
 
 

 
Supplementary Figure 1 

Integration of a 293T/Jurkat mixture using scran MNN and Seurat CCA is sensitive to the order in which the datasets are considered. 

(a) When a mixture dataset of 293T cells and Jurkat cells is chosen as the first reference dataset (n = 3388 cells), scran MNN correctly 
integrates a second dataset of Jurkat cells (n = 3257) and a third dataset of 293T cells (n = 2885 cells). (b) When given the two 
datasets of 293T cells and Jurkat cells first, scran MNN incorrectly merges the two cell types together into a single cluster. Integration 
by scran MNN requires its first dataset to share at least one cell type with all other datasets that are successively integrated, which may 
not be a reasonable assumption. Seurat CCA was unsuccessful at integrating these three datasets in both cases (a,b). (c) Without 
correction, Jurkat cells cluster by batch instead of by cell type. 



 
 

 
 

Supplementary Figure 2 

Comparison of scRNA-seq integration methods on simulated data. 

(a-h) We use the Splatter package to simulate three datasets with four cell types in total, where dataset 1 has cell types A and B, 
dataset 2 has cell types B and C, and dataset 3 has cell types C and D. In each dataset, we assign cells to a cell type with a 50/50 
probability. Each dataset contains 1,000 cells. The Splatter simulation also generates batch effects between datasets such that without 
batch correction cells cluster by both dataset and batch (a, e). For Seurat CCA and scran MNN, datasets are aligned in numerical 
order. Scanorama correctly aligns the same cell types together (b, f), whereas scran MNN incorrectly merges cell types A and D and 
does not merge cell type C across batches (d, h). Seurat CCA is unable to merge the datasets together (c, g). (i) Scanorama alignment 
scores find the correct pairwise matches between the simulated cell types. (j) Scanorama has significantly improved Silhouette scores 
(median of 0.28) than the uncorrected data (median of 0.00; independent, two-sided t-test P < 5e-324; n = 3,000 cells), scran MNN 
(median of 0.16; P = 1.1e-40), and Seurat CCA (median of 0.18; P = 2.7e-37). An asterisk (*) indicates a significantly higher Silhouette 
Coefficient distribution (Bonferroni corrected P < 0.05) between Scanorama and no correction, a dagger (†) indicates significance over 
scran MNN, and a double dagger (‡) indicates significance over Seurat CCA. t-SNE visualizations use a learning rate of 200 and a 
perplexity of 100. Box plot boxes extend from lower to upper quartiles with an orange line at the median and green triangle at the mean; 
whiskers show the range. 
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Supplementary Figure 3 

Visualizing Scanorama alignment scores across 26 scRNA-seq datasets. 

Scanorama alignment scores from aligning 26 heterogeneous scRNA-seq datasets reveal high amounts of alignment among 
biologically similar datasets and alignments scores close to or at zero for datasets that are not biologically similar. Heatmap rows and 
columns correspond to different datasets and diagonal entries are set to 1. 



 
 

 
 

Supplementary Figure 4 

Comparison of scRNA-seq integration methods on hematopoietic stem cells (HSCs). 

Integration of 2401 hematopoietic stem cells (HSCs) from MARS-Seq and 774 HSCs from Smart-seq2. (a, e) Two datasets of HSCs 
plotted on the first two principal components (PCs) shows cell separated by batch effects along the second PC. Cells are visualized 
using PCs, instead of t-SNE embeddings, since they organize according to their pseudo-temporal relationships when visualized with 
PCA; granulocyte-macrophage progenitors (GMP) and megakaryocyte-erythrocytes (MEP) are derived from common myeloid 



 
 

progenitors (CMP). (b, f) Scanorama removes any significant difference due to experimental batch (natural log likelihood-ratio = -902; 
n = 3,175 cells). (c, g) Seurat CCA overcorrects and places all cell types into a single cluster. (d, h) scran MNN obtains a similar 
result to that of Scanorama. (i) Scanorama alignments consists of a substantial percentage of the cells in both datasets, as expected. 
(j) Scanorama and scran MNN have similar performance and the same median Silhouette Coefficient (median of 0.28; independent, 
two-sided t-test P = 0.14; n = 3,175 cells), but Scanorama has significantly better performance than no correction (median of 0.22; P 
= 8e-10) and Seurat CCA (median of 0.07; P = 2e-132). An asterisk (*) indicates a significantly higher Silhouette Coefficient 
distribution (Bonferroni corrected P < 0.05) between Scanorama and no correction and a double dagger (‡) indicates significance 
over Seurat CCA. Box plot boxes extend from lower to upper quartiles, whiskers indicate range, an orange line indicates the median, 
and a green triangle indicates the mean (n = 3,175 cells). (k-m) Expression of marker genes indicating different stages of 
erythropoiesis. APOE and GATA2 are more highly expressed in the erythropoietic transition from common myeloid progenitors 
(CMPs) to megakaryocyte-erythrocytes (MEPs) (k, l) and CTSE is more highly expressed in MEPs (m).  



 
 

 
 

Supplementary Figure 5 

Comparison of scRNA-seq integration methods on pancreatic islet cells. 

Integration of 8569 pancreatic islet cells from inDrop, 2449 cells from CEL-Seq2, 1276 cells from CEL-Seq, 638 cells from Fluidigm C1, 
and 2989 cells from Smart-seq2. (a, e) Pancreatic islets cluster by cell type and batch in the uncorrected setting. (b-d, f-h) Visually, 
Scanorama, Seurat CCA, and scran MNN have similar performance in merging cell-type specific clusters together across datasets. (i) 
Scanorama finds substantial overlap among all five pancreatic islet datasets. (j) All methods have relatively similar performance, but 
Seurat CCA has a higher Silhouette Coefficient distribution (median of 0.30; compared to Scanorama, independent, two-sided t-test P = 
4.8e-3; n = 15,921 cells) followed by Scanorama (median of 0.28), scran MNN (median of 0.25; P = 5.1e-4), and the uncorrected data 
(median of 0.23; P = 9.7e-5). An asterisk (*) indicates a significantly higher Silhouette Coefficient distribution (Bonferroni corrected P < 



 
 

0.05) between Scanorama and no correction and a dagger (†) indicates significance over scran MNN. Box plot boxes extend from lower 
to upper quartiles, whiskers indicate range, an orange line indicates the median, and a green triangle indicates the mean (n = 15,921 
cells). 



 
 

 
 

Supplementary Figure 6 

Marker gene expression of Scanorama integrated and batch corrected pancreatic islet datasets. 

Gene expression after integration of 8569 pancreatic islet cells from inDrop, 2449 cells from CEL-Seq2, 1276 cells from CEL-Seq, 638 
cells from Fluidigm C1, and 2989 cells from Smart-seq2. (a-f) Marker gene expression heatmaps of the t-SNE embedded panorama of 
pancreatic islet cells. We observe higher expression of TTR in alpha cells (a), HADH and PCSK1 in beta cells (b, c), KRT19 in ductal 
cells (d), SST in delta cells (e), and PPY in gamma cells (f). (g, h) Marker genes GADD45A and HERPUD1 related to ER stress are 
significantly elevated among a subpopulation of beta cells (n = 320 cells) compared to other beta cells (n = 4765 cells), consistent with 
a rare subpopulation of beta cells marked by ER stress that was previously identified in one of the datasets. The P-values for increased 
expression of GADD45A and HERPUD1 are also much stronger after integrating five pancreas datasets (P = 6.07e-14 for GADD45A 
and P = 2.42e-22 for HERPUD1) than for the initial findings in a single dataset (P = 5.21e-3 for GADD45A and P = 2.98e-5 for 
HERPUD1; 102 ER stress beta cells and 1,114 other beta cells). We computed P-values using a two-sided, Welch’s t-test for 
comparing populations with unequal variances. t-SNE visualizations use a learning rate of 200 and a perplexity of 400. Box plot boxes 
extend from lower to upper quartiles, upper whisker extends to last point less than the third quartile plus 1.5 times the interquartile 
range (IQR), lower whisker extends to first point greater than the first quartile minus 1.5 times the IQR, points indicate remaining cells, 
an orange line indicates the median, and a green triangle indicates the mean. 



 
 

 
Supplementary Figure 7 

Clustering of Scanorama integrated pancreatic islet datasets and batch correction quality. 

Batch correction performance after applying Scanorama to 8569 pancreatic islet cells from inDrop, 2449 cells from CEL-Seq2, 1276 
cells from CEL-Seq, 638 cells from Fluidigm C1, and 2989 cells from Smart-seq2. (a-c) k-means clustering of datasets integrated with 
Scanorama result in clusters that are orthogonal to differences due to batch, noting that even smaller sub-clusters do not find dataset-
specific structure. (d, e) Scanorama batch correction of five pancreas datasets results in lower one-way ANOVA F-values compared to 
scran MNN (we note that this analysis is not applicable to Seurat CCA, which finds integrated embeddings and does not modify gene 
expression values). Each point represents a gene; results are for 15,369 genes. Closer to the left is better, indicating more similar gene 
expression distributions after batch correction. The red dashed line indicates equal F-values between uncorrected and corrected 
datasets. 



 
 

 
Supplementary Figure 8 

Comparison of scRNA-seq integration methods on peripheral blood mononuclear cells (PBMCs). 

Integration of 18018 PBMCs from 10x Genomics (donor 1), 2261 CD19+ B cells from 10x, 295 CD14+ monocytes from 10x, 3713 
CD4+ helper T cells from 10x, 6657 CD56+ NK cells from 10x, 3990 CD8+ cytotoxic T cells from 10x, 3628 CD4+/CD45RO+ memory T 
cells from 10x, 3365 CD4+/CD25+ regulatory T cells from 10x, 3774 PBMCs using Drop-seq, and 2293 PBMCs from 10x Genomics 
(donor 2). (a, e) Without batch correction, PBMC datasets cluster by both cell type and dataset. (b, f) Scanorama integration results 



 
 

cells clustering by cell type. (c, g) Seurat CCA integration results in overcorrection. (d, h) scran MNN obtains a similar result as that of 
Scanorama because a large dataset of PBMCs was chosen as the first dataset. We expect performance to degrade if the large dataset 
were not chosen first. (i) Scanorama alignment scores capture relationships between the datasets. (j) Scanorama has the highest 
distribution of Silhouette Coefficients (median of 0.05) compared to scran MNN (median of 0.03; independent, two-sided t-test P = 
0.0011; n = 47,994 cells), the uncorrected data (median of -0.08; P = 1e-51), and Seurat CCA (median of -0.18; P = 9e-194). An 
asterisk (*) indicates a significantly higher Silhouette Coefficient distribution (Bonferroni corrected P < 0.05) between Scanorama and 
no correction and a double dagger (‡) indicates significance over Seurat CCA. Box plot boxes extend from lower to upper quartiles, 
whiskers indicate range, an orange line indicates the median, and a green triangle indicates the mean. 

 



 
 

 
 

Supplementary Figure 9 

Marker gene expression in Scanorama integrated and batch corrected PBMC datasets. 

Gene expression after integration of 18018 PBMCs from 10x Genomics (donor 1), 2261 CD19+ B cells from 10x, 295 CD14+ 
monocytes from 10x, 3713 CD4+ helper T cells from 10x, 6657 CD56+ NK cells from 10x, 3990 CD8+ cytotoxic T cells from 10x, 3628 
CD4+/CD45RO+ memory T cells from 10x, 3365 CD4+/CD25+ regulatory T cells from 10x, 3774 PBMCs using Drop-seq, and 2293 
PBMCs from 10x Genomics (donor 2). (a-f) Marker gene expression heatmaps of the t-SNE embedded panorama of PBMCs. We 
observe higher expression of MS4A1 in (a) B cells, (b) CD8A in NK cells, (c, d) CD3E and CD4 in T cells, and (e, f) CD14 and S100A8 
in monocytes. t-SNE visualizations use a learning rate of 200 and a perplexity of 400. 

 
 
 
 
 



 
 

 
Supplementary Figure 10 

26 dataset quality control. 

(a) Cells in our experiment integrating 26 diverse datasets (n = 105,476 cells) cluster according to cell type instead of by relative 
differences in the number of unique genes. E.g., the two HSC datasets are aligned despite different dataset-specific gene percentages 
(the MARS-Seq dataset has a relatively low average percentage of nonzero genes at 30% versus the Smart-seq2 dataset with an 
average of 79% nonzero genes), as are the pancreas datasets. (b) In our analysis of 26 datasets, cells were included if they contained 
greater than 600 unique genes. We observe a bimodal distribution of cells according to their number of unique genes and we filter out 
the mode of cells that have lower amounts of unique genes due to either transcriptional quiescence, high amounts of dropout, or other 
technical artefacts. (c) We compute the SVD of the concatenation of the 26 datasets and visualize the top 300 singular values in a bar 
plot. To preserve most of the variation in the data, indicated by the “elbow” in the bar plot, we use a conservative cutoff of the top 100 
components from the SVD. (d) Integrating datasets (n = 105,476 cells) based on the union of all genes (setting unobserved gene 
expression values to zero) results in similar results as with taking the intersection (although interestingly, a small portion of CD14+ 
monocytes align with macrophages, which may have some biological basis); however, we caution against a union-based approach 
since this could introduce variability that is not reflective of the underlying biology. 

 



 
 

 
Supplementary Figure 11 

Silhouette Coefficient distributions across 26 scRNA-seq datasets. 

In additional to visually inspecting the clusters produced by a method like t-SNE, we can quantify the integrative performance of our 
method by computing a Silhouette Coefficient for each cell (Methods). Higher values indicate that samples from the same cell type also 
cluster together, indicating better clustering performance. For our experiment in which we integrate 26 diverse scRNA-seq datasets, we 
compute Silhouette Coefficients using low dimensional embeddings as described in Methods. Scanorama has a significantly higher 
Silhouette Coefficient distribution (median of 0.17) compared to scran MNN (median of -0.03; P < 5e-324), Seurat CCA (median of -
0.18; P < 5e-324), and no correction (median of 0.14; P = 4e-6) when integrating our collection of 26 datasets containing 105,476 cells 
(Figure 2a-c). Notably, scran MNN and Seurat CCA have lower median Silhouette Coefficients than if no correction had been applied, 
indicating large amounts of overcorrection. Box plot boxes extend from lower to upper quartiles with an orange line at the median and 
green triangle at the mean; whiskers show the range. P-values are determined using an independent, two-sided t-test (n = 105,476 
cells). An asterisk (*) indicates a significantly higher Silhouette Coefficient distribution (Bonferroni corrected P < 0.05) between 
Scanorama and no correction, a dagger (†) indicates significance over scran MNN, and a double dagger (‡) indicates significance over 
Seurat CCA. 



 
 

 

 
Supplementary Figure 12 

Silhouette Coefficient distributions for 26 dataset integration at different parameters. 

Sensitivity analysis of Scanorama alignment parameters and t-SNE visualization parameters for the integration of 26 diverse scRNA-
seq datasets. Box plots show distributions of Silhouette Coefficients at different parameter settings. Box plot boxes extend from lower to 
upper quartiles with an orange line at the median and green triangle at the mean; whiskers show the range. All distributions are over 
the same 105,476 cells across 26 heterogeneous scRNA-seq datasets. An asterisk (*) indicates a significantly higher Silhouette 
Coefficient distribution (two-sided independent t-test, Bonferroni corrected P < 0.05) between Scanorama and no correction, a dagger 
(†) indicates significance over scran MNN, and a double dagger (‡) indicates significance over Seurat CCA. Importantly, in the analysis 
for alignment parameters (a-d), Silhouette Coefficients are calculated for the integrated, low-dimensional embeddings. When assessing 
the sensitivity of t-SNE visualization parameters (e, f), we calculate the Silhouette Coefficients on the 2-dimensional t-SNE embeddings 
(which are computed off of the low dimensional embeddings). All plots also include the Silhouette Coefficient distributions for 
uncorrected data, Seurat CCA integration, and scran MNN correction on low dimensional embeddings as described in Methods. (a) 
The k nearest neighbor parameter is largely insensitive around the default value of 20 and can go as low as 5 without affecting 
performance. At larger values of k, the matches become more permissive and the Silhouette Coefficients start to drop, where at k = 100 
the median Silhouette Coefficient (0.091) is below that of the uncorrected case. (b) There is no significant change in the distribution of 
Silhouette Coefficients between the approximate and exact nearest neighbors settings (independent, two-sided t-test P = 0.39; n = 
105,476 cells), although the integration runtime increases to more than 60 minutes without the approximation algorithm. (c) We 
recommend keeping α to a low value greater than zero, which can be learned from the data if some of the cell types being integrated 
are known. Lower values may introduce overcorrection, while higher values approach the uncorrected case. (d) The median Silhouette 
Coefficient is largely insensitive to different values of the smoothing parameter σ for the Gaussian kernel function. (e) Visualizing the 
integration of 26 datasets requires a high perplexity (around 500 or greater) to obtain a median Silhouette Coefficient comparable to 
that for the low dimensional embeddings. We set the perplexity to 1,200 for visualizing the 26 datasets (Figure 3a). (f) When visualizing 
the 26 datasets, a higher t-SNE learning rate improves the median Silhouette Coefficient to be comparable that for the low dimensional 
embeddings. The Silhouette Coefficient distributions for the t-SNE embeddings are generally wider than those for the lower dimensional 
embeddings since it is harder to obtain large separations between clusters in two dimensions. 



 
 

 
Supplementary Figure 13 

Scanorama integration of different regions of the mouse CNS. 

Visualization of 10% (n = 109,553 cells) of 1,095,538 mouse CNS cells after Scanorama integration colored by dataset. Corresponding 
cell type labels and marker genes are given in Figure 4. 

 
 
 
 



 
 

 

 
Supplementary Figure 14 

Comparison of scRNA-seq integration methods on datasets with no overlapping cell types. 

(a) A collection of three diverse datasets (9032 mouse neurons, 2401 mouse HSCs, and 4510 human macrophages) cluster separately 
without correction, as expected. (b) When given a collection of three diverse datasets with no overlapping cell types (mouse neurons, 
HSCs, and unstimulated macrophages), Scanorama finds a few spurious alignments between datasets, but none of the alignment 
scores pass the cutoff threshold of 10% (e). (c, d) scran MNN and Seurat CCA are more prone to overcorrection. (f) Both the 
uncorrected and Scanorama corrected data have the highest Silhouette Coefficients (both have a median of 0.37) compared to scran 
MNN (median of 0.20; independent, two-sided t-test P = 7e-252; n = 15,794 cells) and Seurat CCA (median of -0.12; P < 5e-324). Box 
plot boxes extend from lower to upper quartiles with an orange line at the median and green triangle at the mean; whiskers show the 
range. (g) A collection of six diverse datasets (2885 293T cells, 9032 mouse neurons, 2401 mouse HSCs, 4510 human macrophages, 
8569 human pancreatic islet cells, and 18018 human PBMCs) cluster separately without correction, as expected. (h) When given the 
same collection of six diverse datasets with no overlapping cell types, Scanorama keeps disparate cell types separate with only a small 



 
 

amount of overcorrection in matching a small portion of 293T cells with PBMCs. (i, j) Because they are not designed for heterogeneous 
dataset integration, both scran MNN and Seurat CCA integrate biologically disparate cell types among the same collection of datasets. 
(k) Scanorama alignment scores are at or very close to zero between the different datasets. (l) While the highest Silhouette Coefficient 
distribution belongs to the data without batch correction (median of 0.35), Scanorama has the least overcorrection among the datasets 
and has higher Silhouette Coefficients (median of 0.20) than scran MNN (median of 0.10; two-sided independent t-test P = 5.3e-98; n = 
36,755 cells) and Seurat CCA (median of -0.18; P < 5e-324). A dagger (†) indicates a significantly higher Silhouette Coefficient 
distribution (Bonferroni corrected P < 0.05) between Scanorama and scran MNN, and a double dagger (‡) indicates significance over 
Seurat CCA. t-SNE visualizations use a learning rate of 200 and a perplexity of 400. Box plot boxes extend from lower to upper 
quartiles with an orange line at the median and green triangle at the mean; whiskers indicate the range. 

 



 
 

 

 
Supplementary Figure 15 

Scanorama alignment scores reconstruct temporal relationships between datasets. 

Blue nodes indicate datasets and gray edges make up the maximum spanning tree (MST) on the graph with Scanorama alignment 
scores as the edge weights. In (a) mouse dendritic cells stimulated with LPS over 6 hours and (c) human CD14+ monocytes stimulated 
with M-CSF over 6 days, MST edges perfectly correspond to the temporal ordering of the datasets and only connect replicate 
timepoints or adjacent timepoints. In (b) D. melanogaster brain cells over 50 days, most edges connect replicate or adjacent timepoints 
except for edges between 3 and 9 days, between 1 and 6 days, and between 6 and 15 days, possibly indicating greater transcriptional 
similarity at the midpoint of the time series. 
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