Supplementary Text for Efficient Algorithms to Discover Alterations with Complementary Functional Association in Cancer

Rebecca Sarto Basso* Dorit S. Hochbaum*
rebeccasarto@berkeley.edu hochbaum@ieor.berkeley.edu
Fabio Vandin^{†,‡}§¶

fabio.vandin@unipd.it

Proposition 1. There are instances of the Target Associated k-Set such that $W(\hat{S}) = W(S^*)/k$.

Proof. To see that the bound is tight just consider the following example. We want to pick k sets out of n sets $A_1...A_n$. Sets $A_1...A_k$ include 2 elements of respective weight $a \ge 0$ and b = a/(k-1). Subset A_{k+1} includes all the elements of weight b from the previous k sets and one element with a small weight ϵ . Each of the remaining sets $A_{k+2}...A_n$ include an arbitrary number of elements with overall weight ≤ 0 . We choose a penalty of value a. Note that one can choose the weights of elements in sets $A_{k+2}...A_n$ in such a way that the average of all positive normalized weights is equal to a. Clearly the optimal solution to the Target Associated k-Set problem consists of sets $A_1...A_k$ with an objective value of k(a + b). The greedy algorithm will pick set A_{k+1} at the first iteration and then assign a new weight to its elements equal to -a. The updated weight of sets $A_1...A_k$ is now 0 and the algorithm will stop and output A_{k+1} as the solution, giving an approximation ratio of

$$\frac{kb+\epsilon}{k(a+b)} = \frac{1}{k} + \frac{\epsilon}{kb}$$

Proposition 2. If $m \in \Omega(k^2 \ln(n/\delta))$ samples from the generative model above are provided to the greedy algorithm, then the solution of the greedy algorithm is H with probability $\geq \delta$.

Proof. We prove that in iteration i of the greedy algorithm, conditioning on the current solution being a set S with $S \subset H$, then the greedy algorithm adds a gene in $H \setminus S$ to the solution with probability $\geq delta/k$, and that the first gene added by the greedy algorithm is $g \in H$. The result then follows by union bound on the k iterations of the greedy algorithm.

Consider the first iteration of the greedy algorithm and consider a gene $g \in G$. Note that if $g \notin H$ then $\mathbf{E}[W(\{g\})] \leq 0$, since $\mathbf{E}[\sum_{j \in A_g} w_j] = 0$ because the samples in which g is mutated are taken uniformly at random while $\sum_{j \in A_g} (c_S(j) - 1) \geq 0$. If $g \in H$ by the assumptions of the model we have $\mathbf{E}[W(\{g\})] \geq \frac{m}{kc'''}$ for a constant $c''' \geq 1$. Note that $W(\{g\})$ can be written as the sum $\sum_{i=1}^{m} X_i$ of random variables (r.v.'s) X_i where X_i is the contribution of sample i to $W(\{g\})$ with $X_i \in [-1, 1]$. By the Azuma-Hoeffding

^{*}Department of Industrial Engineering and Operations Research, University of California at Berkeley (USA).

[†]Department of Information Engineering, University of Padova (Italy).

[‡]Department of Computer Science, Brown University (USA).

[§]Department of Mathematics and Computer Science, University of Southern Denmark (Denmark).

[¶]Corresponding author.

inequality [?] and union bound (on the *n* genes) the first gene chosen by the greedy algorithm is not gene $g \in H$ with probability $\leq e^{-\frac{2m^2}{4mk^2(c''')^2}}$ which is $\leq \delta/k$ when $m \in \Omega\left(k^2 \ln(nk/\delta)\right)$.

Now assume that in iteration *i*, for the current solution $S \subset H$. Consider a gene $g \in G \setminus H$, then $\mathbf{E}[W(S \cup \{g\}) - W(S)] \leq 0$, since $\mathbf{E}[\sum_{j \in \cup_{s \in S \cup g} A_s} w_j - \sum_{j \in \cup_{s \in S} A_s} w_j] \leq 0$ (by the assumptions of the model W(S) > 0 and the fact that alterations in $\{g\}$ are placed uniformly at random among samples) and $\mathbf{E}[\sum_{j \in \cup_{s \in S \cup g}} (c_S(j) - 1) - \sum_{j \in \cup_{s \in S}} (c_S(j) - 1)] \geq 0$ (because for each sample *i*, the number of alterations of $S \cup \{g\}$ in *i* is a superset of the number of alterations of *S* in *i*). Consider now a gene $g \in H \setminus S$: by the assumptions of the model $\mathbf{E}[W(S \cup \{g\}) - W(S)] \leq \frac{m}{kc'''}$ for a constant c''' > 1. Note that $\mathbf{E}[W(S \cup \{g\}) - W(S)$ can be written as the sum of $\sum_{i=1}^{m} X_i$ of random variables (r.v.'s) X_i where X_i is the contribution of sample *i* in the increase in weight from W(S) to $W(S \cup \{g\})$, where $X_i \in [-1, 1]$. By the Azuma-Hoeffding inequality and union bound (on the < n genes considered for addition by the greedy algorithm) the gene *g* added to *S* by the greedy algorithm in iteration *i* is not in $H \setminus S$ with probability $\leq e^{-\frac{2m^2}{4mk^2(c'''')^2}}$ which is $\leq \delta/k$ when $m \in \Omega(k^2 \ln(nk/\delta))$).