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Supplementary Note 1: Data preprocessing and dimensionality reduction 

 We are given a collection of single-cell RNA-seq (scRNA-seq) datasets 𝒟𝒟 = {𝐷𝐷1, … ,𝐷𝐷𝑑𝑑}. 

Each dataset 𝐷𝐷𝑖𝑖 is represented by a gene expression matrix 𝐸𝐸𝑖𝑖 ∈ ℝ≥0
𝑛𝑛𝑖𝑖×𝑚𝑚𝑖𝑖 and a set of genes 𝐺𝐺𝑖𝑖 

where |𝐺𝐺𝑖𝑖| = 𝑚𝑚𝑖𝑖 and 𝑛𝑛𝑖𝑖 is the number of cells in 𝐷𝐷𝑖𝑖, where 𝑖𝑖 ∈ [𝑑𝑑]. Our goal is to identify 

datasets with similar cell types and optionally apply a batch correction that removes confounding 

differences in expression between these datasets. The expression values can either be relative 

expression values (e.g., RPKM or TPM) or absolute transcript counts (e.g., DGE from UMI 

experiments). We merge the expression values into a matrix 𝐸𝐸 = [𝐸𝐸1𝑇𝑇 ⋯ 𝐸𝐸𝑑𝑑𝑇𝑇]𝑇𝑇 ∈ ℝ≥0
𝑛𝑛×𝑚𝑚 where 

𝑛𝑛 = 𝑛𝑛1 + ⋯+ 𝑛𝑛𝑑𝑑 and 𝑚𝑚 = |𝐺𝐺1 ∩ …∩ 𝐺𝐺𝑑𝑑|. For scale-invariant comparison between cells, we 

normalize the expression profiles of each cell to have a unit 𝑙𝑙2 norm, i.e., 

𝐸𝐸𝑖𝑖,: ←
𝐸𝐸𝑖𝑖,:

�𝐸𝐸𝑖𝑖,:�2
 

for all 𝑖𝑖 ∈ [𝑛𝑛]. We reduce the dimensionality of the search space for our nearest neighbors 

queries by computing the singular value decomposition (SVD) 𝐸𝐸 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇 to obtain the lower 

dimensional matrix 𝐸𝐸� = 𝑈𝑈:,1:𝜅𝜅Σ1:𝜅𝜅,1:𝜅𝜅 where 𝐸𝐸� ∈ ℝ𝑛𝑛×𝜅𝜅. We choose 𝜅𝜅 = 100 in our experiments as 

a conservative cutoff that preserves most of the variation in the data. Since taking the full SVD is 

impractical for large values of 𝑚𝑚 and 𝑛𝑛, we use a randomized SVD [1] that only requires a 

constant number of linear passes, including a constant number of power iterations to improve 

approximation accuracy, over the full dataset of size 𝑂𝑂(𝑛𝑛𝑚𝑚). Our experiments use only 2 power 

iterations to obtain the 𝜅𝜅 + 𝛿𝛿 most dominant components of the SVD, where 𝛿𝛿 is a small 

oversampling parameter also designed to improve the approximation accuracy, which we set to 2 



in our experiments. We note that randomized SVD is generally insensitive to these parameters 

and is very accurate, with regard to the spectral norm approximation error, even after one power 

iteration and no oversampling. As a result, we obtain dataset-specific matrices with gene 

expression profiles all in a common low dimensional space, from which we obtain 𝐸𝐸�1, … ,𝐸𝐸�𝑑𝑑 

where [𝐸𝐸�1𝑇𝑇 ⋯ 𝐸𝐸�𝑑𝑑𝑇𝑇]𝑇𝑇 = 𝐸𝐸� . 

Supplementary Note 2: Nearest neighbors search and matching 

 We identify datasets with shared functional patterns using a “mutual nearest neighbors” 

strategy originally developed for pattern matching in images, which has been shown to be robust 

to outliers and even nonlinear geometric distortions [2]. Mutual nearest neighbors matching has 

also been successful at aligning two biologically similar datasets from different batches [3], but 

we newly generalize this strategy to a large collection of biologically diverse datasets by 

searching for the nearest neighbors of the cells in one dataset among the cells in the remaining 

datasets. More specifically, let 𝐸𝐸�𝑖𝑖 denote the low rank-approximated expression matrix of dataset 

𝐷𝐷𝑖𝑖 and let 𝐸𝐸�\𝑖𝑖 = [⋯ 𝐸𝐸�𝑖𝑖−1𝑇𝑇 𝐸𝐸�𝑖𝑖+1𝑇𝑇 ⋯]𝑇𝑇 be the expression matrix produced by the concatenation 

of all other expression matrices. We search for the nearest neighbors of cells in 𝐷𝐷𝑖𝑖 

(corresponding to the rows in 𝐸𝐸�𝑖𝑖) among the cells in 𝒟𝒟 \ {𝐷𝐷𝑖𝑖} (corresponding to the rows of 𝐸𝐸�\𝑖𝑖) 

by invoking the procedure 

𝑁𝑁𝑖𝑖 ← NearestNeighbors�𝐸𝐸�𝑖𝑖,𝐸𝐸�\𝑖𝑖,𝑘𝑘� 

where 𝑁𝑁𝑖𝑖 is a set of directed links (𝑥𝑥, 𝑦𝑦) such that 𝑥𝑥 ∈ 𝐷𝐷𝑖𝑖, 𝑦𝑦 ∈ 𝐷𝐷𝑗𝑗 , 𝑗𝑗 ≠ 𝑖𝑖, and 𝑦𝑦 is a 𝑘𝑘-nearest 

neighbor of 𝑥𝑥, i.e., ��𝑦𝑦′ ∈ 𝐷𝐷𝑗𝑗 ,∀𝑗𝑗 ≠ 𝑖𝑖 ∶ ‖𝑥𝑥𝑖𝑖 − 𝑦𝑦′‖ < ‖𝑥𝑥𝑖𝑖 − 𝑦𝑦‖�� < 𝑘𝑘. We set 𝑘𝑘 to a default value 

of 20 in our experiments as a balance between robustness to noise and overly permissive 

matching. We repeat this procedure for each 𝐷𝐷𝑖𝑖 ∈ 𝒟𝒟, obtaining sets of nearest neighbor links 

𝑁𝑁1, … ,𝑁𝑁𝑑𝑑. We then match cells between two datasets iff they were mutually linked in the above 



procedure, i.e., we match 𝑥𝑥𝑖𝑖 ∈ 𝐷𝐷𝑖𝑖 with 𝑥𝑥𝑗𝑗 ∈ 𝐷𝐷𝑗𝑗  iff �𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� ∈ 𝑁𝑁𝑖𝑖 and �𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑖𝑖� ∈ 𝑁𝑁𝑗𝑗, where we 

denote such a matching �𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� and the set of all matchings between datasets 𝐷𝐷𝑖𝑖 and 𝐷𝐷𝑗𝑗  (where 

𝑖𝑖 ≠ 𝑗𝑗) as 

𝑀𝑀𝑖𝑖𝑗𝑗 = 𝑀𝑀𝑗𝑗𝑖𝑖 = ��𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� ∶ �𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� ∈ 𝑁𝑁𝑖𝑖 ∧ �𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑖𝑖� ∈ 𝑁𝑁𝑗𝑗�. 

noting the symmetry in these matching sets. While computing the value of 𝑀𝑀𝑖𝑖𝑗𝑗 would naively 

take time in 𝑂𝑂�𝑘𝑘2𝑛𝑛𝑖𝑖𝑛𝑛𝑗𝑗�, we apply hashing to query for the presence of a pair of cells in 𝑁𝑁𝑖𝑖 and 𝑁𝑁𝑗𝑗 

in constant time, reducing the time to compute 𝑀𝑀𝑖𝑖𝑗𝑗 to 𝑂𝑂�𝑘𝑘min�𝑛𝑛𝑖𝑖, 𝑛𝑛𝑗𝑗��, which we do for 𝑂𝑂(𝑑𝑑2) 

possible matchings. 

 Since nearest neighbor queries are naively exponential in the size of the dimension, we 

improve the efficiency of our algorithm with an approximate nearest neighbors search that 

combines hyperplane locality sensitive hashing (LSH) [4] and random projection trees [5]. The 

algorithm builds a search index over a reference dataset by randomly choosing two points in the 

reference and bisecting them with a hyperplane; doing this recursively on divided subsets of 

points forms a tree with a random hyperplane at each node, where multiple random trees can be 

constructed to increase the accuracy of a given query. Hyperplane LSH obtains a solution within 

a constant 𝑐𝑐 = 1 + 𝜀𝜀 factor of the optimal, where 𝜀𝜀 is the approximation error, with a query time 

of 𝑂𝑂 �𝜅𝜅𝑛𝑛𝑖𝑖
𝜌𝜌(𝑐𝑐)� where 𝜌𝜌(𝑐𝑐) = 1

𝑐𝑐
 and requires 𝑂𝑂 �𝜅𝜅𝑛𝑛𝑖𝑖 + 𝑛𝑛𝑖𝑖

1+𝜌𝜌(𝑐𝑐)� space when querying a set of 𝑛𝑛𝑖𝑖 

points with dimension 𝜅𝜅 [4], where increasing the number of trees (which we set to 10) or 

increasing the search radius (which we set to 200 points) further decreases the approximation 

error. We make 𝑂𝑂(𝑛𝑛) such queries over the entire alignment procedure. 

 After matching cells between datasets, we put two datasets in the same panorama iff at 

least one of them has a large percentage of matched cells; specifically, we put 𝐷𝐷𝑖𝑖 and 𝐷𝐷𝑗𝑗  in the 



same panorama iff 𝑟𝑟𝑖𝑖𝑗𝑗 = max �𝑛𝑛𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ

𝑛𝑛𝑖𝑖
,
𝑛𝑛𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ

𝑛𝑛𝑗𝑗
� ≥ 𝛼𝛼, where 𝑛𝑛𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐ℎ = ��𝑥𝑥𝑖𝑖 ∶ 𝑥𝑥𝑖𝑖 ∈ 𝐷𝐷𝑖𝑖 , 𝑥𝑥𝑖𝑖 ∈ 𝑀𝑀𝑖𝑖𝑗𝑗�� 

and 𝑛𝑛𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐ℎ = ��𝑥𝑥𝑗𝑗 ∶ 𝑥𝑥𝑗𝑗 ∈ 𝐷𝐷𝑗𝑗 , 𝑥𝑥𝑗𝑗 ∈ 𝑀𝑀𝑖𝑖𝑗𝑗�� and where we set 𝛼𝛼 to a nominal value of 10% based on 

observations of alignment scores across a large number of experiments and datasets. We note 

that 𝛼𝛼 can be varied to be stricter or more permissive when merging panoramas. It may also be 

possible to learn a value of 𝛼𝛼 from the data if some datasets are known to be similar or disparate. 

Once datasets have been matched, panoramas are formed by the connected components of the 

graph where each node is a dataset and an edge between two dataset nodes exists iff the 𝑟𝑟𝑖𝑖𝑗𝑗 

alignment score threshold is met. 

Supplementary Note 3: Panorama merging and batch correction 

Once we identify panoramas, our method can optionally perform batch correction of the 

gene expression values using the cell matchings to guide the correction by using matched cell 

types to merge datasets together. Our merging procedure builds upon the technique of Haghverdi 

et al. [3] that computes a set of Gaussian-smoothed translation vectors that can be added to 

expression values of one of the datasets that “corrects” for the difference between them. More 

specifically, given two datasets 𝐷𝐷𝑖𝑖 and 𝐷𝐷𝑗𝑗  and a set of matchings 𝑀𝑀𝑖𝑖𝑗𝑗, we denote the expression 

values as 𝐸𝐸𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐ℎ ∈ ℝ≥0
�𝑀𝑀𝑖𝑖𝑗𝑗�×𝑚𝑚 and 𝐸𝐸𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐ℎ ∈ ℝ≥0

�𝑀𝑀𝑖𝑖𝑗𝑗�×𝑚𝑚 where the rows of 𝐸𝐸𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐ℎ and 𝐸𝐸𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐ℎ 

correspond to pairs of cells in 𝑀𝑀𝑖𝑖𝑗𝑗. The matching vectors are therefore the rows of 𝐸𝐸𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐ℎ −

𝐸𝐸𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐ℎ. Let 𝐷𝐷𝑖𝑖 be the dataset for which we want to correct expression values. We compute 

weights between the cells in 𝐷𝐷𝑖𝑖 and the matched cells in 𝐷𝐷𝑖𝑖 as 

[Γ𝑖𝑖]𝑚𝑚𝑎𝑎 = exp �−
𝜎𝜎
2
�[𝐸𝐸𝑖𝑖]𝑚𝑚,: − �𝐸𝐸𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐ℎ�𝑎𝑎,:

�
2

2
� 

where Γ𝑖𝑖 ∈ ℝ𝑛𝑛𝑖𝑖×�𝑀𝑀𝑖𝑖𝑗𝑗� is a matrix of weights given by a Gaussian kernel function parameterized by 

𝜎𝜎, which we set to a nominal default value of 15, although we find our algorithm to be generally 



insensitive to this parameter. Finally, we construct the translation vectors as an average of the 

matching vectors with Gaussian-smoothed weights, where 

𝑣𝑣𝑚𝑚 =
[Γ𝑖𝑖]𝑚𝑚,:�𝐸𝐸𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐ℎ − 𝐸𝐸𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐ℎ�

∑ [Γ𝑖𝑖]𝑚𝑚,𝑎𝑎𝑎𝑎∈��𝑀𝑀𝑖𝑖𝑗𝑗��
, 

[𝐸𝐸𝑖𝑖]𝑚𝑚,: ← [𝐸𝐸𝑖𝑖]𝑚𝑚,: + 𝑣𝑣𝑚𝑚 

for all 𝑎𝑎 ∈ [𝑛𝑛𝑖𝑖]. Intuitively, the translation vector 𝑣𝑣𝑚𝑚 for a cell 𝑎𝑎 in 𝐷𝐷𝑖𝑖 is computed as a linear 

combination of the matching vectors where the Gaussian kernel upweights the matching vectors 

closest to 𝑎𝑎. In addition to the batch correction described above, Scanorama also integrates the 

low dimensional embeddings in 𝐸𝐸�  using the exact same procedure based on the same sets of 

matched cells 𝑀𝑀𝑖𝑖𝑗𝑗 (but where we substitute 𝐸𝐸�𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐ℎ for 𝐸𝐸𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐ℎ, e.g.). 

 Rather than hold the entire Γ𝑖𝑖 matrix in memory, Scanorama can instead calculate the 

matching vectors 𝑣𝑣𝑚𝑚 in a batched fashion that reduces a key memory bottleneck when aligning 

very large datasets. Scanorama can split up the matching matrix 𝐸𝐸𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐ℎ into batches of size 𝐵𝐵 so 

that the new weight matrix has dimension 𝑛𝑛𝑖𝑖 × 𝐵𝐵. The numerator and denominator of the 𝑣𝑣𝑚𝑚 

weighted average computation are accumulatively summed after each batch and the final 

normalization takes place only after all batches have been processed. The resulting matching 

vectors are equivalent in the full and the batched settings. We turn off the batched 

implementation of the matching vectors by default, but set 𝐵𝐵 to 10,000 in our million-cell dataset 

experiment. 

Each merge requires 𝑂𝑂�𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖�𝑀𝑀𝑖𝑖𝑗𝑗�� computation and is therefore the most 

computationally expensive portion of our procedure. This runtime could be reduced by limiting 

the number of batch corrected genes, i.e., 𝑚𝑚𝑖𝑖, to a constant number of highly variable genes or by 

down-sampling to lower the number of matching vectors involved, i.e., �𝑀𝑀𝑖𝑖𝑗𝑗�. In our 



experiments, we use all matching vectors, apply batch correction to the top 10,000 most highly 

variable genes according to their dispersion (mean-to-variance ratio), and use a vectorized 

implementation that takes advantage of system parallelism, where we distribute our computation 

across 10 cores. 

Once we have this merging procedure, we can use it to build up a set of panoramas by 

considering pairs of datasets 𝐷𝐷𝑖𝑖 and 𝐷𝐷𝑗𝑗  in decreasing order of the 𝑟𝑟𝑖𝑖𝑗𝑗 alignment scores. The first 

𝐷𝐷𝑖𝑖 and 𝐷𝐷𝑗𝑗  are merged together to initialize a panorama and successive pairs are considered. If a 

successive 𝐷𝐷𝑖𝑖 and 𝐷𝐷𝑗𝑗  are not in any panorama, they are merged and placed in a new panorama. If 

𝐷𝐷𝑖𝑖 is in a panorama but 𝐷𝐷𝑗𝑗  is not, then 𝐷𝐷𝑗𝑗  is merged into 𝐷𝐷𝑖𝑖’s panorama, or vice versa. If both 𝐷𝐷𝑖𝑖 

and 𝐷𝐷𝑗𝑗  are already in panoramas, then their matchings 𝑀𝑀𝑖𝑖𝑗𝑗 are used to merge 𝐷𝐷𝑖𝑖’s panorama with 

𝐷𝐷𝑗𝑗’s panorama (this occurs even if 𝐷𝐷𝑖𝑖’s panorama is the same as 𝐷𝐷𝑗𝑗’s panorama). This continues 

until all pairs of aligned datasets have been considered, after which we terminate and return the 

batch corrected datasets 𝐷𝐷1, … ,𝐷𝐷𝑑𝑑. 

 

  



Supplementary Tables 

Supplementary Table 1 

Dataset # high-
quality cells Technology Panorama 

293T cells 2885 10x 1 

Jurkat cells 3257 10x 1 

Jurkat:293T 50:50 mixture 3388 10x 1 

Jurkat:293T 99:1 mixture 4185 10x 1 

Mouse neurons 9032 10x 2 

Mtb infected macrophages 10827 SeqWell 3 

Partially infected macrophages 212 SeqWell 3 

Macrophages (donor 1) 4510 SeqWell 3 

Macrophages (donor 2) 90 SeqWell 3 

Mouse HSCs 2401 MARS-Seq 4 

Mouse HSCs 774 Smart-seq2 4 

Pancreatic islet cells 8569 inDrop 5 

Pancreatic islet cells 2449 CEL-Seq 2 5 

Pancreatic islet cells 1276 CEL-Seq 5 

Pancreatic islet cells 638 Fluidigm C1 5 

Pancreatic islet cells 2989 Smart-seq2 5 

PBMCs 18018 10x 6 

CD19+ B cells 2261 10x 6 

CD14+ monocytes 295 10x 6 

CD4+ helper T cells 3713 10x 6 

CD56+ NK cells 6657 10x 6 

CD8+ cytotoxic T cells 3990 10x 6 

CD4+/CD45RO+ memory T cells 3628 10x 6 

CD4+/CD25+ regulatory T cells 3365 10x 6 

PBMCs 3774 Drop-seq 6 

PBMCs 2293 10x 6 



Summary of 26 datasets used in the panoramic integration experiments, including cell type, 

number of high-quality cells, scRNA-seq technology, and the panorama into which our method 

placed the dataset.  



Supplementary Table 2 

(a) Mouse dendritic cells + LPS at 0, 1, 2, 4, and 6 hours (temporal distance/alignment score 
Spearman 𝜌𝜌 = -0.60; P = 0.00396; n = 42 pairs of time points) 

Rank Dataset 1  Dataset 2 Alignment score 

1 4 hours (replicate 2)  6 hours 0.896 

2 2 hours  4 hours (replicate 1) 0.872 

3 4 hours (replicate 1)  6 hours 0.865 

4 0 hours (replicate 1)  0 hours (replicate 2) 0.847 

5 1 hour  2 hours 0.844 

(b) D. melanogaster brain cells at 0, 1, 3, 6, 9, 15, 30, and 50 days (temporal 
distance/alignment score Spearman 𝜌𝜌 = -0.49; P = 1.3e-4; n = 110 pairs of time points) 

Rank Dataset 1  Dataset 2 Alignment score 

1 0 days (replicate 1)  0 days (replicate 2 0.911 

2 30 days (replicate 2)  50 days 0.873 

3 3 days (replicate 2)  6 days (replicate 2) 0.840 

4 30 days (replicate 1)  30 days (replicate 2) 0.781 

5 15 days (replicate 1)  30 days (replicate 2) 0.743 

(c) CD14+ monocytes + M-CSF at 0, 3, and 6 days and CD14+ monocytes from 10X 
Genomics (temporal distance/alignment score Spearman 𝜌𝜌 = -0.88; P = 1.77e-5,;n = 30 pairs 
of time points) 

Rank Dataset 1  Dataset 2 Alignment score 

1 0 days (SeqWell)  0 days (10X) 0.791 

2 6 days (replicate 1)  6 days (replicate 2) 0.772 

3 3 days (replicate 1)  3 days (replicate 2) 0.756 

4 3 days (replicate 2)  6 days (replicate 1) 0.480 

5 0 days (SeqWell)  3 days (replicate 1) 0.349 
 

The top 5 alignments are given for each time series study: (a) mouse dendritic cells with LPS, 

(b) aging brain cells from D. melanogaster, and (c) human monocytes with M-CSF. Scanorama 

aligns transcriptionally similar cells across time series datasets, with the highest amounts of 



functional similarity detected between datasets at the same timepoint or datasets that are closest 

to each other at adjacent timepoints within each study.  



Supplementary Table 3 

Study 
Temporal distance/transcriptional distance 

Spearman 𝜌𝜌 (P-value) 

Uncorrected Scanorama Seurat CCA scran MNN 

Mouse dendritic 
cells with LPS 
(n = 42 pairs of 

time points) 

𝜌𝜌 = 0.41  
(P = 0.067) 

𝝆𝝆 = -0.60  
(P = 0.0043) 

𝜌𝜌 = -0.10  
(P = 0.221) 

𝜌𝜌 = 0.11  
(P = 0.218) 

Aging D. 
melanogaster 

brain cells 
(n = 110 pairs of 

time points) 

𝝆𝝆 = 0.42  
(P = 0.0013) 

𝝆𝝆 = -0.49 
(P = 1.3e-4) 

𝜌𝜌 = -0.02  
(P = 0.971) 

𝜌𝜌 = 0.27 
(P = 0.0386) 

CD14+ 
monocytes with 

M-CSF 
(n = 30 pairs of 

time points) 

𝝆𝝆 = 0.68 
(P = 0.0049) 

𝝆𝝆 = -0.88 
(P = 1.8e-5) 

𝜌𝜌 = 0.05  
(P = 0.895) 

𝜌𝜌 = 0.18  
(P = 0.589) 

 

Aggregate measures of transcriptional similarity between pairs of datasets within three different 

time series studies were computed as described in Methods and correlated with the known 

temporal differences between the datasets. Bolded values show correlations at FDR < 0.05 for 12 

tests and the entries shaded in yellow show the most significant temporal association in each 

row, i.e., in each study. Mean transcriptional distances in the uncorrected data and Scanorama 

alignments are significantly associated with time in the expected direction; lower mean 

transcriptional distances and higher Scanorama alignment scores should indicate greater 

proximity in time. Correlations in the case of Scanorama are negative because higher alignment 

scores indicate greater transcriptional similarity, which is expected to decrease as time increases. 

We note that all of the scores used in the above table are meant to be simple heuristic measures 



of dataset similarity but are not distance metrics in the sense that they are not guaranteed to obey 

the triangle inequality.  



Supplementary Table 4 

GO Term Description P-value FDR q-
value 

GO:0019725 cellular homeostasis 6.17E-8 6.91E-4 

GO:0002252 immune effector process 3.2E-7 1.79E-3 

GO:0045055 regulated exocytosis 3.8E-7 1.42E-3 

GO:0065008 regulation of biological quality 5.68E-7 1.59E-3 

GO:0035722 interleukin-12-mediated signaling pathway 7.2E-7 1.61E-3 

GO:0010523 negative regulation of calcium ion transport into cytosol 7.27E-7 1.36E-3 

GO:0002366 leukocyte activation involved in immune response 1.3E-6 1.62E-3 

GO:0002263 cell activation involved in immune response 1.4E-6 1.57E-3 

GO:0043312 neutrophil degranulation 1.51E-6 1.54E-3 

GO:0002283 neutrophil activation involved in immune response 1.64E-6 1.53E-3 

GO:0042119 neutrophil activation 1.92E-6 1.65E-3 

GO:0046903 secretion 2.09E-6 1.67E-3 

GO:0002376 immune system process 2.1E-6 1.57E-3 

GO:0036230 granulocyte activation 2.15E-6 1.5E-3 

GO:0043299 leukocyte degranulation 2.15E-6 1.42E-3 

GO:0002275 myeloid cell activation involved in immune response 2.6E-6 1.53E-3 
 

Gene ontology process enrichments for genes contributing to alignment between CD14+ 

monocytes at 0 and 3 days of M-CSF stimulation. Results are for a target gene set of 55 

differentially expressed genes with a background gene set of 4982 genes. P-values are computed 

using a one-tailed hypergeometric test and false discovery rate (FDR) q-values are computed 

using the Benjamini-Hochberg procedure [6]. 
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