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Supplemental Figure 1: Document length and disease code distribution on CSU and PP dataset.
Proportion of records in each dataset with certain length (number of words) or certain number of disease
codes.
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Supplemental Figure 2: Abstention improvement curve. Top-left: learning to reject model with con-
fidence score as input, estimate accuracy or loss. Top-right: learning to reject model with post-sigmoid
probabilities ŷ score as input, estimate accuracy or loss. Bottom-left: learning to reject model with prior-to-
sigmoid logits as input, estimate accuracy or loss. Bottom-right: learning to reject model with global max
pooled hidden states c as input, estimate accuracy or loss.
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1 CSU Discharge Summary Format
The Colorado State University discharge summaries contain multiple data fields, including: History, As-
sessment, Diagnosis, Prognosis, FollowUpPlan, ProceduresAndTreatments, PendingDiagnostics, PendingDi-
agnosticsComments, Diet, Exercise, DischargeStatus, DischargeDate, Medications, AdditionalInstructions
DrugWithdrawal, RecheckVisits, Complications, MedicalComplications, SurgicalComplications and Anes-
thesiaComplications. We filtered out fields with many null entries as well as the diagnosis related fields,
since this is not present in the private practice data. The remaining fields—History, Assessment, Prognosis,
DischargeStatus and Medications—were used as the input to train the models.

2 Model Description
We formulate the problem of veterinary disease tagging as a multi-label classification problem. Given a
veterinary record X, which contains detailed description of the diagnosis, we try to infer a subset of diseases
y ∈ Y, given a pre-defined set of diseases Y. The problem of inferring a subset of disease codes can be viewed
as a series of independent binary prediction problems12. The binary classifier learns to predict whether a
disease code yi exists or not for i = 1, ...,m, where m = |Y|.
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Our learning system has two components: a text processing module and disease code prediction module.
Our text processing module uses a long-short-term memory network (LSTM) which has demonstrated their
effectiveness in learning implicit language patterns from the text9. Our disease code prediction module
consists of binary classifiers that are parameterized independently. A long-short-term memory network is
a recurrent neural network with a long-short-term memory cell. It takes one word as input, as well as the
previous cell and hidden state. Given a sequence of word embeddings x1, ..., xT , the recurrent computation
of LSTM network at a time step t can be described in Eq 1, where σ is the sigmoid function σ = 1/(1+e−x),
and tanh is the hyperbolic tangent function. We use � to indicate the hadamard product.

ft = σ(Wfxt + Vfht−1 + bf )

it = σ(Wixt + Viht−1 + bi)

ot = σ(Woxt + Voht−1 + bo)

c̃t = tanh(Wcxt + Vcht−1 + bc)

ct = ft � ct−1 + it � c̃t
ht = ot � tanh(ct)

(1)

An extension of this recurrent neural network with LSTM cell is to introduce bidirectional passes4. Graves
et al. shows that introducing bidrectional passes, it can effectively eliminate problems such as retaining long-
term dependency when the document is very long. We parameterize two LSTM cells with different set of
parameters, one cell is used in forward pass where the sequence is passed in sequentially from the beginning
{x1, ..., xT } , one cell is used for backward pass, where the sequence is passed in with reversed ordering
{xT , ..., x1}. At the end of both passes, bidirectional LSTM will output two hidden states represents each
input xt, and we stack these two hidden states as our new hidden state for this input ht = [

−→
ht ;
←−
ht ].

After computing hidden states over the entire document, we introduce global max pooling over the hidden
states, as suggested by Collobert & Weston2 so that the hidden states will aggregate information from the
entire documents. Assuming the dimension of hidden state is d, global max pooling apply an element-wise
maximum operation over the temporal dimension of the hidden state matrix, described in Eq 2.

H = [h1, ..., hT ], H ∈ RT×d

cj = max(Hj), for j = 1, ..., d
(2)

Then we define a binary classifier for each of the 42 disease code in our pre-defined set. The binary
classifier takes in a vector c that represents the veterinary record and outputs a sufficient statistic for the
Bernoulli probability distribution indicating the probability of whether a tag should be predicted. For
i = 1, ...,m:

p(yi) = ŷi = σ(θᵀi c) (3)

We use binary cross entropy loss averaged across all labels as the training loss. Given the binary predic-
tions from the model ŷ ∈ [0, 1]m and correct one-hot label y ∈ {0, 1}m, binary cross entropy loss is written
as follow. The decision boundary in our model is set to be 0.5.

LBCE(ŷ,y) = − 1

m

m∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi) (4)

2.1 Leveraging disease similarity
We introduce two penalties that are inspired by the implicit relationships between disease codes that we
refer to as meta-diseases. By augmenting our loss with these two penalties, we aim to increase model’s
ability to predict codes that have fewer instances. We introduce them as DeepTag meta-disease objective
and DeepTag-M meta-disease objective.

DeepTag meta-disease objective After defining the meta-diseases for the disease codes, we can use
techniques the from multi-task learning literature. Each task corresponds to the binary prediction of one
of the 42 disease codes. Jacob et al.5 proposed a hypothesis that if two tasks are similar, the task-specific
parameters for these two tasks—i.e. the corresponding weights in the final neural network layer—should be
close in vector space, and vice versa.
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We can first compute the mean vector of all disease code embeddings θ̄ = 1
m

∑m
i=1 θi. Each disease

embedding is a weight parameter θ defined in Eq 3. We can define J (k) ⊂ {1, ...,m}, where J (k) is a set
of disease codes that belong to meta-disease k. Then we can compute a vector for each meta-disease: for
k = 1, ...,K, θ̄k = 1

|J (k)|
∑

i∈J (k) θi.
The within-meta-disease closeness constraint Ωwithin can be computed as the distance between disease

code embeddings and the meta-disease vector θ̄k. Ωbetween can be computed as the distance between θ̄k and
θ̄. We formulate this as an additional loss term Ω(Θ), and allow three hyperparameter γnorm, γwithin and
γbetween to control the strength of this penalty.

Ωnorm =

m∑
i=1

||θi||2

Ωbetween =

K∑
k=1

||θ̄k − θ̄||2

Ωwithin =

K∑
k=1

∑
i∈J (k)

||θi − θ̄k||2

(5)

DeepTag-M meta-disease objective We propose an additional penalty following the intuition that we
want the model to make accurate predictions for the meta-disease even though mistakes can be made on the
disease codes. Meta-disease training labels are created by examining whether any of the disease code under
this meta-disease has been marked as tagged. Following the same logic, since the disease codes are predicted
independently, we can compute the probability of the presence of a meta-disease ỹk from the probability of
disease codes that belong to this meta-disease.

p(ỹk) = 1−
∏

i∈J (k)

(1− p(yi))

= 1−
∏

i∈J (k)

(1− σ(θᵀi c))
(6)

After computing the probability of the presence of each meta-disease, given the set of meta-diseases ỹ
that are created from our true set of disease codes y, we can then compute the binary cross entropy loss
between the model’s estimation on meta-disease probability and true meta-diseases in Eq 7. We use β to
adjust the strength of this penalty.

Lmeta(p(ỹ), ỹ) = − 1

K

K∑
k=1

ỹk log(p(ỹk))

+(1− ỹk) log(1− p(ỹk))

(7)

2.2 Learning to abstain
In practice, it is often desirable for the model to forfeit the prediction if the prediction is likely to be incorrect.
When the method is used in collaboration with human experts, the model can just defer difficult cases to
them, fostering human-computer collaboration. However, this is still an under-explored field in machine
learning, and previous research has focused largely on binary-class single-label classification3. We formally
describe the set-up and our learning-based approach in the following sections, and extend relevant discussion
to a multi-label setting.

We propose two abstention settings. Each setting will compute a score α for each document, which we
refer to as the abstention priority score. We can then rank these documents using this score α. When user
specifies a percentage of documents to be dropped, documents that have high α will be dropped first.

Confidence-based abstention Since our model already outputs a probability for each disease code, if
our model is well-calibrated, meaning that the output probability satisfies the following constraint in Eq 8,
then our probability should reflect how uncertain the model is about the output.

Px,y∼D[y = 1|ft(x) = p] = p ∀p ∈ [0, 1] and ∀t (8)
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The notion of calibration means that when the model thinks the chance of a given prediction to be
correct is p%, we collect all instances that the model predicts with such probability, and the model in total
will be correct p% of the time. A well-calibrated model’s output probability corresponds to the model’s
confidence/certainty on how correct its prediction is. Previous research has shown that binary classifiers
with sigmoid scoring function and cross-entropy loss are often well-calibrated10.

With calibrated {p(y1), ..., p(ym)}, we want to compute how confident the model is on these predictions.
For each prediction, the model is more confident if p(yi) is close to 0 or close to 1. Based on this observation,
we can convert the probability into a confidence score with function g: g(p(yi)) = max{p(yi), 1− p(yi)}.

We can now compute the probability of the model getting k disease codes correct on a single example.
We choose all subsets from the entire disease code set, and compute the probability of a chosen subset to be
correct as well as the probability of the not chosen (m− k) disease codes to be incorrect.

αconf =
∑

I⊂{1,...,m}
|I|=k

(
∏
i∈I

g(p(yi)))(
∏
j 6∈I

1− g(p(yj)))
(9)

The score αconf is an abstention priority score because it is a valid indication of how confident the model’s
overall output is. We refer to this scheme confidence-based abstention module (or “CB” in Supplemental
Figure 2, “Baseline” in main manuscript Figure 4).

Learning-based abstention Instead of computing α from a fixed formula, we can try to link abstention
priority score to a value that we care about. For example, we want to drop examples that will induce high
loss, or equivalently, examples where predicted result gives a low accuracy. However, we do not have access to
ground-truth answers in the real world, instead, we propose that if the data distribution D between training
and deployment are consistent (xtest, ytest ∼ D, which is the underlying assumption specified in calibration),
then we can learn to estimate loss or accuracy for each example. We can compute a regression target for the
learned abstention module using the training dataset’s accuracy and loss value for each example (Eq 10),
where d(p) = 1(p > 0.5).

αi
accu =

1

m

m∑
j=1

1[d(ŷ)ij = yi
j ]

αi
loss = LBCE(ŷi,yi)

(10)

This abstention learning module A can take an input z and output an estimated abstention score α̂. We
train this module by minimizing minimum square squared error with the regression target:

α̂i = A(zi)

LMSE =

N∑
i=1

(αi − α̂i)2
(11)

We choose four possible inputs from various parts of the DeepTag model that the DeepTag-abstention
module can use to predict accuracy or loss without knowing the ground-truth disease codes. Two choices
are obvious: confidence scores g(ŷ) that is used to compute confidence-based abstention priority score in the
previous section, and estimated probability for the presence of each disease code ŷ, which we have used to
compute confidence scores via function g(·). However, since ŷ is obtained by applying a sigmoid function
to the output of the classifier ŷi = σ(θᵀi c), then we can also use the prior-to-sigmoid value θᵀi c as input. At
last, we hypothesize that the representation of document c might also contain relevant information that is
useful for model A to determine whether the document is difficult to process.

We fit the model A to estimate αlearn in the training set of our data, same split as the one used to train
the overall model. We then evaluate on a previously unseen test set.

2.3 MetaMap
MetaMap is a program developed by the National Library of Medicine (NLM)1. It processes a document
and outputs a list of matched medically-relevant keywords in the given document. We use these keywords
as features and map each document into a frequency-encoded bag-of-words vector. The final feature vector
size is 57,235. We perform the multi-label classification task with the Multi-layer Perceptron (MLP) and
support vector machine (SVM) with linear kernel 1 on these feature vectors.

1http://scikit-learn.org
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2.4 Text CNN
For the convolutional neural network baseline, we use filter windows of 3, 4, and 5, and each has 340
feature maps. We use rectified linear unit after the convolution, and then apply max pooling over time. We
concatenate the the final representations from all filter window sizes, which results in a sentence vector of
dimension 1020, comparable to the sentence vector generated by the BLSTM model, which is 1024. The
details of our set up follows directly from the implementation of Kim et al.6.

3 Experimental Details

3.1 Main Experiment
We initialize our model with 100-dimension pretrained GloVE word vectors11, and we initialize un-matched
words in the CSU training data with sampled multivariate normally distributed vectors. We allow all word
embeddings to be updated through the training process. We use a recurrent neural network with a 512
dimension LSTM cell, and set the feed-forward dropout rate to be 20%. We use batch size of 32, clipping
gradient at 5. We use ADAM7 optimizer with a learning rate of 0.001.

We trained all models to a maximum of 5 epochs with early stopping, the maximum number of epoch
is picked by observing performance on validation dataset. After picking out the best hyper-parameters on
validation set, we evaluate all models in-domain generalization performance on the CSU test dataset and
out-domain generalization performance on the PP dataset.

After hyperparameter searching, we report models with the hyperparameters that perform well on each
dataset. We train each model five times and report the averaged result. For the CSU dataset, we find
β = 0.001 works best for DeepTag-M, and γnorm = 1e − 5, γbetween = 1e − 4, γwithin = 1e − 4 works
best for DeepTag. For the PP dataset, we find β = 0.0001 works the best for DeepTag-M, and γnorm =
1e− 4, γbetween = 1e− 3, γwithin = 1e− 3 works best for DeepTag. We report these results in Table 2 in the
main manuscript.

For Table 1 in the main manuscript, we report DeepTag trained with γnorm = 1e − 4, γbetween = 1e −
3, γwithin = 1e− 3 and we regard this as our best setting.

3.2 Abstention Experiment
We use a 3-layer neural network with SELU activation8 to parameterize abstention model A. The learning to
abstain model is trained on various outputs generated by the DeepTag system. All configurations of learning
to abstain models are trained optimally for 3 epochs on the training set, and evaluated on the unseen test
set.

4 Coding of Private Practice (PP) notes
Our guidelines for applying diagnostic codes to the private practice dataset were derived following consulta-
tions and review of coding guidelines from CSU as well consultation with an additional coding professional
who helps maintain the SNOMED-veterinary extension and are summarized below:

1. Implied assessments/problems are not be coded unless there is direct evidence to support those diag-
noses in the record or noted in the assessment or diagnosis fields. At minimum, diagnoses are applied
if there is support from the physical exam and the primary clinician considers it a problem in the
patients “Assessment” section in the notes. It is preferred if the assessment/problem is also addressed
in the “Plan” section of the note by way of treatments or results from additional diagnostic tests (which
are in the “Plan”), but not all diagnoses are addressed here. For example, if the clinician applies a free
text diagnosis of obesity, the plan includes weight loss and there is a 7/8 BCS, it is appropriate to code
obesity as a problem.

2. Tentative diagnoses are not coded.

3. Historical findings or diagnoses are not coded on a particular visit unless they represent an active
problem.

4. Only diagnoses are coded, not signs, symptoms or presenting complaints.
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5 SNOMED Meta-diseases
Here we provide the full list of the SNOMED-CT meta-diseases that we used to regularize the training
objective of DeepTag. In the list, the numbers correspond to the meta-diseases, and the letters indicate the
original SNOMED-CT codes. We manually grouped the 42 SNOMED-CT codes into these 18 meta-diseases,
using the analogous grouping of the ICD-9 codes as a guide.

1. Complications of pregnancy, childbirth, and
the puerperium

(a) Disorder of labor / delivery (disorder)

(b) Disorder of pregnancy (disorder)

2. Diseases of the genitourinary system

(a) Disorder of the genitourinary system (dis-
order)

3. Diseases of the musculoskeletal system and
connective tissue

(a) Disorder of connective tissue (disorder)

(b) Disorder of musculoskeletal system (dis-
order)

4. Diseases of the skin and subcutaneous tissue

(a) Angioedema and/or urticaria (disorder)

(b) Disorder of pigmentation (disorder)

(c) Disorder of integument (disorder)

5. Certain conditions originating in the perinatal
period

(a) Disorder of fetus or newborn (disorder)

6. Congenital anomalies

(a) Hereditary disease (disorder)

(b) Congenital disease (disorder)

7. Injury and poisoning

(a) Disorder caused by exposure to ionizing
radiation (disorder)

(b) Poisoning (disorder)

(c) Traumatic AND/OR non-traumatic in-
jury (disorder)

8. Symptoms, signs, and ill-defined conditions

(a) Hyperproteinemia (disorder)

(b) Clinical finding (finding)

9. Neoplasms

(a) Neoplasm and/or hamartoma (disorder)

10. Infectious and parasitic diseases

(a) Disease caused by Arthropod (disorder)

(b) Infectious disease (disorder)

(c) Disease caused by parasite (disorder)

11. Diseases of blood and blood-forming organs

(a) Anemia (disorder)

(b) Disorder of cellular component of blood
(disorder)

(c) Disorder of hematopoietic cell prolifera-
tion (disorder)

(d) Disorder of hemostatic system (disorder)

(e) Spontaneous hemorrhage (disorder)

12. Endocrine, nutritional and metabolic diseses,
and immunity disorders

(a) Autoimmune disease (disorder)

(b) Disorder of immune function (disorder)

(c) Hypersensitivity condition (disorder)

(d) Metabolic disease (disorder)

(e) Nutritional deficiency associated condi-
tion (disorder)

(f) Nutritional disorder (disorder)

(g) Obesity (disorder)

(h) Propensity to adverse reactions (disorder)

(i) Disorder of endocrine system (disorder)

13. Diseases of the nervous system

(a) Disorder of nervous system (disorder)

14. Mental disorders

(a) Mental disorder (disorder)

15. Diseases of the circulatory system

(a) Disorder of cardiovascular system (disor-
der)

16. Diseases of sense organs

(a) Disorder of auditory system (disorder)

(b) Visual system disorder (disorder)

17. Diseases of the digestive system

(a) Vomiting (disorder)

(b) Disorder of digestive system (disorder)

18. Diseases of the respiratory system

(a) Disorder of respiratory system (disorder)

7



References
1. Alan R Aronson and François-Michel Lang, An overview of metamap: historical perspective and recent

advances, Journal of the American Medical Informatics Association 17 (2010), no. 3, 229–236.

2. Ronan Collobert and Jason Weston, A unified architecture for natural language processing: Deep neural
networks with multitask learning, Proceedings of the 25th international conference on machine learning,
2008, pp. 160–167.

3. Corinna Cortes, Giulia DeSalvo, and Mehryar Mohri, Learning with rejection, International conference
on algorithmic learning theory, 2016, pp. 67–82.

4. Alex Graves, Santiago Fernández, and Jürgen Schmidhuber, Bidirectional lstm networks for improved
phoneme classification and recognition, International conference on artificial neural networks, 2005,
pp. 799–804.

5. Laurent Jacob, Jean-philippe Vert, and Francis R Bach, Clustered multi-task learning: A convex formu-
lation, Advances in neural information processing systems, 2009, pp. 745–752.

6. Yoon Kim, Convolutional neural networks for sentence classification, Proceedings of the 2014 conference
on empirical methods in natural language processing (emnlp), 2014, pp. 1746–1751.

7. Diederik P Kingma and Jimmy Ba, Adam: A method for stochastic optimization, International conference
on learning representations, 2015.

8. Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter, Self-normalizing neural
networks, Advances in neural information processing systems, 2017, pp. 971–980.

9. Tomáš Mikolov, Statistical language models based on neural networks, Presentation at Google, Mountain
View, 2nd April (2012).

10. Alexandru Niculescu-Mizil and Rich Caruana, Predicting good probabilities with supervised learning,
Proceedings of the 22nd international conference on machine learning, 2005, pp. 625–632.

11. Jeffrey Pennington, Richard Socher, and Christopher Manning, Glove: Global vectors for word represen-
tation, Proceedings of the 2014 conference on empirical methods in natural language processing (emnlp),
2014, pp. 1532–1543.

12. Mohammad S Sorower, A literature survey on algorithms for multi-label learning, Oregon State Univer-
sity, Corvallis 18 (2010).

8


