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Disorder Using Normative Models

Supplementary Information

Supplementary methods

Exclusion criteria

Exclusion criteria for the Longitudinal European Autism Project (LEAP) study included a history of
substance abuse and standard neuroimaging contraindications (e.g. claustrophobia, metal implants).
Individuals were also excluded if they had a history of bipolar disorder or psychosis. In contrast to case-
control studies that aim to detect consistent group differences, here we were interested in characterizing
the heterogeneity within autism spectrum disorder (ASD) at the level of the individual. Therefore, we did
not exclude other comorbidities in the clinical group because up to 70% of ASD individuals have one

or more psychiatric conditions (1) and 30-50% of individuals with ASD are on stable medications (2).

Magnetic Resonance Imaging

A high resolution T1-weighted image was acquired from each participant with a standard Alzheimer’s
Disease Neuroimaging Initiative (ADNI) sequence (3), matched across scanning sites. Cortical thickness
was estimated from the high-resolution T1-weighted image for each subject using FreeSurfer version 5.3

(http://surfer.nmr.mgh.harvard.edu/). Prior to analysis, all surface reconstructions were visually assessed

for reconstruction errors by at least 3 independent raters. We excluded a small number of scans with
severe artifacts (e.g. caused by head motion). The rest of the scans were included ‘as is’, i.e. we did not
allow manual edits to reduce the possibility of bias (e.g. due to individual differences in operator skill).

Cortical thickness maps were then smoothed with a 10-mm surface-based Gaussian kernel.

Gaussian process regression

As mentioned in the main text, Gaussian process regression (GPR) (4) was used to estimate separate
normative models of cortical thickness (CT) and surface area (SA) at each vertex on the cortical surface.
Whilst other methods are also suited to this purpose (e.g. Bayesian polynomial regression), in preliminary
testing we found that GPR provides superior estimation of the mean and the ability to map the variation
across the cohort through centiles of predictive confidence. We refer the reader elsewhere for a full

treatment of Gaussian processes (5, 6) but briefly, a Gaussian process (GP) specifies a distribution over
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functions, such that any finite number of elements has a joint Gaussian distribution. They are excellent
tools for Bayesian regression: given a dataset specified by D = {x;,y; E}’i\’=1 — where x; are D -
dimensional vectors of covariates, N is the total sample size and y; € R are response variables — the
response variables are predicted using a potentially nonlinear regression model with additive Gaussian
noise, i.e.: y; = f; + €; where €;~N(0,02). Inference then proceeds by placing a GP prior over this
function then computing the posterior distribution using the canonical GPR predictive equations (5). This
prior is uniquely specified by a mean (m(x)) and covariance (k(x,x")) function. Here, without loss of
generality we choose a mean function equal to zero and a generic covariance function combining linear

and non-linear terms, i.e.:
T 1 T
k(xi,xj) = X; Xj + 0 exp —E(xi - x]-) AX; —X;)

Where o5 is a signal amplitude parameter for the nonlinear component and A is a diagonal matrix with
€;2 along the leading diagonal. These are ‘automatic relevance determination’ parameters (5) that can
down-weight irrelevant dimensions in the input space or emphasize important dimensions. Training a GP
model refers to finding the optimal values for the model parameters which are: 4, ..., £, g, and of. This
is conveniently achieved by maximizing the logarithm of the model evidence (i.e. the denominator of
Bayes rule). Finally, we compute a single subject Z-statistic image for each subject (i) and at each brain
location (j) by computing:
zi; = Yij — Vij

aizj + aﬁj
Here, 371-]- is the predicted mean and predicted variance, aij, which is combined with the true response
(vij) and variance learned from the TD distribution (0, ;). Because we estimate a separate noise parameter
for each vertex, this should accommodate regional differences in population variation (for example, the

estimated variance parameter will be higher in the regions where there is greater variation across

individuals).

Cross-validation
To assess generalization, we used 10-fold cross-validation where we partitioned the data into 10 ‘folds’
and repeatedly trained the model on 90% of the data, withholding the remaining 10% for estimating

generalization performance. This was repeated 10 times so that each partition was excluded once. This
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procedure is standard in machine learning and is known to provide approximately unbiased estimates of

the true generalization ability.

Post-hoc investigation of potential confounding variables

To investigate the potential confounding effect of various potential confounding variables, we performed
several tests. As described in the main text, we first estimated a normative model for CT additionally
including scanning site, 1Q and the FreeSurfer Euler number (EN) (7) as covariates. In addition, we
additionally performed several post-hoc tests for potential confounding variables including scan quality,
IQ and comorbid attention deficit/hyperactivity disorder (ADHD) symptoms. However, we emphasize
strongly that these should be considered as illustrative only, because our study design does not allow us
to determine the direction of cause-effect relationships. For example, it is reasonable to expect that
subjects that show the most atypical cortical anatomy may also express the highest level of symptoms,
have the most intellectual impairment and be the most likely to suffer from comorbid symptoms. First, to
assess the possibility of scan quality (e.g. due to excessive head motion in the scanner) influencing our
results, we correlated (using Spearman correlation) the deviations from the model with the Euler number.
The EN summarizes the topological complexity of the estimated cortical surface and has been proposed
as a proxy measure of scan quality (8) . However, this is an indirect measure in that it does not model scan
quality directly, it should be considered with caution since many other variables can potentially influence
EN, including age, atypicalities in cortical anatomy and disorder severity. Therefore, we also correlated EN
with age and with ASD symptoms. In addition, we correlated the deviations from the normative with
measures of full-scale 1Q (see (9)) and with measures of comorbid ADHD symptoms derived from the
Development and Well-being Assessment (10). We refer the reader elsewhere for a detailed description

of these measures (3, 9).
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Supplementary results

Age histogram

Figure S1 shows the distribution of subject ages across diagnoses.
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Supplementary Figure S1: Histogram of age of Female and Male individuals across TD and ASD cohort.
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Model fit evaluation
Figure S2 shows the mean accuracy of the normative model for predicting CT in typically developing (TD)
and ASD participants, both in terms of root mean squared error (Figure S2A) and correlation between true

and predicted CT values (Figure S2B).
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Supplementary Figure S2.A: Root mean square error of true and prective mean of cortical thickness in TD cohort.
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Supplementary Figure S2.B: The correlation between true and prective mean of cortical thickness in TD and ASD

cohort.
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Normative developmental changes for cortical thickness in females
Supplementary Figure S3 shows the predictions made by the normative model for changes in female TD

subjects (see Figure 2 in the main text for males).
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Supplementary Figure S3: Normative model of developmental changes of cortical thickness across the developmental
range in the typical developing female cohort. Cortical thickness was predicted using a trained normative model
across the age range of six to thirty-one. The predicted cortical thickness map was thresholded so that only vertices
that could accurately predict the true cortical thickness in the healthy cohort under cross-validation were retained

(Pearson correlation, p < 0.05, FDR). Blue vertices and yellow indicate reduced and increased CT respectively.
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Normative model of cortical thickness using age, gender, site, IQ and FreeSurfer Euler number as
covariates

Supplementary Figures S4 and S5 show deviations from the normative model for CT re-estimated after
additionally including 1Q addition and scanning site dummy variables and FreeSurfer Euler number as
covariates, separately for positive (Figure S4) and negative (Figure S5) deviations. The differences between

this model and the original model are negligible and all the conclusions remain unchanged.
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Supplementary Figure S4: Overlap of vertex-wise negative deviation across each cohort and schedule. This map shows

the number of subjects with significant deviations in each vertex after FDR correction.
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Supplementary Figure S5: Overlap of vertex wise positive deviation across each cohort and schedule.
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Normative model of surface area
Supplementary Figure S6 and Figure S7 show deviations from the normative model for CT estimated using
age and gender as covariates, separately for positive (Figure S6) and negative (Figure S7) deviations. The

overlap of deviating voxels shows a similar but slightly different pattern relative to CT.
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Supplementary Figure S6: Overlap of vertex-wise negative deviation in surface area normative model across each

cohort and schedule. This map shows the number of subjects with significant deviations in each vertex after FDR

correction.
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Supplementary Figure S7: Overlap of vertex wise positive deviation across each cohort and schedule.
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Individual subject deviations

Supplementary Figure S8 shows the top 15 subjects deviating from the normative pattern for CT.
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Supplementary Figure S8: NMPs of top fifteen deviating individuals from normative CT model. These subjects who
belong to ASD cohort have highly individualized patterns of deviation with respect to brain regions and different sign

of the deviation.
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Individual subject deviations

Supplementary Table S1 shows the clinical characteristics of the sample separately for each site.

Supplementary Table S1: Clinical characteristics for each site.

Cambridge KCL Mannheim Nijmegen Rome
Variable ASD D ASD D ASD D ASD D ASD D
17.6 17.0 16.9 18.7 15.4 16.2 15.0 24.9 24.9
Age, mean, [SD] [5.8] [6.4] [5.9] [6.6] 3.4] 153361 5 g [4.1] [2.9] [3.5]
1Q, mean [SD]
Global 1IQ 106 [19] 114 [11] 100 [21] 111 [16] 102 [13] 109 [15] 97 [18] 101 [14] 101 [14] 106 [10]
Performance IQ 109 [21] 116 [12] 100 [20] 110 [16] 104 [15] 113 [13] 97 [22] 102 [18] 104 [18] 103 [15]
Verbal IQ 103 [17] 109 [11] 99 [20] 111 [18] 101 [15] 101 [14] 97 [19] 100 [15] 98 [16] 109 [8]
ADI-R [SD]
Social 17.2 - 17.9 15.2 - 14.4 - 11.4 -
[6.6] [6.4] [7.2] [6.4] [5.7]
Communication 14.5 - 15.2 - 10.4 - 12.7 - 9.3 [5.4] -
[2.7] [5.4] [4.9] [5.4]
Repetitive Behavior 5.0[2.7] - 5.0 [2.4] - 51([3.8] - 2.9[2.1] - 5.3[2.3] -
ADOS [SD]
Total 5.2 [2.4] - 5.1[2.9] - - - 5.3[2.7] - - -
Social 6.3[1.8] - 53[2.8] - - - 6.1[2.5] - - -
Repetitive Behavior  4.5[2.5] - 5.7[2.6] - - - 3.7[2.7] - - -
Schedule
A: Adults 16 9 50 33 5 5 23 10 17 10
B: Adolescents 15 6 34 18 20 11 31 27
C. Children 7 7 26 9 3 5 20 18
D.1Q< 70 2 - 12 - 0 - 6 - 0 -

Supplement

Utrecht
ASD D
16.8
[5.5] 16.7 [6.2]
105 [13] 111 [8]
107 [17] 109 [12]
105 [14] 113 [14]
16.3 -
[5.8]
11.3 -
[5.4]
3.5[2.7] -
4.8 [2.7] -
5.5[2.7] -
4.3[2.4] -
14 10
12 8
8 13
0 -
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Scan quality associations with extreme deviations and age
In Supplementary Table S2, we show the correlation of deviations with the FreeSurfer Euler number. Note

that smaller EN values are indirectly associated with a lower scan quality.

Supplementary Table S2: Correlation between extreme deviations and Euler number.

Euler number in ASD cohort  Euler number in TD cohort Euler number overall
Extreme deviations -0.57 * -0.62 * -0.58 *
Age 0.39 * 0.38 * 0.38 *
ADI Social -0.18 * - -
ADI Communication -0.25 * = -
ADI RRB -0.25 * = -
ADOS Total -0.11 - -
ADOS Social -0.02 - -
ADOS RRB -0.21 * = -

This shows that EN was correlated with the deviations in both ASD and TD cohorts, all ADI symptom
domains, and ADOS repetitive behaviors. Regarding alternative potentially confounding variables, the
extreme value deviations were weakly negatively correlated with IQ in the ASD cohort (p =-0.16, p<0.05),

but not in the TD cohort (p = 0.08, n/s). They were also correlated with some ADHD symptom scales

(Supplementary Table S3).

Supplementary Table S3: Correlation between extreme deviations and ADHD score.

ADHD Inattentive parent in ASD ADHD Inattentive parentin TD ADHD Inattentive

Extreme deviations 0.20 * -0.01 0.22 *
ADHD Hyperimpulsive parentin  ADHD Hyperimpulsive parent ADHD

ASD inTD Hyperimpulsive
Extreme deviations 0.24 * 0.16 0.26 *

Taken together these results reinforce the cautions noted above, and preclude a definitive assessment of

the degree to which any one particular confounding variable may have influenced our results.

15
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Supplementary Table S4 shows the clinical characteristics from the top deviating subjects from the

normative model for CT, all of whom have ASD

Supplementary Table S4: Clinical characteristics of the top fifteen deviating participants from normative CT model.
These subjects who belong to ASD cohort, have highly individualized patterns of deviation with respect to brain

regions and different sign of the deviation.

Schedule site sex via PlQ  Fsla  Age " Aok S B e B
social communication RRB TOTAL SA RRB
ASD  Children  Mannheim M - 69 - B 20 10 8 - - -
ASD Adults Rome M 70 79 76 2258 13 11 3 - - -
ASD Adults  Nijmegen F 79 66 7 | HBEE 4 6 0 3 4 6
ASD  Adolescent  Utrecht M 86 106 96 2% 19 9 2 5 6 6
ASD  Children KCL F 90 109 100 &% 17 17 7 10 10 8
ASD  Adolescent  Nijmegen M 114 124 118 36 15 15 2 . . .
ASD  Children KCL Fo116 133 127 088 g9 9 8 1 2 6
ASD Adults KCL M 8 8 g | B - - - 2 2 6
AsD  1Q<70 KCL M 58 59 5 | B @ 21 9 10 10 10
ASD  Children KCL M 111 106 110 538 16 18 5 6 3 9
ASD  Children  Utrecht F 93 98 3| HEE 23 17 3 7 5 9
ASD  1Q<70  Nijmegen M 52 50 | BB 21 6 10 10 8
ASD  Children KCL F ; - - ik 0 8 2 6 7 6
ASD  Children KCL M 99 107 104 ©% 14 12 5 2 3 1
ASD  Children  Cambridge 'M 106 128 119  °>7° 16 15 2 4 5 6
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Supplementary Table S5 shows the clinical characteristics from the top deviating subjects from the

normative model for SA.

Supplementary Table S5: Clinical characteristics of the top fifteen deviating participants from normative surface area
model. While 80% of the individuals belong to ASD cohort with highly heterogeneous profiles, there are several

individuals in the list who belong to TD cohort.

ADI- ADI- ADI- ADOS- ADOS-
Schedule Site Sex viQ PIQ FSIQ Age

social communication RRB TOTAL SA
ASD Adults Nijmegen F 71 66 70 17.49 9 14 2 7 8
ASD 1Q <70 Cambridge M 73 66 67 24.29 10 9 5 9 8
D Adults KCL M 142 136 142 23.08 - - - - -
ASD Adolescents  Nijmegen M 89 64 78 12.07 17 12 1 3 5
TD Adults Cambridge F 104 117 111 18.26 - - - - -
ASD  Adolescents Cambridge M 103 120 113 14.53 16 12 1 7 8
ASD Adolescents KCL M 144 134 142 16.82 20 12 5 6 6
ASD Children KCL F 98 106 102 9.31 25 20 8 8 7
ASD Children KCL F 116 133 127 10.68 10 9 8 1 2
TD Adults Utrecht M 105 85 96 22.06 - - - - -
TD Children Cambridge M 108 129 120 8.62 - - - - -
ASD Children Mannheim M - 69 - 9.69 20 10 8 = -
ASD Adults KCL M 133 120 130 19.44 18 19 8 - -
ASD Adolescents Cambridge F 112 104 109 12.11 27 17 8 2 4
ASD Children Nijmegen M 92 94 93 11.57 24 20 7 1 3

17
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Finally, Supplementary Tables S6 and S7 shows the associations for the deviations from the normative

model and symptom scales.

Supplementary Table S6: Clinical relevance of the deviations; Significant correlation (Spearman) between the mean
of extreme deviation in each cortical parcel and symptoms measured by ADOS and ADI scores (P_value < 0.05).

* indicates the regions survived after FDR correction

Parcel Correlation Coefficient, r Parcel Correlation Coefficient, r
ADI_social, Female ADI_RRB, Male
superiortemporal 0.22(L) superiorfrontal 0.23*(L), 0.2(R)
lateralorbitofrontal 0.22(R) superiortemporal 0.16(L)
parsopercularis 0.22(R) insula 0.16(L)
precuneus 0.24(R) caudalanteriorcingulate 0.2(R)
temporalpole 0.26(R) fusiform 0.15(R)
ADI_social, Male paracentral 0.15(R)
superiortemporal 0.17(L) parstriangularis 0.17(R)
lateralorbitofrontal 0.15(R) temporalpole 0.16(R)
ADI_communication, Female ADOS_II_CSS, Female
caudalmiddlefrontal 0.21(L) parsopercularis 0.25(L)
lateralorbitofrontal 0.25(L) ADOS_II_CSS, Male
parsopercularis 0.22(L) entorhinal 0.18(R)
pericalcarine 0.23(L) medialorbitofrontal 0.19(R)
postcentral 0.22(L) temporalpole 0.16(R)
precentral 0.23(L) ADOS_II_Social Affect, Female
superiorparietal 0.23(L) entorhinal -0.23(L)
inferiortemporal 0.23(R) lateraloccipital -0.25(L)
lateraloccipital 0.30(R) lingual -0.22(L)
middletemporal 0.30(R) middletemporal -0.24(L)
precuneus 0.21(R) parsopercularis 0.23(L)
rostralmiddlefrontal 0.21(R) ADOS_II_Social Affect, Male
ADI_communication, Male medialorbitofrontal 0.18(R)
superiortemporal 0.17(L) temporalpole 0.15(R)
supramarginal 0.15(L) ADOS_II_RRB, Female
insula 0.17(L) caudalmiddlefrontal 0.33*(L), 0.31(R)
superiorparietal 0.15(R) entorhinal 0.23(L)
paracentral 0.15(R) fusiform 0.33*(L)
ADI_RRB, Female inferiorparietal 0.26(L),0.25(R)
caudalmiddlefrontal 0.31%*(L), 0.24(R) inferiortemporal 0.25(L)
entorhinal 0.24(L) lateraloccipital 0.23(L)
inferiortemporal 0.22(L), 0.28(R) lingual 0.38%(L),0.34(R)
lateraloccipital 0.30*(L) rostralmiddlefrontal 0.23(L),0.31(R)

18
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Parcel
lateralorbitofrontal
medialorbitofrontal
parsopercularis
parstriangularis
precentral
precuneus
superiorparietal
inferiorparietal
middletemporal
rostralmiddlefrontal
superiortemporal
supramarginal
ADI_RRB, Male
entorhinal
inferiortemporal
lingual
middletemporal
parahippocampal
rostralanteriorcingulate

rostralmiddlefrontal

Correlation Coefficient, r
0.32*(L)
0.26(L), 0.24(R)
0.28(L)
0.31*(L)
0.25(L), 0.25(R)
0.22(L)

0.24(L)

0.24(R)
0.32*(R)
0.28(R)

0.23(R)

0.36(R)

0.19(L)
0.14(L), 0.17(R)
0.14(L)
0.18(L), 0.14(R)
0.14(L)
0.15(L), 0.16(R)
0.15(L)

Parcel
superiorfrontal
superiorparietal
supramarginal
caudalanteriorcingulate
middletemporal
paracentral
pericalcarine
precentral
precuneus
frontalpole
ADOS_II_RRB, Male
lateralorbitofrontal
medialorbitofrontal
rostralmiddlefrontal
insula

entorhinal

fusiform
inferiortemporal
middletemporal

postcentral

Supplement

Correlation Coefficient, r
0.33*(L),0.24(R)
0.25(L)

0.33(L)

0.26(R)

0.24(R)

0.25(R)

0.26(R)

0.29(R)

0.29(R)

0.32(R)

0.18(L)
0.21(L)
0.16(L)
0.16(L)
0.15(R)
0.17(R)
0.21(R)
0.23(R)
0.18(R)

Supplementary Table S7: Clinical relevance of the deviations across the whole brain; Significant correlation
(Spearman) between extreme value across all the regions and symptoms measured by ADOS and ADI scores (P_value

< 0.05). * indicates the regions survived after FDR correction

ADI ADOS
ADI-social  ADI-communication ADI-RRB ADOS-TOTAL ADOS-SA ADOS-RRB
Female 0.03 0.13 0.16 -0.02 -0.13 0.30*
Male 0.11 0.10 0.20* 0.09 0.03 0.20*
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