Science Advances

advances.sciencemag.org/cgi/content/full/5/6/eaau0936/DC1

Supplementary Materials for

A new dynamical systems perspective on atmospheric predictability: Eastern Mediterranean weather regimes as a case study

Assaf Hochman*, Pinhas Alpert, Tzvi Harpaz, Hadas Saaroni, Gabriele Messori

*Corresponding author. Email: assafhochman@yahoo.com

Published 5 June 2019, *Sci. Adv.* **5**, eaau0936 (2019) DOI: 10.1126/sciadv.aau0936

This PDF file includes:

Table S1. Snow events in Jerusalem from the available TIGGE database (27, 28). Table S2. The eight CMIP5 models used in the present study with the following information: Modeling center (or group), institute ID, model name, and horizontal resolution (°) following Taylor *et al.* (29).

Table S3. Model rank scores for each synoptic group with respect to the NCEP/NCAR reanalysis.

Table S4. CMIP5 models and NCEP/NCAR reanalysis transition probabilities for the different synoptic groups.

Table S5. Model mean absolute differences for the transition probabilities of each synoptic group with respect to the NCEP/NCAR reanalysis (%).

Fig. S1. The study region following Alpert et al. (7).

Fig. S2. Meteogram from ECMWF's EPS (Ensemble Prediction System) forecast system initialized on Wednesday, 11 December 2013, 00:00 UTC at the location of Jerusalem (31.9°N 35.2°E; 815 m).

Fig. S3. Mean SLP composite maps from NCEP/NCAR reanalysis as classified by the Alpert *et al.* (7) synoptic classification algorithm for 1986–2005.

Table S1. Snow events in Jerusalem from the available TIGGE database (27, 28).

The predicted and observed data is for the entire event. The ECMWF forecast was initialized on the first day of the event.

Snow Event (DD/MM/YY)	12/12/10	2/3/12	12/12/13	7/1/15	21/2/15
d – local dimension	12.21	12.07	13.71	5.88	10.71
$\boldsymbol{ heta}$ - inverse persistence	0.57	0.78	0.71	0.71	0.82
ECMWF predicted	~15mm	~45mm	~50mm	~22mm	~50mm
IMS observed	46mm	185mm	227mm	54mm	105mm
precipitation					
ECMWF predicted	0cm	0cm	~10cm	~5cm	~10cm
IMS observed	20cm	10cm	50cm	5cm	25cm
Snow depth					
Forecast initialized at:	11/12/10 00UTC	28/2/12 00UTC	11/12/13 00UTC	7/1/15 00UTC	18/2/15 00UTC

Table S2. The eight CMIP5 models used in the present study with the following information: Modeling center (or group), institute ID, model name, and horizontal resolution (°) following Taylor *et al.* (29).

Modeling Center (or Group)	Institute ID	Model Name (short name)	Resolution (°)
Canadian Centre for Climate Modelling and Analysis, Canada	СССМА	CanESM2 (CANESM)	2.79 X 2.81
National Centre for Atmospheric Research, USA	NCAR	CCSM4 (CCSM)	0.94X 1.25
		HadGEM2-CC	
Met Office Hadley Centre, England	MOHC	(HadGEM2CC)	1.25 X 1.88
Mot Onice Hadiey Contro, England		HadGEM2-ES	1.25 X 1.88
		(HadGEM2ES)	
Institut Dierre-Simon Laplace, France	IDQI	IPSL-CM5A-LR	1.9 X 3.75
	II SE	(IPSL)	
Max Planck Institute for Meteorology,	MDI-M	MPI-ESM-LR	1 87 X 1 88
Germany		(MPI)	1.07 × 1.00
Meteorological Research Institute,	MDI	MRI-CGCM3	1 102 1 12
Japan	IVIRI	(MRI)	1.12A 1.13
Norwegian Climate Centre, Norway	NORESM1-M		19725
Norwegian Chimale Centre, Norway	NCC	(NORESM)	

Table S3. Model rank scores for each synoptic group with respect to the

NCEP/NCAR reanalysis. The scores are calculated such that: R(d) = D(d) / d

 $\max[D(d)]$ and $R(\theta) = D(\theta)/\max[D(\theta)]$, where D represents the difference between the median values of d or θ of each model and the NCEP/NCAR values for each synoptic group. Max refers to the value for model with the largest difference D. The lower the score, the closer the model is to the reanalysis³⁰.

One can then compute a global score as: $R(global) = (R(d)+R(\theta))/2$, presented in the table. The averages and standard deviations (STD) of all the global scores for each model are also shown.

Synoptic groups are Red Sea Troughs (RSTs), Persian Troughs (PTs), Highs (H), Cyprus Lows (CLs) and Sharav Lows (SLs).

Model/Score	RST	PT	Н	CL	SL	Average (STD)
MPI	0.22	0.42	0.15	0.23	0.49	0.30 (0.14)
CANESM	0.32	0.31	0.36	0.27	0.30	0.31 (0.03)
MRI	0.59	0.67	0.11	0.06	0.41	0.37 (0.25)
CCSM	0.42	0.42	0.36	0.27	0.83	0.46 (0.19)
HadGEM2CC	0.26	0.65	0.56	0.88	0.57	0.58 (0.20)
HadGEM2ES	0.17	0.72	0.62	0.92	0.54	0.59 (0.25)
IPSL	0.93	0.85	0.91	0.81	0.63	0.82 (0.11)
NORESM	0.78	0.89	0.78	0.80	1.00	0.85 (0.09)

Table S4. CMIP5 models and NCEP/NCAR reanalysis transition probabilitiesfor the different synoptic groups. Synoptic groups are as in table S3. The tableprovides the same information as Fig. 6 but in numerical format.

CANESM	RST	PT	Н	CL	SL
RST	47.14	0.58	26.29	23.75	2.24
РТ	0.97	72.15	21.51	5.27	0.11
Н	18.69	7.27	52.73	18.52	2.79
CL	10.32	2.86	23.67	62.19	0.95
SL	12.14	3.57	12.86	59.29	12.14

CCSM	RST	РТ	Н	CL	SL
RST	48.95	2.24	25.16	22.13	1.51
PT	2.90	73.43	20.00	3.57	0.10
Η	17.73	7.96	56.62	15.87	1.82
CL	9.37	1.64	25.35	63.32	0.32
SL	14.29	2.04	12.24	47.96	23.47

HadGEM2CC	RST	PT	Η	CL	SL
RST	54.65	0.00	16.36	26.67	2.31
РТ	0.27	56.30	24.66	18.77	0.00
Н	17.29	4.09	52.49	23.37	2.76
CL	13.33	2.80	14.87	67.90	1.10
SL	19.05	0.00	12.93	52.38	15.65

HadGEM2ES	RST	PT	Н	CL	SL
RST	53.32	0.23	20.62	24.11	1.72
РТ	0.23	60.41	21.95	17.42	0.00
Η	21.40	4.67	48.38	22.77	2.79
CL	13.18	2.84	13.88	69.20	0.89
SL	21.67	0.00	12.50	55.00	10.83

IPSL	RST	РТ	Η	CL	SL
RST	64.29	3.55	13.60	17.76	0.81
РТ	11.07	72.32	4.50	11.94	0.17
Н	27.29	2.33	49.17	19.13	2.08
CL	16.23	1.41	8.25	73.49	0.61
SL	16.90	2.82	2.82	67.61	9.86

MPI	RST	РТ	Н	CL	SL
RST	51.35	0.98	21.25	23.71	2.70
РТ	3.15	52.45	34.97	8.92	0.52
Н	18.47	8.07	52.31	19.32	1.83
CL	11.82	2.54	21.33	63.00	1.31
SL	21.92	0.00	15.75	47.26	15.07

MRI	RST	РТ	Н	CL	SL
RST	50.84	0.11	27.15	20.35	1.56
РТ	3.57	32.14	39.29	25.00	0.00
Н	20.96	0.34	59.65	17.73	1.31
CL	11.34	0.29	20.66	67.15	0.55
SL	15.15	0.00	14.14	49.49	21.21

NORESM	RST	РТ	Η	CL	SL
RST	56.58	1.81	22.52	17.42	1.68
РТ	3.76	72.59	19.06	4.47	0.12
Н	15.63	6.78	60.13	15.59	1.87
CL	9.82	1.36	22.56	65.85	0.41
SL	18.80	0.75	11.28	32.33	36.84

NCEP/NCAR	RST	PT	Η	CL	SL
RST	55.14	5.25	26.76	11.73	1.12
РТ	3.43	70.42	22.16	3.66	0.32
Η	25.48	19.98	40.87	12.26	1.41
CL	15.19	8.55	30.58	44.92	0.76
SL	11.59	31.88	24.64	27.54	4.35

Table S5. Model mean absolute differences for the transition probabilities ofeach synoptic group with respect to the NCEP/NCAR reanalysis (%). The

averages and standard deviations (STD) of all synoptic groups for each model are also shown. The "Weighted Average" column shows an average score where the biases for individual transitions are weighted by the frequency of the transition itself. Synoptic groups are as in table S3.

Model/Synoptic	RST	PT	Η	CL	SL	Average	Weighted
group	(%)	(%)	(%)	(%)	(%)	(STD)	Average
						(%)	(%)
CANESM	5.26	1.33	7.80	6.99	16.04	7.48 (4.82)	7.89
CCSM	4.32	1.20	7.91	7.36	16.89	7.54 (5.26)	8.24
NORESM	3.08	1.32	9.22	8.37	17.80	7.96 (5.77)	8.71
MPI	5.43	7.30	7.57	7.45	16.31	8.81 (3.83)	8.75
HadGEM2ES	5.19	5.50	7.76	9.77	17.61	9.17 (4.54)	10.6
HadGEM2CC	6.45	7.04	9.63	9.33	17.44	9.98 (3.93)	10.2
IPSL	6.07	7.12	7.06	11.85	20.36	10.49 (5.33)	12.5
MRI	3.78	15.44	9.70	8.89	16.95	10.95 (4.76)	11.0

Fig. S1. The study region following Alpert *et al.* (7).

Fig. S2. Meteogram from ECMWF's EPS (Ensemble Prediction System) forecast system initialized on Wednesday, 11 December 2013, 00:00 UTC at the location of Jerusalem (31.9°N 35.2°E; 815 m).

Fig. S3. Mean SLP composite maps from NCEP/NCAR reanalysis as classified by the Alpert *et al.* (7) **synoptic classification algorithm for 1986–2005.** The synoptic systems are as in table S3.