating women; 4) malignant tumors under treatment; 5) temporary residents including renters; or 6) non-responders during the 3-round mobilization.

This study was approved by the Guangzhou Medical Ethics Committee of the Chinese Medical Association (No. GDREC2015306H) and was conducted in accordance with the ethical standards of the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. All residents needed to sign an informed consent prior to the initiation of the study.

Data collection

A structured and interviewer-administered questionnaire was used to survey each participant's demographic information, medical history, social habits, family history and emotional status. Physical examination including measurement of waist circumference, height, weight, blood pressure, heart rate and body fat was performed using standard instruments and protocols. Blood samples were collected and tested following standardized procedures by an authorized medical laboratory. Electrocardiogram (ECG) and 24-hour single-lead ECG were recorded for each participant and reports were assessed by two independent cardiologists; methodological details were as reported by Deng et al. ^[14]. A total of 29,196 residents were eligible for inclusion, of whom 12,013 residents participated in the study; the response rate was therefore 41.16%.

Subjects were diagnosed with NVAF if they met any of the following criteria: 1) AF pattern in ECG screening; 2) No AF in ECG screening but positive AF history; and 3) AF episodes in 24 hours single-lead ECG recording. All residents with atrial fibrillation underwent cardiac ultrasonography to assess for valvular AF. NVAF was diagnosed as per guidelines ^[6]. ECG and single-lead 24 hours ECG recordings were performed by well-trained physicians, and AF diagnosis was made by two specific electrophysiological experts. HUA was defined as serum uric acid (SUA) level >420µmol/L in men and >360µmol/L in women. The metabolic syndrome (MetS) was defined as having at least three out of the five following characteristic signs ^[7]: abdominal obesity (defined as waist circumference \geq 90cm for men and \geq 80cm for women); elevated triglycerides level: > 150 mg/dL (1.7 mmol/L), or specific treatment for this lipid abnormality; reduced high-density lipoprotein (HDL) cholesterol: < 40 mg/dL (1.03 mmol/L) in men and < 50 mg/dL (1.29 mmol/L) in women, or specific treatment for this lipid abnormality; elevated blood pressure (BP): systolic BP > 130 mmHg or diastolic BP > 85 mmHg, or treatment for previously diagnosed hypertension; and elevated fasting plasma glucose (FPG): FPG > 100mg/dL (5.6 mmol/L), or previously diagnosed type 2 diabetes mellitus.

172 Patient and Public Involvement

Residents were not involved in the development of the research question and outcome measures.
All residents were informed of their right to enquire about their data and test results. If residents
were diagnosed with cardiovascular disease, they were notified by phone to present themselves to
Guangdong General Hospital for further treatment.

Statistical analysis

Continuous variables were expressed as mean \pm standard deviation and categorical variables as number (percentage). Comparisons between groups were made using the Student t test or chi-square tests, as appropriate. Multivariable logistic regression models were developed to investigate the risk factors for HUA and the associations between the prevalence of NVAF and HUA. Odds ratio (OR) and corresponding 95% confidence interval (95% CI) were calculated to assess the associations. Receiver-operating characteristic (ROC) analyses were used to calculate the predictive value of SUA and HUA for NVAF. SAS software version 9.3 (SAS Institute Inc.; Cary, NC) was used for the statistical analyses. All statistical tests were 2-sided, and a P < 0.05ê.e. was statistically significant.

RESULTS

Baseline characteristics

A total of 12,013 patients were enrolled in the study; 175 patients had atrial fibrillation, which was of valvular origin in 31. A total of 494 patients refused to have a blood test., and therefore 11,488 patients were included in the statistical analysis. The prevalence of HUA was 39.6% (44.8% in men and 36.7% in women, Table 1). Prevalence of HUA increased with age in women but maintained a steady high level in men [Figure 1]. The prevalence of HUA in urban areas was higher than in rural areas (40.9% vs 38.6%, respectively, P=0.003, Figure 2). Based on medical history, the proportion of men with HUA was significantly higher than that of women. Residents with HUA were significantly older. Regardless of gender, abdominal circumference and body

BMJ Open

mass index were significantly greater in residents with HUA. A higher proportion of NVAF, HTN, DM, central obesity, and stroke/transient ischemic attack (TIA) were observed in residents with HUA. In laboratory testing, hemoglobin (HGB), platelet count (PLT), red blood cell count (RBC), and levels of low-density lipoprotein (LDL), cholesterol (CHOL), and fasting plasma glucose (FGP) were significantly higher while those of creatinine and high-density lipoprotein were significantly lower in residents with HUA. Significant larger proportion of reduced HDL cholesterol, elevated TG level and MetS were observed in residents with HUA.

207 Table1 Baseline characteristics of residents with or without Hyperuricemia

	Total	HUA	No HUA	
	(<i>n</i> =11488)	(<i>n</i> =4547)	(<i>n</i> =6941)	<i>P</i> -value
Clinical characteristics	1			
Male (n, %)	4047(35.2)	1814(39.9)	2233(32.2)	< 0.01
Age (yrs)	58.22±11.74	59.98±11.44	57.06±11.79	< 0.01
Urban (n, %)	5403(46.9)	2210(48.6)	3193(46.0)	0.01
Systolic Bp (mmhg)	130.51±20.52	134.16±20.39	128.13±20.25	< 0.01
Diastolic Bp (mmhg)	80.70±11.61	82.30±11.60	79.62±11.49	< 0.01
Non-valvular AF (n, %)	144(1.3)	91(2.0)	53(0.8)	< 0.01
Hypertension (n, %)	3377(29.4)	1744(38.4)	1633(23.5)	< 0.01
Diabetes mellitus (n, %)	1050(9.1)	528(11.6)	522(7.5)	< 0.01
Elevated BP (n, %) &	6698(58.3)	3092(68.0)	3606(52.0)	< 0.01
BMI (kg/m ²)	24.01±3.55	25.08±3.55	23.32±3.37	< 0.01
Abdominal circumference (cm)	84.41±10.10	87.69±9.61	82.26±9.83	< 0.01
Male	84.41±10.11	87.71±9.63	82.26±9.83	< 0.01
Female	82.76±9.98	86.36±9.64	80.66±9.56	< 0.01
Central obesity (n, %) §	6183(53.8)	2984(65.6)	3199(46.1)	< 0.01
Heart failure (n, %)	114(1.0)	50(1.1)	64(0.9)	0.39

	Stroke/TIA (n, %)	274(2.4)	128(2.8)	146(2.1)	0.02
	Alcohol consumption (n, %)	2467(21.5)	1060(23.3)	1391(20.0)	< 0.01
	Smoking (n, %)	2451(21.3)	1114(24.5)	1353(19.5)	< 0.01
	Laboratory examinations				
	HGB (g/L)	138.74±14.07	140.14±14.11	137.83±13.97	< 0.01
	PLT (10 ⁹ /L)	243.78±60.67	245.42±61.76	242.71±59.93	0.019
	RBC (10 ¹² /L)	4.76±0.64	4.80±0.65	4.73±0.63	< 0.01
	HDL cholesterol(mmol/L)	1.49±0.55	1.36±0.51	1.58±0.56	< 0.01
	Reduced HDL cholesterol (n, %) \Box	2589(22.5)	1369(30.1)	1220(17.6)	< 0.01
	LDL (mmol/L)	3.64±1.03	3.72±1.04	3.58±1.01	< 0.01
	CHOL (mmol/L)	5.486±1.13	5.57±1.17	5.42±1.11	< 0.01
	TG (mmol/L)	1.696±1.43	1.47±1.06	2.05±1.18	< 0.01
	Raised TG level (n, %) £	3787(33.0)	2140(47.1)	1647(23.7)	< 0.01
	FPG (mmol/L)	5.586±1.57	5.69±1.52	5.51±1.60	< 0.01
	Elevated FPG (n, %) \P	3375(29.4)	1653(36.4)	1722(24.8)	< 0.01
	Uric acid (umol/L)	367.20±98.39	460.60±72.77	306.01±55.62	< 0.01
	Male	367.00±98.30	460.60±72.70	306.01±55.63	< 0.01
	Female	340.76±89.40	434.37±64.43	286.30±46.52	< 0.01
	Creatinine(umol/L)	76.89±25.45	83.78±33.25	72.36±17.22	< 0.01
208	BP: Blood pressure; TIA: Transient Ischer	mic Attack; BMI: Bod	y Mass Index; HGB: Hemoglob	in; PLT: Platelet; R	RBC: Red
209	blood cell counts; FPG: fasting plasma gluce	ose; TG: Triglycerides;	HDL: High-density lipoprotein; I	LDL: Low-density li	poprotein;
210	CHOL: Cholesterol; Mets: Metabolic syndro	ome			
211	§: Central obesity was defined as waist circumference >85cm for men and >80cm for women				
212	¶: Elevated FPG was defined as fasting plas			gnosed type 2 diabet	es.
213	&: Elevated BP was defined as systolic BP				
214	□: Reduced HDL was defined as HDL <4		0 1 11		r specific
215	treatment for this lipid abnormality.	2 (32-	, <u> </u>	,	¥ -
216	£: Raised Triglycerides level was define	ed as Triglycerides > 1	50 mg/dL (1.7 mmol/L) or spe	cific treatment for	this lipid
217	abnormality.				ł
218					
219	Analysis of prevalence risk of h	yperuricemia.			

220 We performed logistic regression analyses to evaluate the risk factors for hyperuricemia (Table

21 2). After adjusting for possible confounders, age (per 10years, OR 1.10, 95% CI 1.06-1.14),
living region (urban, OR 1.15, 95% CI 1.06-1.25), alcohol consumption (OR 1.12, 95% CI 1.01-1.24), central obesity (OR 1.82, 95% CI 1.67-1.99), elevated FPG (OR 1.18, 95% CI 1.08-1.29), elevated BP (OR 1.34, 95% CI 1.22-1.46), reduced HDL (OR 1.27, 95% CI 1.15-1.71), and elevated triglycerides level (OR 2.14, 95% CI 1.97-2.35) were strongly associated with risk for hyperuricemia.

228 Table2. Analysis of prevalence risk of hyperuricemia in multiple logistic regression model.

Model [‡]	Odds ratio	95% confidence interval	<i>P</i> -value
Age (per 10years)	1.10	1.06-1.14	< 0.01
Living area(urban)	1.15	1.06-1.25	< 0.01
Alcohol consumption	1.12	1.01-1.24	0.03
Central obesity §	1.82	1.67-1.99	< 0.01
Elevated FPG ¶	1.18	1.08-1.29	< 0.01
Elevated BP &	1.34	1.22-1.46	< 0.01
Reduced HDL 🗆	1.27	1.15-1.41	< 0.01
Raised Triglycerides level \pounds	2.14	1.96-2.35	< 0.01

229 FPG: fasting plasma glucose; TG: Triglycerides; HDL: High-density lipoprotein; LDL: Low-density lipoprotein; CHOL:

230 Cholesterol;

231 [‡] Adjusted risk factors: age (per 10years), living region, education level, marriage status, smoking status, alcohol consumption,

232 central obesity, Elevated FPG, Elevated BP, Reduced HDL, Raised Triglycerides level

233 §: Central obesity was defined as waist circumference >85cm for men and >80cm for women

1234 ¶: Elevated FPG was defined as fasting plasma glucose > 100 mg/dL (5.6 mmol/L) or previously diagnosed type 2 diabetes.

235 &: Elevated BP was defined as systolic BP > 130 or diastolic BP > 85 mm Hg or history of hypertension

236 □: Reduced HDL was defined as HDL <40 mg/dL (1.03 mmol/L) in men or <50 mg/dL (1.29 mmol/L) in women or specific

treatment for this lipid abnormality.

238 £: Raised Triglycerides level was defined as Triglycerides > 150 mg/dL (1.7 mmol/L) or specific treatment for this lipid

abnormality.

241 Predictive value of hyperuricemia on non-valvular AF.

242 The adjusted multivariable logistic regression analysis showed that age (per 10 years) (OR 2.31,

243 CI 1.93-2.78), female gender (OR 2.21, CI 1.45-3.36), central obesity (OR 1.93, CI

244 1.29-2.90,P<0.01), HUA (OR 2.19, 95% CI 1.53-3.12) and history of heart failure (OR 5.13, CI

245 2.52-10.43) were risk factors for AF prevalence (Table 3). ROC curves were generated for SUA

by gender to determine its diagnostic capability for NVAF. The area under the ROC curve (AUC)

247 for SUA was 0.72 (95% CI: 0.79–0.91) in women and 0.58 (95% CI: 0.51–0.62) in men [Figure

3].

Table3. Increasing odds ratio for non-valvular AF with hyperuricemia.

Variables®	Odds ratio	95% confidence interval	<i>P</i> -value
Age (per 10years)	2.31	1.93-2.78	<0.01
Gender(female)	2.21	1.45-3.36	< 0.01
Central obesity	1.93	1.29-2.87	< 0.01
HUA	2.19	1.53-3.12	<0.01
Heart failure	5.13	2.53-10.43	<0.01

AF: atrial fibrillation; HUA: Hyperuricemia

252 o Adjusted risk factors: age (per 10years), gender, heart failure, smoking status, alcohol consumption, central obesity, Elevated

253 FPG, Elevated BP, Reduced HDL, Raised Triglycerides level and Hyperuricemia

DISCUSSION

256 The present study had three main findings. Firstly, the prevalence of HUA was 39.6% (44.8% in

257 men and 36.7% in women) with sex related differences in residents with HUA. Secondly, the age,

Page 15 of 26

BMJ Open

living in urban, alcohol consumption, central obesity, elevated FPG, elevated BP, reduced HDL,
and elevated triglycerides level were strongly associated with risk of HUA. Thirdly, residents
with HUA had a markedly increased risk of NVAF, and SUA had moderate predictive value for
NVAF only in women.

263 The prevalence of hyperuricemia

Regional differences in prevalence of HUA have been reported. According to Liu's review ^[15], the prevalence of HUA in mainland China from 2000-2014 was 13.3% (19.4% in men and 7.9% in women). In Chinese publications, prevalence of HUA in Guangdong province ranged from 15 to 20% ^[15]. The National Health and Nutrition Examination Survey (NHANES) in the United States documented a 21.2% HUA prevalence in men and 21.6% in women ^[2] which was similar to that in Japan and Taiwan^[16, 17]. In this study, the prevalence of HUA in Guangzhou area was 39.6% (44.8% in men and 36.7% in women), which was considerably higher than that in previous reports. The traditional dietary habits of Guangzhou residents might be one of the important reasons. Sex related differences in HUA prevalence also were observed in our study. The prevalence of HUA increased with age in women while remaining at a steady high level in men regardless of age. A rapidly increasing prevalence of HUA in women older than 55 years old was observed; the prevalence was similar to or even higher than that of men after 65 years old. The latter finding might reflect greatly decreased estrogen level in postmenopausal women ^[18]. Estrogen might promote excretion of SUA via its effect on post-secretory tubular reabsorption of SUA, as confirmed by the effectiveness of hormone replacement therapy in reducing SUA ^[19, 20].

280 Risk factors of hyperuricemia

Due to the increasing prevalence of HUA, it is of great clinical significance to search for its risk factors. Risk factors for hyperuricemia might vary among ethnic groups. In this study, age, alcohol consumption, central obesity, elevated FPG, elevated BP, reduced HDL and elevated triglycerides level were strongly associated with the risk of HUA. Previous studies showed that hypertriglyceridemia was strongly associated with risk of HUA ^[21]. Consistent with our study, the Seychelles Heart Study II documented that high serum TG level was the strongest predictor of HUA^[22]. The mechanism of hypertriglyceridemia leading to HUA might be related to lifestyle ^[22] or genetic factors ^[23]. Central obesity, elevated FPG, elevated BP, reduced HDL and elevated triglycerides level are all diagnostic components of MetS; therefore, hyperuricemia was closely related to MetS. Yuan's study showed that MetS was 10 times higher in individuals with SUA \geq 10 mg/dL than in adults with SUA <6 mg/dL and normal body mass index ^[24]. A meta-analysis of more than fifty-four thousand participants showed that elevated SUA was associated with increased risk of MetS^[25]. SUA and MetS often accompany each other and promote the occurrence of cardiovascular disease.

296 Hyperuricemia and non-valvular atrial fibrillation

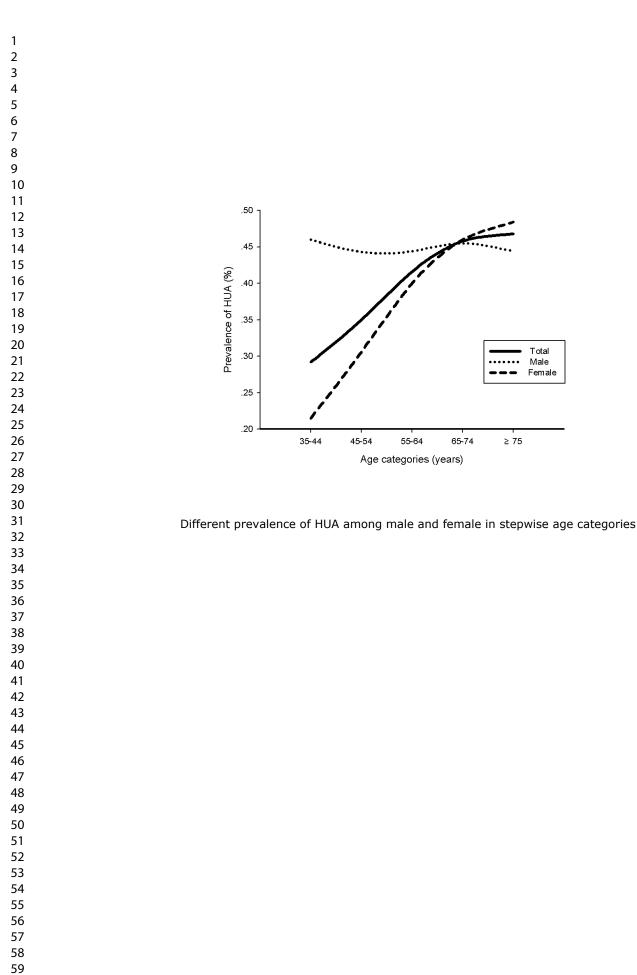
HUA showed a strong relationship with AF in our study. As reported previously, HUA was associated with endothelial dysfunction, oxidative stress, abnormal high levels of inflammatory markers and insulin resistance ^[26-28]. In the Atherosclerosis Risk In Communities (ARIC) study HUA was associated with a greater risk of new onset AF. In contrast to our study, the ARIC study enrolled patients aged 45 to 64 years. Another study from Taiwan ^[30] showed that SUA Page 17 of 26

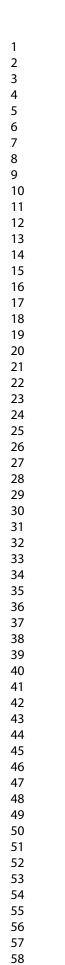
BMJ Open

significantly correlated with left atrial diameter and that HUA was a significant risk factor for new-onset AF in multivariable Cox regression analysis; however, HUA was diagnosed only when individuals suffered from a gout attack, while in the present study asymptomatic patients were not excluded and uric acid metabolism status of residents was assessed by measuring blood uric acid levels in the fasting state. A recent Chinese report also showed that HUA increased AF risk by 2-fold among elderly southwestern residents ^[31]. Only 7.6% AF residents in the latter study presented with HUA while 63.2% did not so in the present study cohort. Mechanisms underlying the association between uric acid level and AF remain unclear; however, elevated UA has been associated with vasoconstriction, vascular smooth muscle cell proliferation, endothelial dysfunction, oxidative stress, local inflammation and insulin resistance^[32].

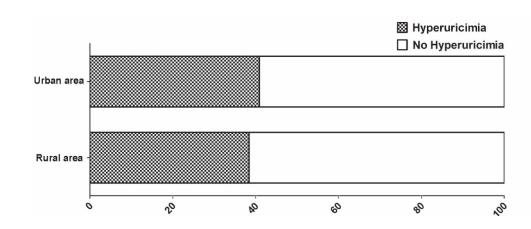
Differences in cardiovascular events rates by gender have been reported^[33]. In the study by Suzuki and the Atherosclerosis Risk in Communities (ARIC) Study, elevated SUA was associated with a higher risk of AF particularly in women. Both SUA and HUA had moderate predictive value for AF in the present study. It is worth noting that SUA had higher AUC than HUA, which indicates a better predictive value for AF for continuous rather than a cutoff for uric acid (UA). As reported previously, the relationship between UA and cardiovascular disease is apparent with normal to high UA serum level (310-330umol/L) ^[34-36]; each 1mg/ml increase in UA level was associated with 12% to 20% increase in the risk for cardiovascular and all-cause mortality, respectively ^[37]. Therefore, UA level might be strongly associated with AF. The bases for sex related differences in HUA and AF remain unknow. HUA has been associated with endothelial dysfunction in post-menopausal women, suggesting that HUA could be an independent risk factor for cardiovascular disease including AF, particularly among

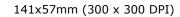
324	postmenopausal women ^[38] .
325	
326	Limitations
327	The present study is limited by its cross-sectional design, warranting prospective studies with
328	appropriate follow-up to validate findings; and lack of inclusion of residents aged under 35 years
329	whose HUA prevalence remains unknown.
330	
331	CONCLUSIONS
332	This large-scale cross-sectional study demonstrated a high prevalence of HUA with sex related
333	differences among Guangzhou residents. Increasing age, living in an urban setting, alcohol
334	consumption and components of MetS increase the risk of HUA. Residents with HUA had a
335	markedly increased risk for AF and the uric acid level had moderate predictive value for NVAF
336	only in women.
337	
338	Contributors
339	W.L., H.D., Y.X. and S.W. conceived the study, analyzed data, interpreted results and drafted the
340	manuscript. P.G., R.C., F.L., X.F., X.Z., H.L., W.H., Y.L., F.W., M.Z., H.L, J.H., W.W. collected
341	data and completed the survey.
342	
343	Acknowledgments
344	The authors thank all the residents involved in this study for their cooperation.
345	


1 2		
3 4 5	346	Declaration of Conflicting Interests
6 7	347	The author(s) declared no potential conflicts of interest with respect to the research, authorship or
8 9 10	348	publication of this article.
11 12 13	349	
14 15	350	Funding
16 17 18	351	This work was supported by National Nature Science Foundation of China (No.81370295),
19 20 21	352	Guangzhou Science and Technology Project (No. 201508020261 and No. 2014Y200196),
22 23	353	Science and Technology Program of Guangdong Province, China (No.2017A020215054),
24 25 26	354	Science and Technology Planning of Guangzhou City, China (No.2014B070705005).
27 28 29	355	
30 31	356	DATA SHARING STATEMENT
32 33	357	The data are available from the corresponding author upon reasonable request.
34 35	358	
36	359	
37	360	
38 39	361	
40 41	362	References:
42	363	[1] B L, T W, Hn Z, Ww Y, et al. The prevalence of hyperuricemia in China: a meta-analysis. BMC public health.
43 44	364	2011;11(1):832 'doi': 10.1186/1471-2458-11-832['BioMed Central Ltd:2011-01-01].
45	365	[2] Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National
46	366	Health and Nutrition Examination Survey 2007-2008. Arthritis Rheum. 2011;63(10):3136-3141 'doi':
47	367	10.1002/art.30520['Copyright (c) 2011 by the American College of Rheumatology.:2011-10-01].
48 49	368	[3] Strasak A, Ruttmann E, Brant L, Kelleher C, et al. Serum uric acid and risk of cardiovascular mortality: a
50	369	prospective long-term study of 83,683 Austrian men. Clin Chem. 2008;54(2):273-284 'doi':
51	370	10.1373/clinchem.2007.094425['2008-02-01].
52 53	371	[4] Ndrepepa G. Uric acid and cardiovascular disease. Clinica Chimica Acta. 2018; 484:150 -163 'doi':
55 54	372	10.1016/j.cca.2018.05.046['.
55	373	[5] Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008; 359 (17):1811-1821 'doi':
56	373	10.1056/NEJMra0800885['2008-10-23].
57 58	374	[6] January CT, Wann LS, Alpert JS, Calkins H, et al. 2014 AHA/ACC/HRS guideline for the management of
58 59	375	patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart
60	570	patients with attain normation, executive summary, a report of the American Conege of Cardiology/American Healt


Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation. 2014;130(23):2071-2104 'doi': 10.1161/CIR.0000000000000040['2014-12-02]. [7] Hajhosseiny R, Matthews GK, Lip GY. Metabolic syndrome, atrial fibrillation, and stroke: Tackling an emerging epidemic. Heart Rhythm. 2015;12(11):2332-2343 'doi': 10.1016/j.hrthm.2015.06.038['Copyright (c) 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.: 2015-11-01]. [8] Jorgensen HS, Nakayama H, Reith J, Raaschou HO, Olsen TS. Acute stroke with atrial fibrillation. The Copenhagen Stroke Study. Stroke. 1996;27(10):1765-17691996-10-01]. [9] Friberg J, Buch P, Scharling H, Gadsbphioll N, Jensen GB. Rising rates of hospital admissions for atrial fibrillation. Epidemiology. 2003;14(6):666-672 'doi': 10.1097/01.ede.0000091649.26364.c0['2003-11-01]. [10] Suzuki S, Sagara K, Otsuka T, Matsuno S, et al. Gender-Specific Relationship Between Serum Uric Acid Level and Atrial Fibrillation Prevalence. Circulation Journal. 2012;76(3):607-611 'doi': 10.1253/circi.CJ-11-1111['. [11] Tamariz L, Hernandez F, Bush A, Palacio A, Hare JM. Association between serum uric acid and atrial fibrillation: A systematic review and meta-analysis. Heart Rhythm. 2014;11(7):1102-1108 'doi': 10.1016/j.hrthm.2014.04.003['. [12] Xu X, Du N, Wang R, Wang Y, Cai S. Hyperuricemia is independently associated with increased risk of atrial fibrillation: A meta-analysis of cohort studies. International Journal of Cardiology. 2015; 184:699-702 'doi': 10.1016/j.ijcard.2015.02.038['. [13] Chen Y, Xia Y, Han X, Yang Y, et al. Association between serum uric acid and atrial fibrillation: a community-based 2017;7(12):e19037 cross-sectional study in China. BMJ Open. 'doi': 10.1136/bmjopen-2017-019037['. [14] Deng H, Guo P, Zheng M, Huang J, et al. Epidemiological Characteristics of Atrial Fibrillation in Southern China: Results from the Guangzhou Heart Study. Scientific Reports. 2018;8(1) 'doi': 10.1038/s41598-018-35928-w['. [15] Liu R, Han C, Wu D, Xia X, et al. Prevalence of Hyperuricemia and Gout in Mainland China from 2000 to 2014: A Systematic Review and Meta-Analysis. BioMed Research International. 2015; 2015:1-12 'doi': 10.1155/2015/762820['. [16] Nagahama K, Iseki K, Inoue T, Touma T, Ikemiya Y, Takishita S. Hyperuricemia and cardiovascular risk factor clustering in a screened cohort in Okinawa, Japan. Hypertens Res. 2004;27(4):227-2332004-04-01]. [17] Chuang SY, Lee SC, Hsieh YT, Pan WH. Trends in hyperuricemia and gout prevalence: Nutrition and Health Survey in Taiwan from 1993-1996 to 2005-2008. Asia Pac J Clin Nutr. 2011;20(2):301-3082011-01-20]. [18] Guan S, Tang Z, Fang X, Wu X, et al. Prevalence of hyperuricemia among Beijing post-menopausal women in 10 years. Arch Gerontol Geriatr. 2016; 64:162-166 'doi': 10.1016/j.archger.2016.02.002['Copyright (c) 2016 Elsevier Ireland Ltd. All rights reserved.:2016-05-01]. [19] Anton FM, Garcia PJ, Ramos T, Gonzalez P, Ordas J. Sex differences in uric acid metabolism in adults: evidence for a lack of influence of estradiol-17 beta (E2) on the renal handling of urate. Metabolism. 1986;35(4):343-3481986-04-01]. [20] Sumino H, Ichikawa S, Kanda T, Nakamura T, Sakamaki T. Reduction of serum uric acid by hormone replacement therapy in postmenopausal women with hyperuricaemia. Lancet. 1999;354(9179):650 'doi': 10.1016/S0140-6736(99)92381-4['1999-08-21]. [21] Liu CS, Li TC, Lin CC. The epidemiology of hyperuricemia in children of Taiwan aborigines. J Rheumatol. 2003;30(4):841-8452003-04-01]. [22] Chelchowska M, Ambroszkiewicz J, Gajewska J, Laskowska-Klita T, Leibschang J. [The effect of tobacco smoking during pregnancy on concentration of uric acid in matched-maternal cord pairs]. Przegl Lek. 2007;64(10):667-6702007-01-20]. Nihon [23] Hakoda М. [Epidemiology of hyperuricemia Japan]. Rinsho. and gout in

Page 21 of 26


2		
3	421	2008; 66 (4):647-6522008-04-01].
4 5	422	[24] Choi HK, Ford ES. Prevalence of the metabolic syndrome in individuals with hyperuricemia. Am J Med.
6	423	2007; 120 (5):442-447 'doi': 10.1016/j.amjmed.2006.06.040['2007-05-01].
7	424	[25] Yuan H, Yu C, Li X, Sun L, et al. Serum Uric Acid Levels and Risk of Metabolic Syndrome: A Dose-Response
8	425	Meta-Analysis of Prospective Studies. J Clin Endocrinol Metab. 2015;100(11):4198-4207 'doi':
9 10	426	10.1210/jc.2015-2527['2015-11-01].
10	427	[26] Ruggiero C, Cherubini A, Ble A, Bos AJ, et al. Uric acid and inflammatory markers. Eur Heart J.
12	428	2006; 27 (10):1174-1181 'doi': 10.1093/eurheartj/ehi879['2006-05-01].
13	429	[27] Papezikova I, Pekarova M, Kolarova H, Klinke A, et al. Uric acid modulates vascular endothelial function
14 15	430	through the down regulation of nitric oxide production. Free Radic Res. 2013;47(2):82-88 'doi':
16	430	
17		10.3109/10715762.2012.747677['2013-02-01].
18	432	[28] Krishnan E, Pandya BJ, Chung L, Hariri A, Dabbous O. Hyperuricemia in young adults and risk of insulin
19 20	433	resistance, prediabetes, and diabetes: a 15-year follow-up study. Am J Epidemiol. 2012;176(2):108-116 'doi':
20	434	10.1093/aje/kws002['2012-07-15].
22	435	[29] Tamariz L, Agarwal S, Soliman EZ, Chamberlain AM, et al. Association of serum uric acid with incident atrial
23	436	fibrillation (from the Atherosclerosis Risk in Communities [ARIC] study). Am J Cardiol. 2011;108(9):1272-1276
24 25	437	'doi': 10.1016/j.amjcard.2011.06.043['Published by Elsevier Inc.:2011-11-01].
25 26	438	[30] Chao TF, Hung CL, Chen SJ, Wang KL, et al. The association between hyperuricemia, left atrial size and
27	439	new-onset atrial fibrillation. Int J Cardiol. 2013;168(4):4027-4032 'doi': 10.1016/j.ijcard.2013.06.067['(c)
28	440	2013.:2013-10-09].
29	441	[31] Huang G, Xu R, Xu J, Liu Y, et al. Hyperuricemia is associated with atrial fibrillation prevalence in very
30 31	442	elderly - a community based study in Chengdu, China. Scientific Reports. 2018;8(1) 'doi':
32	443	10.1038/s41598-018-30321-z['.
33	444	[32] Ndrepepa G. Uric acid and cardiovascular disease. Clin Chim Acta. 2018; 484:150-163 'doi':
34 35	445	10.1016/j.cca.2018.05.046['Copyright (c) 2018 Elsevier B.V. All rights reserved.:2018-09-01].
35 36	446	[33] Baker JF, Krishnan E, Chen L, Schumacher HR. Serum uric acid and cardiovascular disease: Recent
37	447	developments, and where do they leave us? The American Journal of Medicine. 2005;118(8):816-826 'doi':
38	448	10.1016/j.amjmed.2005.03.043['Elsevier Inc:2005-01-01].
39	449	[34] Feig DI, Johnson RJ. Hyperuricemia in childhood primary hypertension. Hypertension (Dallas, Tex.: 1979).
40 41	450	2003; 42 (3):247-252 'doi': 10.1161/01.HYP.0000085858.66548.59['American Heart Association, Inc:2003-01-01].
42	451	[35] Short RA, Nakagawa T, Tuttle KR, Johnson RJ. Hypothesis: fructose-induced hyperuricemia as a causal
43	452	mechanism for the epidemic of the metabolic syndrome. Nature Clinical Practice Nephrology. 2005;1(2):80-86 'doi':
44 45	453	10.1038/ncpneph0019['Nature Publishing Group:2005-01-01].
45 46		
47	454	[36] Niskanen LK, Laaksonen DE, Nyyssonen K, Alfthan G, et al. Uric acid level as a risk factor for cardiovascular
48	455	and all-cause mortality in middle-aged men: a prospective cohort study. Arch Intern Med. 2004;164(14):1546-1551
49 50	456	'doi': 10.1001/archinte.164.14.1546['2004-07-26].
50 51	457	[37] Wang R, Song Y, Yan Y, Ding Z. Elevated serum uric acid and risk of cardiovascular or all-cause mortality in
52	458	people with suspected or definite coronary artery disease: A meta-analysis. Atherosclerosis. 2016;254:193-199 'doi':
53	459	10.1016/j.atherosclerosis.2016.10.006['Copyright (c) 2016 Elsevier Ireland Ltd. All rights reserved.:2016-11-01].
54 57	460	[38] Maruhashi T, Nakashima A, Soga J, Fujimura N, et al. Hyperuricemia is independently associated with
55 56	461	endothelial dysfunction in postmenopausal women but not in premenopausal women. BMJ Open. 2013;3(11):e3659
57	462	'doi': 10.1136/bmjopen-2013-003659['2013-11-08].
58	463	
59 60		
60		


1		
2 3		
4	465	Figure legends
5	466	
6 7 8	467	Figure 1. Differential prevalence of hyperuricemia (HUA) among men and women across
9 10	468	10-year age intervals starting at 35.
11 12 13	469	
14 15	470	Figure 2. Prevalence of hyperuricemia in urban and rural areas.
16 17 18	471	
19 20 21	472	Figure 3. Receiver operating characteristic (ROC) curves for determination of predictive value of
22 23 24	473	hyperuricemia (HUA) or serum uric acid (SUA) for AF in men (A) and women (B). AUC (area
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	474	under curve).

59

3
4
5 6
7 8
9
10 11
12
13
14
15 16
10
17 18
19
20 21
21 22
23
24
25 26
26 27
28
29
30
31 32
33
34
35
36 37
38
39
40 41
41 42
43
44
45
46 47
48
49
50
51 52
52 53
54
55
56 57
57 58
59
60

STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract
		L48
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found L49-L63
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
		L90-L100
Objectives	3	State specific objectives, including any prespecified hypotheses L101-L105
Methods		
Study design	4	Present key elements of study design early in the paper L109-L114
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
		exposure, follow-up, and data collection L115-137
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of
		participants L117-L123
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable L139-L155
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there is
		more than one group L164-L173
Bias	9	Describe any efforts to address potential sources of bias
Study size	10	Explain how the study size was arrived at L109-L114, L136-L137
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		L165-L166
		(b) Describe any methods used to examine subgroups and interactions L166-L171
		(c) Explain how missing data were addressed
		(d) If applicable, describe analytical methods taking account of sampling strategy
		(<u>e</u>) Describe any sensitivity analyses
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially
		eligible, examined for eligibility, confirmed eligible, included in the study,
		completing follow-up, and analysed L136-L137, L177-L179
		(b) Give reasons for non-participation at each stage L177-L179
		(c) Consider use of a flow diagram
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
-		information on exposures and potential confounders L179-L191
		(b) Indicate number of participants with missing data for each variable of interest
Outcome data	15*	Report numbers of outcome events or summary measures L179-191
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and
		their precision (eg, 95% confidence interval). Make clear which confounders were
		adjusted for and why they were included L206-L212, L228-L234
		(b) Report category boundaries when continuous variables were categorized
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 27 of 26

BMJ Open

		meaningful time period
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses
Discussion		
Key results	18	Summarise key results with reference to study objectives L242-L247
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias L312-L31
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations multiplicity of analyses, results from similar studies, and other relevant evidence L249-L309
Generalisability	21	Discuss the generalisability (external validity) of the study results L317-L321
Other information		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based L336-L339

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

org.