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Feature selection and data transformation

After the preprocessing of molecular descriptors and gene expression data, three data
matrices are obtained:

• A = (aij) is the molecular descriptors (MD) data matrix, this is of dimension (59×
1196). A column vector of A corresponds to a MD measured across the 59 drugs;

• B = (bij) is the matrix of log-foldchange for the genes coming from the MCF7 cell
line (MCF7FC). This matrix is of dimension (59 × 11868), and each column of B
represents log-foldchange for a certain gene over the 59 drugs;

• C = (cij) is the matrix of log-foldchange for the genes coming from the PC3 cell line
(PC3FC). This has the same dimension of B, also the measurements are organized
similarly.

Let X be the matrix obtained by binding the matrices A,B and C by columns. The
full data matrix X is now of dimension (59× 24932), which means that it contains mea-
surements of p = 24932 features over n = 59 drugs. Let y be the vector of the logKHSA
values measured on the 59 drugs. We want to construct a model that relates the y and the
features inX with good predictive performance. The usual driving assumption is that the
relationship between the expectation of y and the features is sparse, meaning that only a
small subset of the p features is relevant to predict y.

Existing literature approached the problem by estimating a linear model where y is re-
gressed against MD descriptors, and relevant MD descriptors have been found by using
the LASSO method of [13] optimized for predictive performance using the k-fold cross-
validation. In this paper we address the issue whether genomic information lead to im-
proved predictive performance, therefore we look for a reasonably small number of MD
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and genes that would jointly better predict the outcome y. In other words, one could
assume that the data generating process is well represented by the usual linear model

y = Xβ + stochastic error, (1)

where β is a sufficiently sparse vector of coefficients of dimension equal to the number of
features. The LASSO method combined with cross-validation can be used to estimate the
non-zero components of β corresponding to the relevant subset of features.

Exploratory analysis on the datasets considered in this paper has shown that certain
power transformations of the original features in X lead to a better association with the
outcome variable y. Fix α > 0 and consider the matrix A(α) = (|aij |α), that is A(α) is
obtained by taking the absolute value of its elements raised to the power α. Fix γ > 0
and take B(γ) = (|bij |γ) and C(γ) = (|cij |γ). Exploratory analysis has shown that for
these transformed features weak correlations with the y are somewhat downgraded, while
strong correlations are emphasized. Therefore the issue whether transformed features have
better predictive power is addressed. Let X(α, γ) be the (59× 24932) matrix obtained by
binding the matrices A(α),B(γ) and C(γ) by columns. We now consider the following
model

y = X(α, γ)β + stochastic error. (2)

First, note that the same power transformation has been used for the two groups of
genomic features in matricesB andC. This is because we assume two similar, but distinct,
mechanisms driving the linear association between MD features and genomic features with
respect to the outcome variable. Second, note that model (2) is nonlinear if we consider α
and γ as structural parameters explaining in-sample biological relationships. In this case
one could estimate α, γ, and β by penalized nonlinear least squares with a LASSO-type
penalty achieving a sparse estimate of β. Not only this is computationally challenging,
but it also means that we attach to α and γ a structural/biological meaning that is hard
to justify. On the other hand, for fixed α and γ the model (2) becomes a linear model as
(1). Considering α and γ fixed, with only β being a structural/biological parameter to
be estimated, is conceptually the same as replacing the original sample measurements X
with a different version X(α, γ) and looking for a linear model as in (1). Therefore, given
pair a (α, γ), and λ > 0, the LASSO estimator of β is given by

β̂ = arg min
β

‖y −X(α, γ)β‖22 + λ ‖β‖1 , (3)

where ‖·‖2 is the euclidean norm, ‖·‖1 is the `1 norm, λ is the LASSO penalty. For
larger choice of λ, the term λ ‖β‖1 in (3) penalizes the least square cost function at β
vectors with too many too small βs coefficients. Depending on λ, the LASSO sets small
regression coefficients exactly to zero, and nonzero components of β̂ correspond to the
relevant features that are selected by the method.

The tripled (α, γ, λ) can be considered as methods’ parameters tuned to achieve the best
predictive power of the linear model (2) where only the β pretends to explain the struc-
tural/biological relationships between the transformed features and the outcome y.

Random split validation is used to find the best combination of (α, γ, λ). The final as-
sessment is made on test sample not used in any previous estimation or optimization
task.
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Let n be the sample size (number of rows of X). Let Ẋ and ẏ contain n0 = [80%n] of
the original samples, and let Ẍ and ÿ contain the remaining (n − n0) samples used for
the final assessment. Let {λm, m = 1, 2, . . . ,M} a fixed grid of values for the LASSO
penalty parameter. Fix the size of the training dataset n1 = [90%n0], and the size of the
test dataset n2 = n0−n1. Random cross-validation is performed for a given pair (α, γ) as
follows.

Random Split Validation Algorithm (RSVA)

Inputs: Ẋ,ẏ, α, γ, {λm, m = 1, 2, . . . ,M}

1. For k = 1, 2, . . . ,K; do

(1.a) Randomly split the dataset (without replacement) in a training dataset (ẏ1, Ẋ1)
of size n1, and a test set (ẏ2, Ẋ2) of size n2

(1.b) For m = 1, 2, . . . ,M ; do
(1.b.i) compute the LASSO solution

β̂(k,m) ← arg min
β

∥∥∥ẏ1 − Ẋ1(α, γ)β
∥∥∥2

2
+ λm ‖β‖1

(1.b.ii) compute the vector of the predicted values on the test sample:

ŷ2 ← Ẋ2(α, γ)β̂(k,m)

(1.b.iii) compute the mean squared prediction error (MSPE):

Ek,m ←
1
n1
‖ŷ2 − ẏ2‖22

2. For all m = 1, 2, . . . ,M compute the averaged MSPE across the random splits, and
their estimated standard error

Em ←
1
K

K∑
i=1

Ek,m

se(Em)←

√√√√ 1
K(K − 1)

K∑
i=1

(Ek,m − Em)2

3. λ selection: let mo = arg minm{Em, m = 1, . . . ,M}, and take

λ∗ = max{λm : Eo − 1.96 se(Eo) ≤ Em ≤ Eo + 1.96 se(Eo)}

Let β(α, γ) be the LASSO solution computed at λ = λ∗, and let E(α, γ) the corre-
sponding average MSPE.

Output: β(α, γ) and E(α, γ)
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A grid of 9 distinct α and γ values are considered, with α, γ ∈ {0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}.
The random split validation algorithm is performed for all of the 81 distinct pairs (αt, γt)
for t = 1, 2, . . . , 81.

For each of the 81 combinations, the relevant set of features ft = β(αt, γt) (for t =
1, 2, . . . , 81) associated to the non null coefficients is identified. The samples in (Ẋ, ẏ)
are used to train a model with this set of feature and its associated α and γ parameter.
After that, the model is used to predict the outcome logKHSA on the final test set (Ẍ, ÿ).
For these models the up-to-date internal and external validation metrics [7] are evaluated
by applying a further random split validation strategy on the training dataset (Ẋ, ẏ) .
The internal evaluation metrices are the following: coefficient of determination r2

Train,
mean squared error MSETrain and MSE, leave-more-out correlation coefficient Q2

LMO,
new coefficient of determination following the Y-scambling procedure [10] r2

Ysrc
, Q2

Ysrc
.

The Y-scrambling procedure, identifies a possible chance correlation between the toxicity
and descriptors. In the Y-scrambling method, the toxicity variables of the training set
randomly shuffled 100 times and new coefficient of determination r2

Ysrci
and Q2

Ysrci
are

evaluated. r2
Ysrc

, Q2
Ysrc

are the mean of the 100 shuffled values. Low values of these
parameter indicate that the original model was not built by chance correlation. The
external evaluation metrices are the following: coefficient of determination r2

Test, mean
squared error MSETest, Q2

F1 [12], Q2
F2 [11], Q2

F3 [3], concordance correlation coefficient
CCCTest[1, 2], r2

m. Along with these metrics the applicability domain, based on the
leverage method, is also computed both for the training ADTrain and the test ADTest

datasets. The measure referred as Train are computed only once on the prediction of the
model fitted on the training dataset (Ẋ, ẏ). The measure referred as Test are computed
only once on the predicted value of the test dataset (Ẍ, ÿ). All the others are computed on
100 random split of the dataset (Ẋ, ẏ) in a training and validation set and are computed
as the mean value of the metric computed on the internal validation dataset. The 81
models are then filtered based on threshold already estrablished in literature: r2 > 0.6,
Q2 > 0.5, r2

TEST > 0.6 [6], Q2
F1,Q2

F2 and Q2
F3 > 0.6, CCCTest > 0.85 [1], r2

m > 0.5 [9],
ADtest = 100. Only the solutions that satisfy these requirements are considered eligible.
Finally the transformation parameters (α∗, γ∗) achieving the best preditive performance
with le less number of feature, is selected as (α∗, γ∗) = arg mint{E(αt, γt); t ∈ I} with
I ⊆ {1, . . . , 81} the set of indices of eligible solutions.

The LASSO solution in step (1.b.i) of RSVA is computed using the coordinate descendent
algorithm implemented in the glmnet R package of [5]. Although k-fold cross-validation
is a much more popular choice for managing the bias-variance tradeoff [14, 4], in our ex-
periments, the random splitting strategy above with K = 100 gave a much more stable
performance. In particular the increase in the number of splittings allowed a better esti-
mate of the se(Em) in Step 2 of the RSVA, and this is functional to the λ−selection strategy
of Step 3. The optimal λ is typically chosen to minimize the estimated expected MSPE,
this would correspond to the LASSO solution computed at λ = λmo . A larger value of
lambda implies a larger penalty, and therefore a sparser solution implying a smaller num-
ber of relevant feature selected. In Step 3 of the RSVA we select the largest λ value such
that the corresponding averaged MSPE is still within the 95%-confidence interval (derived
using the normal asymptotic approximation) around the solution achieving the the low-
est overall averaged MSPE. Therefore, we select the sparsest solution that is statistically
equivalent to the one achieving the lowest overall averaged MSPE. This strategy allows
to select a more parsimonious model (less features) without compromising the predictive
performance achieved on the final test set. This approach is also suggested in [8], although
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they suggest a smaller confidence level.
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