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Supplementary Methods 

ClinPhen uses a phenotype ontology and thesauruses to recognize phenotypes 

ClinPhen uses the Directed Acyclic Graph (DAG) of phenotypic abnormalities provided by the 

Human Phenotype Ontology (HPO)1. The HPO DAG is a large collection of phenotypes, where 

the more-general “parent” phenotypes are linked to their more-specific subcategories, or “child” 

phenotypes. “Generalized tonic-clonic seizures”, for instance, is a child of “Generalized 

seizures”, which is a child of “Seizures”. HPO also has a list of synonyms for every phenotype. 

“Seizures”, “Seizure”, and “Epilepsy”, for instance, all correspond to the same phenotype, 

represented by the ID HP:0001250. ClinPhen looks for these synonyms in the clinical notes to 

determine if the phenotype is mentioned. 

All phenotypes descending from the node “Phenotypic Abnormality” (HP:000018) are 

considered. ClinPhen supplements HPO’s thesaurus using the metathesauruses provided by the 

Monarch Initiative2 and the Unified Medical Language System (UMLS 2017AB)3, which match 

HPO IDs to a wider variety of synonyms. Together, these three databases provide 28,217 

synonyms for the 13,182 HPO phenotypes (from the March 2018 release). 

ClinPhen splits clinical notes into fragments and identifies negations 

To extract phenotypes from clinical notes, ClinPhen splits the notes into sentences using a set of 

sentence delimiters. Each sentence is split into a list of subsentences using a set of subsentence 

delimiters. ClinPhen additionally records each sentence’s “flags”: words that indicate that a 

phenotype mention may not apply to the patient. For phenotypes such as “Negative chorea”, 

ClinPhen will count the phenotype as validly mentioned, even though the sentence contains the 

flag word “negative”. 
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Training flags and delimiters used by ClinPhen 

We used the Training set to manually determine which words and characters are best used as 

flags or delimiters. Phenotypes from the clinical notes of these patients were extracted, once 

manually, and once by ClinPhen. The flags and delimiters used by ClinPhen were optimized so 

that ClinPhen’s phenotypes would be as similar as possible to those found manually. Feature 

development ended when the addition of novel cases resulted in little to no further rule changes. 

The set of sentence delimiters after training consisted of periods, bullet points, tabs, semicolons, 

newlines (ClinPhen makes two passes through the notes—once with this delimiter, once 

without), and the words “but”, “except”, “however”, and “though”. The set of subsentence 

delimiters after training consisted of commas, colons, and the word “and”. The set of flags 

included words that indicate that the mentioned phenotype applies to a family member, not the 

patient (cousin, parent, mom, mother, dad, father, grandmother, grandfather, grandparent, family, 

brother, sister, sibling, uncle, aunt, nephew, niece, son, daughter, grandchild); words that directly 

negate the mentioned phenotype (no, not, none, negative, non, never, normal); and words that 

indicate that the phenotypes are mentioned as part of a differential diagnosis (associated, gene, 

recessive, dominant, variant, cause, literature, individuals). 

Training additional synonyms and lemmas used by ClinPhen 

To further increase sensitivity, we used the Training set to identify commonly interchanged 

words, and identified the following groups: the “low” group (low, decreased, deficient, deficit, 

reduced, lacking, insufficient, impaired, difficulty, trouble), the “high” group (high, increased, 

elevated, elevation), and the “abnormal” group (abnormal, unusual, atypical, abnormality, 

anomaly, problem). If ClinPhen finds a word in one of these groups, it will register the entire 
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group as having appeared in the record. That way, e.g., “Decreased blood sugar” will still be 

recognized as a mention of “Low blood sugar”. We further used the Training set to manually 

augment lemmatization rules used by NLTK. 

Filtering phenotypes by their frequency in the population 

The STARR set consisted of the clinical notes of 5,000 randomly selected patients under the age 

of 18, with at least 5 recorded encounters with a physician, from Stanford’s STARR database. 

ClinPhen optionally ignores phenotypes that are found frequently, because frequently mentioned 

phenotypes are not likely helpful for rare disease diagnosis. To estimate the phenotype 

frequencies in a large patient population, we first detected phenotypes in the STARR patient set 

using ClinPhen’s phenotype-matching mechanism (described above). Phenotypes that were 

vague (such as “Abnormality of the nervous system”) or common (such as “Pain”, “Fever”, or 

“Cough”) appeared in more than 15% of these patients. By default, ClinPhen does not output 

detected phenotypes that occur in more than 15% of STARR patients (a user-adjustable 

parameter in our offered implementation). 

Prioritizing phenotypes by information content 

We tried prioritizing phenotypes using the information content of each phenotype as an 

alternative metric to number of occurrences in the notes. We calculated information content of 

each phenotype as described in Jagadeesh et al4. The information content of a phenotype 

estimates how indicative a phenotype is of a specific genetic disease using the number of genes 

that are known to cause the phenotype compared to the number of genes known to cause any 

phenotype. For example, the phenotype node “Neurodevelopmental delay” in the HPO DAG has 

an information content of 3.2 bits, because there are many kinds of neurodevelopmental delays, 
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associated with mutations in many different genes; whereas “Expressive language delay” has a 

higher information content (15.3 bits), because it is more indicative of specific genetic diseases. 

Variant filtering to a list of candidate causative genes 

We produced a fixed list of candidate causative genes that we used to compare all gene-ranking 

methods described here. To produce the candidate causative gene list, we first filtered patient 

variants to a list of possibly pathogenic variants. Per convention5, all missense, stop-gain, stop-

loss, frameshift indel, nonframeshift indel, and splice-site variants in protein-coding regions with 

an allele frequency below 0.5% in all sub-populations of the Exome Aggregation Consortium 

(ExAC)6 and the 1000 Genomes Project7 were considered to be possibly pathogenic. Genes 

containing any of these variants comprised the list of candidate causative genes for each patient. 

Output from all gene-ranking tools was limited to the list of candidate causative genes for each 

patient. 

Automatic gene ranking using Phrank 

We ran Phrank4 with the Python commands: 

from phrank import Phrank 

p = Phrank(DAG, DISEASE_TO_PHENO, DISEASE_TO_GENE) 

p.rank_genes(GENES, PHENOTYPES) 

where DAG is replaced with the path to a file containing the child-to-parent map of the HPO 

DAG, DISEASE_TO_PHENO with the path to a file containing an OMIM-disease-to-HPO-

phenotype map, and DISEASE_TO_GENE with the path to a file containing an OMIM-disease-

to-gene-symbol map, PHENOTYPES with the patient’s HPO-encoded phenotype list, and 

GENELIST with the patient’s candidate gene list. 
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Automatic gene ranking with Exomiser (PhenIX, Phive, HiPhive) 

Exomiser8 tools cannot be given custom candidate gene lists. Instead, Exomiser takes as input a 

Variant Call Format (VCF) file containing the patient’s genetic variants, and filters it to form its 

own candidate causative gene list, which it subsequently ranks and returns as output. We subset 

the ranked genes in the Exomiser output to the same list of candidate causative genes used by 

Phrank to ensure a fair comparison. 

We called Exomiser using the command: 

java -Xms2g -Xmx4g -jar exomiser-cli-7.2.1.jar -f TAB-GENE --prioritiser=ALGORITHM -F 1 

-hpo-ids HPOIDS -v VCF 

where we replaced ALGORITHM with the gene-ranking algorithm we were testing (hiPhive8, 

Phive9, or PhenIX10), HPOIDS with a comma-separated list of HPO phenotypes to be used in the 

diagnosis, and VCF with the path to the same VCF file used to compile the candidate gene list 

used by Phrank. 

For one Stanford Test patient, Exomiser filtered out the causative gene. Since 107 candidate 

genes were in Exomiser’s output list, and 143—including the causative gene—were not, 

Exomiser’s algorithms were all assumed to rank the excluded candidate genes at the bottom, and 

the causative gene at the median of these bottom ranks: 107 +
143

2
= 178.5. This mimics the 

average outcome of a clinician going through the Exomiser genes, not finding the causative gene, 

and then going through the unranked filtered genes in random order. 
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Supplementary Figures 

 

Supplementary Figure 1. Performance replication on patient data from an independent 

clinical center 

The experiments performed on Stanford data to generate Figure 3 were repeated on Manton 

Center patients, and show similar results: 

(a) ClinPhen extracts phenotypes with higher precision and sensitivity than both cTAKES and 

MetaMap.  

(b) Limiting to the highest-priority phenotypes improves gene-ranking performance. 

(c) ClinPhen outperforms other automatic and human phenotype extractors when used as input to 

automatic gene-ranking algorithms.  

(d) ClinPhen is much faster than all other (human and automated) alternatives for phenotype 

extraction, taking less than 5 seconds for the task across all medical records. The alternatives are 

all more than 20x slower on average. 

 

Supplementary Figure 2. Performance of Phrank when phenotypes are prioritized by 

information content 

The same experiment used to generate Figure 3b was done here: taking the n highest-priority 

phenotypes (for every n from 1 to 100), using Phrank to automatically rank genes for each 

patient, and taking the average Phrank rank of the causative gene across the full cohort of 

patients (a: the Stanford Test set, b: the Manton Test set). Here we compare two phenotype 

prioritization schemes: prioritization by number of occurrences in the clinical notes 
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(implemented in ClinPhen), and prioritization by information content associated with each 

phenotype (phenotypes with higher information content are prioritized; see Supplementary 

Methods). When limiting to the highest-priority phenotypes, prioritizing by information content 

degrades automatic gene ranking performance compared to prioritizing by number of 

occurrences in the medical record. 
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