advances.sciencemag.org/cgi/content/full/5/6/eaaw7396/DC1 ## Supplementary Materials for ## Modular, tissue-specific, and biodegradable hydrogel cross-linkers for tissue engineering J. L. Guo, Y. S. Kim, V. Y. Xie, B. T. Smith, E. Watson, J. Lam, H. A. Pearce, P. S. Engel, A. G. Mikos* *Corresponding author. Email: mikos@rice.edu Published 5 June 2019, *Sci. Adv.* **5**, eaaw7396 (2019) DOI: 10.1126/sciadv.aaw7396 ## This PDF file includes: - Fig. S1. Correlation of PdBT to starting materials on ¹H and ¹³C NMR. - Fig. S2. Measurement of biomolecule incorporation using DMMB and Coomassie blue assays. - Fig. S3. Modulation of PdBT degradation kinetics by PGA block length. - Fig. S4. GPC standard curve. Table S1. An overview of PdBT compared to several commonly used in situ hydrogel cross-linkers. References (38–40) ## **Supplementary Materials** **Fig. S1.** Correlation of PdBT to starting materials on ¹H and ¹³C NMR. (A) ¹H NMR spectra are compared between two constituent starting materials, PGA-PEG-PGA and but-2-yne-1,4-dithiol, and the final synthesized crosslinker, PdBT. Peaks are identified consistently between spectra using the letters a-g. (B) ¹³C NMR spectra are compared between PdBT and starting materials, PGA-PEG-PGA and but-2-yne-1,4-dithiol. Peaks are identified consistently between spectra using the letters a-h. | | Leached Concentration (mg/mL) % Mass Retention in Crosslink | | |-----------|---|------------| | CS/PdBT | 0.134 ± 0.035 | 94.9 ± 1.3 | | BMPm/PdBT | 0.348 ± 0.046 | 90.1 ± 1.3 | | NC/PdBT | 0.223 ± 0.017 88.7 ± 0.9 | | Fig. S2. Measurement of biomolecule incorporation using DMMB and Coomassie blue assays. Assays were performed for CS/PdBT, BMPm/PdBT, and NC/PdBT using standards of known macromer concentrations in PBS at pH 7.4. Standard curves are shown (top) with points reported as means \pm standard deviation for a sample size of n=3. The leached biomolecule concentrations, and their corresponding percentages of mass retention inside the hydrogels (bottom) are reported as means \pm standard deviation for a sample size of n=3. **Fig. S3.** Modulation of PdBT degradation kinetics by PGA block length. Accelerated degradation over a 14 day period of PdBT-crosslinked hydrogels in 0.1M HCl at 37 °C, with varying average molar number of PGA units per PdBT chain (as quantified by NMR) and 3.5% w/v PdBT. # indicates statistical significance of 4.86 PGA Units/PdBT group vs. 6.41 PGA Units/PdBT group, * indicates statistical significance of 4.86 PGA Units/PdBT group vs. 7.57 PGA Units/PdBT group, and † indicates statistical significance of 6.41 PGA Units/PdBT group vs. 7.57 PGA Units/PdBT group at a given timepoint. Data are reported as means ± standard deviation for a sample size of n=3. **Fig. S4. GPC standard curve.** Curve was obtained using narrowly dispersed 450, 2500, 10225, 30250, 44000, and 78300 Da PEG standards dissolved in 100mM NaNO₃. Points are reported as means \pm standard deviation for a sample size of n=3. **Table S1.** An overview of PdBT compared to several commonly used in situ hydrogel crosslinkers. PdBT possesses many of the favorable characteristics and requirements of traditional crosslinkers, such as cytocompatibility, hydrolytic degradability, and fast reaction kinetics, while novelly enabling tissue-specific biological cues from the crosslinker itself by its prefunctionalization with tissue-specific biomolecules such as peptides and glycosaminoglycans. | Crosslinker/
Crosslinking
Method | Cytocompatibility | Degradability | Crosslinking
Kinetics | Biological Cues | |--|---|---|---|---| | Linear
poly(ethylene
glycol) (PEG)
(21, 38) | Excellent | Afforded by co-
polymerization
with hydrolysable
units | Dependent on
functional termini
(usually < 60 min) | None (requires additional delivery of biomolecules) | | Branched/
Multi-arm PEG
(21, 38) | Excellent | Afforded by co-
polymerization
with hydrolysable
units | Dependent on
multiple
functional termini
(usually < 60 min) | None (requires
additional
delivery/entrapment
of biomolecules) | | Polyelectrolytes (38, 39) | Potentially
cytotoxic
(concentration-
dependent) | Afforded if polyelectrolyte contains hydrolysable units | Fast (often < 30 min) | Occasionally,
depending on base
polymer | | UV induced
self-crosslinking
(38, 40) | Dependent on selection of photoinitiators | Limited,
depending on
degradability of
base polymer | Dependent on
photoinitiator and
functional groups
(usually < 60 min) | Occasionally,
depending on base
polymer | | Chemically induced self-crosslinking (38, 40) | Dependent on selection of initiators | Limited,
depending on
degradability of
base polymer | Dependent on
initiator and
functional groups
(usually < 60 min) | Occasionally,
depending on base
polymer | | PdBT | Excellent | Provided by poly(glycolic acid) units | < 60 min | Provided <i>in situ</i> by conjugated tissue-specific biomolecules |