Supplementary Text for Efficient Algorithms to Discover Alterations with Complementary Functional Association in Cancer

Rebecca Sarto Basso* rebeccasarto@berkeley.edu Dorit S. Hochbaum[∗] hochbaum@ieor.berkeley.edu

> Fabio Vandin†,‡,§,¶ fabio.vandin@unipd.it

Proposition 1. There are instances of the Target Associated k-Set such that $W(\hat{S}) = W(S^*)/k$.

Proof. To see that the bound is tight just consider the following example. We want to pick k sets out of n sets $A_1...A_n$. Sets $A_1...A_k$ include 2 elements of respective weight $a \ge 0$ and $b = a/(k-1)$. Subset A_{k+1} includes all the elements of weight b from the previous k sets and one element with a small weight ϵ . Each of the remaining sets $A_{k+2}...A_n$ include an arbitrary number of elements with overall weight ≤ 0 . We choose a penalty of value a. Note that one can choose the weights of elements in sets $A_{k+2}...A_n$ in such a way that the average of all positive normalized weights is equal to a. Clearly the optimal solution to the Target Associated k-Set problem consists of sets $A_1...A_k$ with an objective value of $k(a + b)$. The greedy algorithm will pick set A_{k+1} at the first iteration and then assign a new weight to its elements equal to $-a$. The updated weight of sets $A_1...A_k$ is now 0 and the algorithm will stop and output A_{k+1} as the solution, giving an approximation ratio of

$$
\frac{kb+\epsilon}{k(a+b)} = \frac{1}{k} + \frac{\epsilon}{kb}
$$

 \Box

Proposition 2. If $m \in \Omega$ ($k^2 \ln(n/\delta)$) samples from the generative model above are provided to the greedy *algorithm, then the solution of the greedy algorithm is H with probability* $> \delta$ *.*

Proof. We prove that in iteration i of the greedy algorithm, conditioning on the current solution being a set S with $S \subset H$, then the greedy algorithm adds a gene in $H \setminus S$ to the solution with probability $\geq delta/k$, and that the first gene added by the greedy algorithm is $g \in H$. The result then follows by union bound on the k iterations of the greedy algorithm.

Consider the first iteration of the greedy algorithm and consider a gene $q \in G$. Note that if $q \notin H$ then $\mathbf{E}[W(\lbrace g \rbrace)] \leq 0$, since $\mathbf{E}[\sum_{j \in A_g} w_j] = 0$ because the samples in which g is mutated are taken uniformly at random while $\sum_{j\in A_g}(c_S(j)-1)\geq 0$. If $g\in H$ by the assumptions of the model we have $\mathbf{E}[W(\lbrace g\rbrace)]\geq 0$ $\frac{m}{k}$ for a constant $c^{m} \geq 1$. Note that $W({g})$ can be written as the sum $\sum_{i=1}^{m} X_i$ of random variables (r.v.'s) X_i where X_i is the contribution of sample i to $W({g})$ with $X_i \in [-1,1]$. By the Azuma-Hoeffding

^{*}Department of Industrial Engineering and Operations Research, University of California at Berkeley (USA).

[†]Department of Information Engineering, University of Padova (Italy).

[‡]Department of Computer Science, Brown University (USA).

[§]Department of Mathematics and Computer Science, University of Southern Denmark (Denmark).

[¶]Corresponding author.

inequality $[?]$ and union bound (on the n genes) the first gene chosen by the greedy algorithm is not gene $g \in H$ with probability $\leq e$ $-\frac{2m^2}{4mk^2(c''')^2}$ which is $\leq \delta/k$ when $m \in \Omega(k^2 \ln(nk/\delta))$.

Now assume that in iteration i, for the current solution $S \subset H$. Consider a gene $g \in G \setminus H$, then $\mathbf{E}[W(S\cup\{g\})-W(S)]\leq 0,$ since $\mathbf{E}[\sum_{j\in\cup_{s\in S\cup g}A_s}w_j-\sum_{j\in\cup_{s\in S}A_s}w_j]\leq 0$ (by the assumptions of the model $W(S) > 0$ and the fact that alterations in ${g}$ are placed uniformly at random among samples) and $\mathbf{E}[\sum_{j\in\cup_{s\in S\cup g}}(c_S(j)-1)-\sum_{j\in\cup_{s\in S}}(c_S(j)-1)]\geq 0$ (because for each sample *i*, the number of alterations of $S \cup \{g\}$ in i is a superset of the number of alterations of S in i). Consider now a gene $g \in H \setminus S$: by the assumptions of the model $\mathbf{E}[W(S \cup \{g\}) - W(S)] \leq \frac{m}{k c'''}$ for a constant $c'' > 1$. Note that $\mathbf{E}[W(S \cup \{g\}) - W(S)]$ can be written as the sum of $\sum_{i=1}^{m} X_i$ of random variables (r.v.'s) X_i where X_i is the contribution of sample i in the increase in weight from $W(S)$ to $W(S \cup \{g\})$, where $X_i \in [-1, 1]$. By the Azuma-Hoeffding inequality and union bound (on the $\lt n$ genes considered for addition by the greedy algorithm) the gene g added to S by the greedy algorithm in iteration i is not in $H \setminus S$ with probability $-\frac{2m^2}{4mk^2(c''')^2}$ which is $\leq \delta/k$ when $m \in \Omega(k^2 \ln(nk/\delta))$. $\leq e$ \Box