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Proposition 1. There are instances of the Target Associated k-Set such that W (Ŝ) = W (S∗)/k.

Proof. To see that the bound is tight just consider the following example. We want to pick k sets out of
n sets A1...An. Sets A1...Ak include 2 elements of respective weight a ≥ 0 and b = a/(k − 1). Subset
Ak+1 includes all the elements of weight b from the previous k sets and one element with a small weight ε.
Each of the remaining sets Ak+2...An include an arbitrary number of elements with overall weight ≤ 0. We
choose a penalty of value a. Note that one can choose the weights of elements in sets Ak+2...An in such
a way that the average of all positive normalized weights is equal to a. Clearly the optimal solution to the
Target Associated k-Set problem consists of sets A1...Ak with an objective value of k(a + b). The greedy
algorithm will pick set Ak+1 at the first iteration and then assign a new weight to its elements equal to −a.
The updated weight of sets A1...Ak is now 0 and the algorithm will stop and output Ak+1 as the solution,
giving an approximation ratio of

kb+ ε

k(a+ b)
=

1

k
+

ε

kb

Proposition 2. If m ∈ Ω
(
k2 ln(n/δ)

)
samples from the generative model above are provided to the greedy

algorithm, then the solution of the greedy algorithm is H with probability ≥ δ.

Proof. We prove that in iteration i of the greedy algorithm, conditioning on the current solution being a set
S with S ⊂ H , then the greedy algorithm adds a gene in H \ S to the solution with probability ≥ delta/k,
and that the first gene added by the greedy algorithm is g ∈ H . The result then follows by union bound on
the k iterations of the greedy algorithm.

Consider the first iteration of the greedy algorithm and consider a gene g ∈ G. Note that if g 6∈ H then
E[W ({g})] ≤ 0, since E[

∑
j∈Ag

wj ] = 0 because the samples in which g is mutated are taken uniformly at
random while

∑
j∈Ag

(cS(j) − 1) ≥ 0. If g ∈ H by the assumptions of the model we have E[W ({g})] ≥
m

kc
′′′ for a constant c′′′ ≥ 1. Note that W ({g}) can be written as the sum

∑m
i=1Xi of random variables

(r.v.’s) Xi where Xi is the contribution of sample i to W ({g}) with Xi ∈ [−1, 1]. By the Azuma-Hoeffding
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inequality [?] and union bound (on the n genes) the first gene chosen by the greedy algorithm is not gene

g ∈ H with probability ≤ e
− 2m2

4mk2(c
′′′

)2 which is ≤ δ/k when m ∈ Ω
(
k2 ln(nk/δ))

)
.

Now assume that in iteration i, for the current solution S ⊂ H . Consider a gene g ∈ G \ H , then
E[W (S ∪ {g})−W (S)] ≤ 0, since E[

∑
j∈∪s∈S∪gAs

wj −
∑

j∈∪s∈SAs
wj ] ≤ 0 (by the assumptions of the

model W (S) > 0 and the fact that alterations in {g} are placed uniformly at random among samples) and
E[
∑

j∈∪s∈S∪g
(cS(j)−1)−

∑
j∈∪s∈S

(cS(j)−1)] ≥ 0 (because for each sample i, the number of alterations
of S ∪ {g} in i is a superset of the number of alterations of S in i). Consider now a gene g ∈ H \ S:
by the assumptions of the model E[W (S ∪ {g}) − W (S)] ≤ m

kc′′′
for a constant c

′′′
> 1. Note that

E[W (S ∪ {g})−W (S) can be written as the sum of
∑m

i=1Xi of random variables (r.v.’s) Xi where Xi is
the contribution of sample i in the increase in weight from W (S) to W (S ∪ {g}), where Xi ∈ [−1, 1]. By
the Azuma-Hoeffding inequality and union bound (on the < n genes considered for addition by the greedy
algorithm) the gene g added to S by the greedy algorithm in iteration i is not in H \ S with probability

≤ e
− 2m2

4mk2(c
′′′

)2 which is ≤ δ/k when m ∈ Ω
(
k2 ln(nk/δ))

)
.
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