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1. Models based on deep neural networks 
 
Here we report in more detail the structure of the convolutional neural network (CNN) and the 
parameters used for training. In addition, we include the results of the analysis of symptom 
detection across activities. 
 
Each CNN model consists of the following layers (Fig. S1): 2 convolutional layers (kernel sizes 
f= 32 and 16 samples, with stride s=1) with 16 and 32 rectified linear units (ReLU) respectively, 
each followed by a max-pooling layer (pool-size f =4 and 6 units, with strides s=2 and 4). The 
last 2 layers are 2 dense (or fully connected) layers with 32 neurons each, also with ReLU 
activation functions. Dense layers used dropout1, such that a fixed proportion (0.5) of units were 
‘shut down’ during training to reduce overfitting. The output layer used a Softmax function for 
the classification, with as many neurons as classes (2), which outputs the probability of the input 
clip showing a symptom (bradykinesia/tremor). The total number of trainable parameters for 
each model was 24,722.  
 
The network parameters (weights) are updated so to minimize the cross-entropy loss function 
between predicted and reference labels, by using the Adam optimizer2, a stochastic gradient-
descent optimization algorithm. We set the parameters to their default values as recommended in 
the paper (learning rate of 0.001, beta_1=0.9, beta_2=0.999). At each training iteration, we 
randomly draw mini-batches of 1024 data points (clips), until all data points from the training 
dataset are drawn, which represents an epoch. The model is trained for a maximum of 30 epochs, 
using early stopping: as soon as the error on the validation batches is not decreasing for 5 
consecutive epochs, learning is stopped. We performed a random transformation of the input 
batches, by simulating a random rotation of the sensor in their plane. The angle of rotation is 
drawn uniformly at random between -5 and 5 degrees. This process injects artificial noise into 
the data to simulate the process of positioning sensors to slightly different orientation in every 
trial, and therefore increasing generalization3. 
 
 



 
Fig. S1 CNN model for symptom detection: the network inputs the raw sensors data and outputs the 
probability that a symptom is present (p1) or not (p0 = 1-p1). Each convolutional layer is depicted with a 
box, where the 3rd dimension corresponds to the number of filters in that layer; f denotes the kernel size, s 
is the stride and n the number of filters in the layer. An input data clip is a tensor of dimension (1, 313, 
N_channels). FC stands for fully connected (or dense) layers. 
 
We trained population models based on CNNs, and evaluated them against the effect of sensor 
location and on detection of symptoms across different groups of activities.  
 
1.1 Symptom detection across activities 
Detection of bradykinesia during walking tasks yielded the highest mean AUROC (0.78, 
CI:0.69-0.88), while detection during clinical tasks was significantly worse (0.64, CI:0.57-0.72; 
p=0.02). Detection during gross and fine motor tasks were not significantly different from 
detection during clinical tasks (Gross: 0.64, CI:0.58-0.70; Fine: 0.66, CI:0.58-0.75; p>=0.65).  
Detection of tremor yielded comparable mean values of AUROC across clinical (0.72, CI:0.62-
0.82), walking (0.71, CI:0.42-1.00) and fine motor tasks (0.74, CI:0.66-0.82); mean AUROC was 
lower during gross motor tasks (0.62, CI:0.56-0.68) (Fig.S2). However, detection performance 
was highly variable across subjects, and as such there was no significant difference in mean 
AUROC values (p>=0.26). Therefore, CNN-based population models were best at detecting 
bradykinesia from walking tasks, while did not show any difference across activities for tremor 
detection.  
 



  
Fig. S2: AUROC distribution across subjects for CNN-based models trained on detection of bradykinesia 
(left) and tremor (right), split by group of tasks.  
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