

Figure S2. Gene ontology analysis of RNA sequencing experiment. A. The number of KEGG pathways overrepresented in clusters of genes significantly regulated by amputation, beclomethasone, and amputation+beclomethasone. Amputation regulated pathways involved in the immune system and in metabolism. Amputation+beclomethasone treatment regulated a lower number of regulated pathways involved in both the immune system and metabolism. B. The number of regulated genes involved in the overrepresented pathways. Amputation regulated genes involved in immune- and metabolism-related pathways. Amputation+beclomethasone regulated a lower number of genes involved in these pathways.

Figure S4. Expression levels of immune-related genes in FACS-sorted macrophages, determined by qPCR for *arg2, cxcr4b, tgfb1, ccr2* (A) at 24hpa in 3 dpf larvae. The expression level of *cxcr4b* was increased by beclomethasone treatment. Statistical analysis were performed by ANOVA with a Fisher's LSD post hoc. Values shown are the means ± s.e.m. of three independent experiments. Statistical significance is indicated by: * P<0.05; ** P<0.01; *** P<0.001.

Table S1. KEGG-pathways, based on RNA sequencing analysis.

Amputation

				Fold
Term	Count	%	P-value	Enrichment
Immune system				
NOD-like receptor signaling pathway	6	1.03	2.89E-02	3.43
Toll-like receptor signaling pathway	8	1.37	6.13E-02	2.26
Cytokine-cytokine receptor interaction	11	1.89	6.58E-02	1.88
Jak-STAT signaling pathway	8	1.37	9.53E-02	2.04
Metabolism				
Oxidative phosphorylation	28	4.81	2.08E-13	5.60
Carbon metabolism	23	3.95	2.72E-10	5.15
Biosynthesis of antibiotics	31	5.33	4.11E-10	3.73
Metabolic pathways	83	14.26	1.20E-09	1.84
Glycolysis / Gluconeogenesis	17	2.92	3.07E-09	6.52
Biosynthesis of amino acids	13	2.23	3.87E-05	4.28
Arginine and proline metabolism	10	1.72	1.33E-04	5.00
Pentose phosphate pathway	7	1.20	6.51E-04	6.32
Citrate cycle (TCA cycle)	6	1.03	5.67E-03	5.09
Fructose and mannose metabolism	6	1.03	1.42E-02	4.10
Pyruvate metabolism	6	1.03	1.73E-02	3.91
Galactose metabolism	5	0.86	2.82E-02	4.24
Insulin resistance	10	1.72	4.62E-02	2.11
Glycine, serine and threonine metabolism	5	0.86	7.43E-02	3.11
Propanoate metabolism	4	0.69	7.54E-02	4.00
RNA degradation	7	1.20	8.06E-02	2.31
Others				
Cardiac muscle contraction	13	2.23	1.30E-04	3.79

Amputation & Beclomethasone

				Fold
Term	Count	%	P-value	Enrichment
Immune system				
Toll-like receptor signaling pathway	6	1.97	8.62E-03	4.64
Metabolism				
Insulin signaling pathway	10	3.28	3.19E-04	4.45
Starch and sucrose metabolism	5	1.64	6.92E-04	11.96
Insulin resistance	8	2.62	1.49E-03	4.60
Steroid hormone biosynthesis	4	1.31	1.16E-02	8.27
FoxO signaling pathway	7	2.30	2.16E-02	3.15
Biosynthesis of antibiotics	8	2.62	2.94E-02	2.63
Arginine biosynthesis	3	0.98	3.76E-02	9.57
Glyoxylate and dicarboxylate metabolism	3	0.98	6.69E-02	6.96
Galactose metabolism	3	0.98	6.69E-02	6.96
Glycolysis / Gluconeogenesis	4	1.31	6.72E-02	4.19
Retinol metabolism	3	0.98	8.94E-02	5.89
Alanine, aspartate and glutamate metabolism	3	0.98	9.33E-02	5.74
Others				
Adipocytokine signaling pathway	5	1.64	2.43E-02	4.45

Beclomethasone

				Fold
Term	Count	%	P-value	Enrichment
Metabolism				
FoxO signaling pathway	8	4.08	1.48E-03	4.57
Insulin signaling pathway	8	4.08	1.59E-03	4.51
Insulin resistance	6	3.06	1.06E-02	4.38
Glyoxylate and dicarboxylate metabolism	3	1.53	4.35E-02	8.82
Steroid hormone biosynthesis	3	1.53	5.35E-02	7.87
Others				
Focal adhesion	7	3.57	3.80E-02	2.74
Adipocytokine signaling pathway	4	2.04	5.57E-02	4.51

Table S2. Sequences of Primers used in qPCR reactions.

Gene name	Gene accession	Sequence (5'-3')
ppail	ENSDARG00000103994	Fw: CATCCACAACCTTCCCGAACAC
		Rv: ACACTGAAACACGGAGGCAAAG
ccl2	ENSDARG00000041835	Fw: GTCTGGTGCTCTTCGCTTTC
		Rv: TGCAGAGAAGATGCGTCGTA
cxcl11aa	ENSDARG00000100662	Fw: ACTCAACATGGTGAAGCCAGTGCT
		Rv: CTTCAGCGTGGCTATGACTTCCAT
il8	ENSDARG00000104795	Fw: TGTGTTATTGTTTTCCTGGCATTTC
		Rv: GCGACAGCGTGGATCTACAG
cxcl18b	ENSDARG0000075045	Fw: TCTTCTGCTGCTGCTTGCGGT
		Rv: GGTGTCCCTGCGAGCACGAT
il6	ENSDARG00000102318	Fw: CGCTAAGGCAACTGGAAGAC
		Rv: CCAGACCACTGGGAAACACT
il1b	ENSDARG0000098700	Fw: TGTGTGTTTGGGAATCTCCA
		Rv: CTGATAAACCAACCGGGACA
tnfa	ENSDARG0000009511	Fw: ACCAGGCCTTTTCTTCAGGT
		Rv: TTTGCCTCCGTAGGATTCAG
ттр9	ENSDARG00000042816	Fw: CATTAAAGATGCCCTGATGTATCCC
		Rv: AGTGGTGGTCCGTGGTTGAG
arg2	ENSDARG0000039269	Fw: AAGGCCATTCTCAGCAGTGT
		Rv: AGGTTTCCCGAAGGTGAAGT
cxcr4b	ENSDART00000061499	Fw: GCGACCTCTCAGTCAGCAAT
		Rv: TCACAAGCACCACAAGTCCA
tgfb1	ENSDARG00000041502	Fw: CAACCGCTGGCTCTCATTTGA
		Rv: ACAGTCGCAGTATAACCTCAGCT
ccr2	ENSDARG00000079829	Fw: TGGCAACGCAAAGGCTTTCAGTGA
		Rv: AGGTTTCCCGAAGGTGAAGT

Movie 1. Macrophage migration upon tail amputation. Tracks of macrophages migrating between 1.5 and 5.5 hpa in 3 dpf larvae in the vehicle-treated group. Confocal microscopy images were analyzed using ImageJ with custom-made plugins, developed by Dr. Joost Willemse (Leiden University), for localization and tracking of cells.

Movie 2. Neutrophil migration upon tail amputation. Tracks of neutrophils migrating between 1.5 and 5.5 hpa in 3 dpf larvae in the vehicle-treated group. Confocal microscopy images were analyzed using ImageJ with custom-made plugins, developed by Dr. Joost Willemse (Leiden University), for localization and tracking of cells.