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IMPORTANCE Anhedonia can present in children and predict detrimental clinical outcomes.

OBJECTIVE Tomapanhedonia in childrenonto changes in intrinsic large-scale connectivity and

task-evokedactivation and toprobe the specificity of these changes in anhedonia against other

clinical phenotypes (lowmood, anxiety, andattention-deficit/hyperactivity disorder [ADHD]).

DESIGN, SETTING, AND PARTICIPANTS Functional magnetic resonance imaging (fMRI) data

were from the first annual release of the Adolescent Brain Cognitive Development study,

collected between September 2016 and September 2017 and analyzed between April and

September 2018. Cross-sectional data of children aged 9 to 10 years from unreferred,

community samples during rest (n = 2878) and during reward anticipation (n = 2874) and

workingmemory (n = 2745) were analyzed.

MAIN OUTCOMES ANDMEASURES Alterations in fMRI data during rest, reward anticipation,

and workingmemory were examined, using both frequentist and Bayesian approaches.

Functional MRI connectivity within large-scale networks, between networks, and between

networks and subcortical regions were examined during rest. Functional MRI activation were

examined during reward anticipation and workingmemory using themonetary incentive

delayed and N-back tasks, respectively.

RESULTS Among 2878 children with adequate-quality resting-state fMRI data (mean [SD]

age, 10.03 [0.62] years; 1400 girls [48.6%]), children with anhedonia (261 [9.1%]), compared

with those without anhedonia (2617 [90.9%]), showed hypoconnectivity among various

large-scale networks and subcortical regions, including between the arousal-related

cingulo-opercular network and reward-related ventral striatum area (mean [SD] with

anhedonia, 0.08 [0.10] vs without anhedonia, 0.10 [0.10]; t2,876 = 3.33; P < .001; q[false

discovery rate] = 0.03; ln[Bayes factor10] = 2.85). Such hypoconnectivity did not manifest

among children with lowmood (277 of 2878 [9.62%]), anxiety (109 of 2878 [3.79%]), or

ADHD (459 of 2878 [15.95%]), suggesting specificity. Similarly, among 2874 children (mean

[SD] age, 10.03 [0.62] years; 1414 girls [49.2%]) with high-quality task-evoked fMRI data,

children with anhedonia (248 of 2874 [8.63%]) demonstrated hypoactivation during reward

anticipation in various areas, including the dorsal striatum and areas of the cingulo-opercular

network. This hypoactivity was not found among children with lowmood (268 of 2874

[9.32%]), anxiety (90 of 2874 [3.13%]), or ADHD (473 of 2874 [16.46%]). Moreover, we also

found context- and phenotype-specific double dissociations; while children with anhedonia

showed altered activation during reward anticipation (but not workingmemory), those with

ADHD showed altered activation during workingmemory (but not reward anticipation).

CONCLUSIONS AND RELEVANCE Using the Adolescent Brain Cognitive Development study

data set, phenotype-specific alterations were found in intrinsic large-scale connectivity and

task-evoked activation in children with anhedonia. The hypoconnectivity at rest and

hypoactivation during reward anticipation complementarily map anhedonia onto aberrations

in neural-cognitive processes: lack of intrinsic reward-arousal integration during rest and

diminishment of extrinsic reward-arousal activity during reward anticipation. These findings

help delineate the pathophysiological underpinnings of anhedonia in children.
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A
nhedonia, definedas a loss of interest inpreviously re-

warding activities,1 can present in early life and pre-

dict detrimental outcomes, including illness severity,

treatment refractoriness, and suicidality.2-5 Efforts to delin-

eate its neural correlates have been greater in adults than

youth.3 Here we used the Adolescent Brain Cognitive Devel-

opment (ABCD) data set6 to (1) assess the association of anhe-

donia with resting-state functional magnetic resonance

imaging (rs-fMRI) connectivity and task-evoked fMRI activa-

tion and (2) compare results in other phenotypes.

Wefirstusedbothrs-fMRIconnectivityandtask-evokedfMRI

activation to understand the brain functional architecture un-

derlyinganhedonia inchildhood,akeydevelopmentalperiod.2-5

Resting-statefMRIconnectivityandtask-evokedfMRIactivation

maydetectdistinct sourcesof individualdifferences7; thus, in-

vestigatingbothmayprovideusa richer account thanstudying

eitheralone.For rs-fMRIconnectivity,weuseda large-scalenet-

work approach.8-10This allowed us to test the long-postulated

notion11-15 that anhedonia results from aberrant connectivity

amongreward-basedstriatalareasandlarge-scalenetworkssub-

servingcognitiveprocesses, suchas sustainedarousal (cingulo

opercular16-18), saliencedetection (salience19), attentionorien-

tation(ventral/dorsalattention20), andmindwandering(default

mode21). For task-evoked fMRI activation, we used 2 tasks to

evokecontext-specificprocesses: rewardanticipationandwork-

ing memory. Specifically, we use the monetary incentive

delayed (MID) task22 to probe the hypothesis that anhedonia

in preadolescents is associated with reward-anticipation

hypoactivation.11,12,23,24We used the N-back task8 to examine

specificity in reward anticipation findings.

Wenextprobedhowfindings inanhedonia comparedwith

those with other problems, addressing the need to disen-

tangle shared from unique correlates.24-26 Evidence from ge-

netics finds shared etiological correlates amongmanypsychi-

atric problems.27 Attempts to extend these findings through

imagingmust confrontproblemsassociatedwith small sample

sizes28 and other methodological considerations (eg, referral

biases29). Here we attempted to address these problems by

using a large, community-based data set to compare findings

in anhedonia with those in dysphoria, anxiety disorders, and

attention-deficit/hyperactivity disorder (ADHD).

Our first comparator was lowmood, a cardinal depression

symptom. Low mood or dysphoria is a prototypical negative

affect, asopposed tomotivation-relatedprocesses likeanhedo-

nia. Moreover, low mood and anhedonia manifest different

developmental trajectoriesandclinicaloutcomes.1,5,11,30,31Task-

evoked imagingdata inolder adolescents24dissociate anhedo-

nia and lowmoodduring reward anticipation. Herewe extend

these data to children by probing large-scale rs-fMRI networks

alongsidetask-evokedfMRIactivation.Accordingly,weexpected

todifferentiate themodulatingassociationsofanhedoniavs low

mood in (1) rs-fMRIconnectivitybetweenreward-basedstriatal

areasand large-scalenetworksand(2) task-evokedfMRIactiva-

tion during reward anticipation.

Two other comparators are anxiety disorders and ADHD.

Anxiety is frequentlycomorbidwithdepression.32Moreover, ro-

dentresearchfoundanassociationbetweenanhedoniaandanxi-

ety through interactions between reward- and threat-related

circuitry.33While the clinical nexus between ADHD and anhe-

donia isunderstudied, considerablework finds sharedetiology

betweendepressionandADHD.27,34,35Particularly, adultswith

ADHDdisplaybrainhypoactivationduring rewardanticipation,

similar to adultswith anhedonia,36 but this pattern ismixed in

children.37-40 It is therefore important to examinewhether ab-

errations in both rs-fMRI connectivity and task-evoked activa-

tion inchildrenarespecific toanhedoniaorreflectanexpression

ofsharedetiologicalfactorswithotherchildpsychiatricproblems.

Methods

Participants

Weanalyzed theABCDstudy41 curatedannual release 1.0, con-

tainingpreprocessed,precomputeddata from4524children.42

This large-scale studywasapprovedbyethicscommittees from

all 21 institutions where data were collected.43

Recruited through the school systems, participants were

aged 9 to 10 years from 21 sites across the United States. The

ABCD investigators obtained written and oral informed con-

sent fromparents andchildren, respectively.Demographicsof

childrenare largely consistentwith anational survey.44Wese-

lected participants who had no missing value and passed

ABCD’s extensive quality control in every fMRI run.42Using a

binary cutoff from the Kiddie Schedule for Affective Disor-

ders and Schizophrenia for DSM-5,45,46 we identified chil-

drenwith anhedonia, lowmood, anxiety, and ADHD as those

either in the past or currently. We used children’s self-report

for the internalizingproblems(anhedonia, lowmood,andanxi-

ety) and parent report for the externalizing problem (ADHD)

following previous recommendations.47 See eTable 1 in the

Supplement for detailed demographics.

Overall Analyses

We ran analyses on parcellated regions: 333 cortical surface48

and 19 subcortical volumetric.49Wecomputed (1) rs-fMRI con-

nectivity representing associations among the large-scale cor-

tical-surface networks and subcortical regions and (2) task-

evoked fMRI activation for reward anticipation and working

memory in cortical areas belonging to each large-scale net-

work and subcortical regions (see below).Weused theseover-

allmeasuresof rs-fMRIconnectivityandtask-evokedactivation

Key Points

Question How do brain functions in children with anhedonia map

onto intrinsic and task-related brain imagingmeasures?

Findings In this large-scale cross-sectional functional magnetic

resonance imaging study that included 2878 children, anhedonia

(but not lowmood, anxiety, or attention-deficit/hyperactivity

disorder) was associated with hypoconnectivity at rest between

the ventral striatum and the cingulo-opercular network and

hypoactivation during reward anticipation in the dorsal striatum

and cingulo-opercular network.

Meaning Anhedonia in children wasmapped onto perturbed

intrinsic reward arousal integration and diminished extrinsic

reward anticipation activity.
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to examine specific associations with anhedonia compared

with lowmood, anxiety, andADHD.Forboth rs-fMRI and task-

evoked fMRI, we used Analysis of Functional NeuroImages

(AFNI)50 forpreprocessing,R statistical software, version3.4.3

(R Project for Statistical Computing), with BayesFactor ver-

sion0.9.2 (https://richarddmorey.github.io/BayesFactor/) for

statistical analyses, and Python version 3.6with Nilearn51 for

visualization.

Resting-State fMRI Connectivity

Using rs-fMRI allowed us to investigate alterations in intrin-

sic, large-scaled functional connectivity. Details about the ac-

quisition andpreprocessingwere described elsewhere.41,52,53

(Please note that theABCD consortium raised concerns about

potential problemswith the rs-fMRI data thatwas included in

curated annual release 1.0.54 During the revision of this ar-

ticle, we obtained the updated data from the consortium and

revised our article accordingly.) Briefly, children viewed a

crosshair for 20 minutes while the rs-fMRI data were col-

lected. To quantify connectivity strength during rs-fMRI, we

applied a seed-based, correlational approach on parcellated

regions.48,55,56 Using a functional atlas,48 we grouped the

cortical-surface regions into 12 predefined large-scaled

networks48: auditory, cingulo-opercular, cingulo-parietal,

default-mode,dorsal-attention, fronto-parietal, retrosplenial-

temporal, salience, sensorimotor-hand, sensorimotor-

mouth, ventral-attention, andvisual networks. After discard-

ing regions that were not fit with these large-scale network

definitions,48wecomputed rs-fMRI connectivity-strength in-

dices using Fisher r to z transformation of the mean correla-

tions between pairs of regions within each large-scale net-

work (12), between large-scale networks (66), and between

large-scale networks and subcortical regions (228). This re-

sulted in 306 connectivity indices. To harmonize scanner-

related variance among 27 scanners used, we applied the

Empirical-Bayes “ComBat”method57-60using the command:

ComBatHarmonization::combat(dat = dat, batch = batch), in

whichdat is amatrix of all rs-fMRI indices byparticipants and

batch is a vector of scanner identifications.60

Task-Evoked fMRI Activation

Using task-evoked fMRI allowed us to investigate alterations

in extrinsic, context-specific neural processes: reward antici-

pation in theMID tasks22 andworkingmemory in the N-back

tasks.8Details about the acquisition and preprocessing of the

task fMRI data have been previously published.42,53 Task-

evokedactivationwasmodeledusingAFNI’s 3dDeconvolve.50

Recent research shows that using within-individual con-

trasts can mitigate scanner-related variance in the ABCD

task-evoked fMRI data.57 Accordingly, we did not apply the

ComBat method on the task-evoked fMRI data and instead

computed contrasts between conditions of interest.

TheMID task startedwith a cue, indicating possible earn-

ings: large reward ($5), small reward ($0.20),neutral ($0), small

punishment ($0.20), and large punishment ($5). After a vari-

able period following the cue, the childrenwere shownabrief

target. To either earn reward or avoid punishment, children

needed to respond before the target disappeared. Following

the response, children saw the outcome feedback of the trial.

To focus on reward anticipation,we investigated the contrast

thatmaximizes this process—the large reward vs neutral cue.

For the N-back task, depending on the condition, chil-

dren needed to respond whether the stimulus was the same

as (1) the one shown 2 trials earlier (2 back) or (2) the target

stimulus shown at the beginning (0 back). Stimuli included

houses and emotional and nonemotional faces. To focus on

workingmemory,we investigated the contrast between the 2

back vs 0 back conditions regardless of stimulus type.

AssociationsWith Anhedonia andOther Clinical Phenotypes

Toinvestigatethemodulatingeffectsofanhedonia,weconducted

2-tailed independent-samples t testsoneachrs-fMRI indexand

task-evokedfMRIregionbetweenchildrenwithandwithoutan-

hedonia regardless ofwhether the childrenhadanyother clini-

cal phenotypes.Toavoidoutliers,weexcludeddatapoints that

deviatedover1.5 interquartile rangesfromthenearerquartile for

each indexorregion.WeusedBenjamini-Hochbergfalsediscov-

ery rate (FDR)61 to adjust formultiple comparisons across indi-

cesorregions.Besidesfrequentist t tests,weappliedBayesianhy-

pothesis testing using Jeffreys-Zellner-Siow–prior Bayesian

t tests62withaCauchyprior (rscale = 0.707)oneach indexorre-

gion.TheseBayesian ttestsprovidedBayesFactor10 (BF10),which

expresses the likelihoodof theobserveddataunder thealterna-

tive(oftherebeingadifference),relativetothenull (oftherebeing

nodifference),hypothesis.Thus,BF10allowsus toquantifyevi-

dence for thedifferenceduetohavinganhedonia relative toevi-

dence for the lack of the difference, which is informative espe-

cially because the sample size is large.3 Based on Jeffreys,63,64

natural-log transformed (ln) BF10 greater than 1.1 and less than

−1.2(ie,nontransformedBF10 > 3and< 0.3)areinterpretedassub-

stantialevidenceforalternativeandnullhypotheses,respectively.

Todemarcate anhedonia vs other phenotypes,we first re-

peated the same analyses done on anhedonia on low mood,

anxiety, and ADHD. This is to investigate whether lowmood,

anxiety, andADHDmodulatedsimilar rs-fMRI indicesandtask-

evoked regions to anhedonia. If the modulation were differ-

ent, itwould rule out thepossibility that the associationswith

anhedonia were due to comorbidity with these clinical phe-

notypes. Second, if anhedonia significantly modulated any

rs-fMRI indices or task-evoked regions, we would conduct

follow-up,pairwiseanalyses todirectly comparebetweenchil-

drenwith anhedonia vs with another phenotype on these in-

dices or regions. That is, in these follow-up analyses, we only

included the indicesor regions thatdiffered (q[FDR] < .05) be-

tween childrenwith vswithout anhedonia and further inves-

tigated if these indices or regionswere differed between chil-

dren with anhedonia vs with another phenotype. We also

excluded children who had both anhedonia and the com-

pared phenotype from these follow-up analyses.

Results

Resting-state fMRI data from 2878 children (mean [SD] age,

10.03 [0.62] years; 1400girls [48.6%]) passed quality control.

Some children had anhedonia (261 [9.1%]), low mood (277
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[6.9%]), anxiety (109 [3.8%]), andADHD(459 [15.9%]). For the

MID task,data from2874children (mean [SD] age, 10.03 [0.62]

years; 1414 girls [49.2%]) passed quality control. Some chil-

drenhadanhedonia (248[8.6%]), lowmood(268[9.3%]), anxi-

ety (90 [3.1%]), and ADHD (473 [16.5%]). For the N-back task,

data from 2745 children (mean [SD] age, 10.04 [0.62] years;

1402 girls [51.1%]) passed quality control. Some children had

anhedonia (239 [8.7%]), low mood (243 [8.9%]), anxiety (93

[3.4%]), and ADHD (446 [16.2%]).

Resting-State fMRI Connectivity: Modulation by Anhedonia

Wefoundsignificantdifferences(q[FDR] < .05)betweenchildren

withandwithoutanhedonia in several rs-fMRIconnectivity in-

dices (Figure1andeTable2 in theSupplement).First, compared

withchildrenwithoutanhedonia,thecingulo-opercularnetwork

of children with anhedonia exhibited weaker within-network

connectivity (ln[BF10] = 4.73), strongeranticorrelationswiththe

righthippocampus (ln[BF10] = 3.09), aswell asweakerpositive

correlationswith thenucleus accumbens (ln[BF10] = 2.85) and

brain stem (ln[BF10] = 3.17). Their brain stem also had weaker

positive correlations with the sensorimotor-hand network

(ln[BF10] = 6.88), which hadweaker positive correlationswith

the left pallidum (ln[BF10] = 2.04) and right hippocampus

(ln[BF10] = 2).Conversely,forchildrenwith,comparedwithwith-

out,anhedonia, thebrainstemhadstrongerpositivecorrelations

with the cingulo-parietal network (ln[BF10] = 2.71), which had

weaker positive correlationswith the right pallidum (ln[BF10]

= 2.21). Similarly, in childrenwith anhedonia, the saliencenet-

work showed weaker anticorrelations with the left ventral

diencephalon49 (ln[BF10] = 2.15). Thedorsal attentionnetwork

ofchildrenwithvswithoutanhedoniaalsodisplayedweakeran-

ticorrelationswiththedefaultmodenetwork(ln[BF10] = 5.51)and

lefthippocampus(ln[BF10] = 4.68),bothofwhichshowedweaker

positivecorrelationswitheachother (ln[BF10] = 2.61).Lastly, the

retrosplenial-temporal network of children with anhedonia

showedweakerwithin-networkconnectivity(ln[BF10] = 5.2)and

weakerpositivecorrelationswiththerightcerebellum(ln[BF10]

= 2.76) and right thalamus (ln[BF10] = 2.97).

Task-Evoked fMRI Activation: Modulation by Anhedonia

Wefound significant differences (q[FDR] < .05) between chil-

drenwithandwithoutanhedonia in task-basedactivationdur-

ing rewardanticipation in theMID task (Figure2,Figure 3, and

eTable6 in theSupplement). Childrenwithanhedonia showed

hypoactivation at various cortical-surface regions, many of

whichwere part of the large-scale networks thatwere signifi-

cant in the rs-fMRI analyses. For instance, children with an-

hedonia had hypoactivation in areas in the cingulo-opercular

(eg, the midcingulate cortex, right insula, right superior-

frontal gyrus), salience (eg, the anterior-cingulate cortex),

Figure 1. Group Differences in Resting-State Functional Magnetic Resonance Imaging

(rs-fMRI) Connectivity z[r]

Overall positive correlation

Overall negative correlation

> Higher in magnitude

< Lower in magnitude

Left hippocampus
Anhedonia < no 
anhedonia, low mood

Default mode
network

Dorsal 
attention 
network

Anhedonia < no
 anhedonia, anxiety

Anhedonia < 
no anhedonia

Left pallidum Right hippocampus
Left nucleus 
accumben

Left ventral
diencephalon

Right pallidum Brain stem
Right cerebellum

Right thalamus

Retrosplenial-
temporal 
network

Anhedonia < no 
anhedonia

Anhedonia < no 
anhedonia, ADHD

Anhedonia < no 
anhedonia, low
mood, ADHD

Sensorimotor 
hand network

Anhedonia < no 
anhedonia, ADHD

Anhedonia > no 
anhedonia, low 
mood, ADHD

Anhedonia < no 
anhedonia, ADHD

Anhedonia < no
anhedonia, low
mood, ADHD

SalienceCingulo-
opercular 
network

Anhedonia < no 
anhedonia

Anhedonia < no anhedonia, 
low mood, ADHD

Anhedonia < no anhedonia, 
low mood, ADHD

Anhedonia < no 
anhedonia, 
low mood

Cingulo-parietal
network

Anhedonia > no
anhedonia, low 
mood, ADHD

Anhedonia < no 
anhedonia, ADHD

The arrows depict the significant

differences (q[false discovery

rate] < .05) between children with

vs without anhedonia. Green arrows

depict averaged positive correlations

between 2 nodes across participants,

while red arrows depict averaged

negative (ie, anti) correlations

between 2 nodes. The comparison

between children and another clinical

phenotype only included the rs-fMRI

indices that differed (q[false

discovery rate] < .05) between

children with vs without anhedonia.

ADHD indicates attention-deficit/

hyperactivity disorder.
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Figure 2. Group Differences in Task-Evoked Functional Magnetic Resonance Imaging Activation During Reward Anticipation

Anhedonia vs no anhedoniaA
6.3

3.2

0

–3.2

–6.3

R

RL

L

L

Low mood vs no low moodB
6.3

3.2

0

–3.2

–6.3

R

RL

L

Anxiety vs no anxietyC
6.3

3.2

0

–3.2

–6.3

R

RL

L

ADHD vs no ADHDD
6.3

3.2

0

–3.2

–6.3

R

RL

The activation was computed from the [large reward > neutral cue] contrast in

themonetary incentive delayed task at 333 cortical-surface regions. Ln(BF10)

depicts the natural log of Bayes Factor10. The value of ln(BF10) greater than 1.1

and less than −1.2 are interpreted as substantial evidence for the alternative (of

there being a difference) and null hypotheses (of there being no difference),

respectively. ADHD indicates attention-deficit/hyperactivity disorder.
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dorsal-attention (eg, themiddle-frontal, right inferior-frontal

gyri), default-mode (eg, themedial-prefrontal cortex), senso-

rimotor-hand (eg, the right supplementary-motor cortex and

bilateral precentral andpostcentral gyri) networks.As for sub-

cortical-volumetric areas,we foundhypoactivation in thepu-

tamen, which is part of the dorsal striatum.We found no sig-

nificant differences (q[FDR] > .05) between childrenwith and

without anhedonia in task-evoked activation on the N-back

task in any region (Figure 4 andeTable 10 in the Supplement).

Phenotype Specificity in rs-fMRI Connectivity

We first examined brain function in each other phenotype.

We then contrasted findings in these phenotypes with those

in anhedonia.

We found significant differences (q[FDR] < .05) due to

ADHD in some rs-fMRI connectivity indices (eTable 5 in the

Supplement) that were different from those due to anhedo-

nia. For instance, comparedwithchildrenwithoutADHD, chil-

dren with ADHD had weaker within-network connectivity in

the fronto-parietal (ln[BF10] = 3.72) and default-mode

(ln[BF10] = 4.16) networks. Additionally, childrenwith ADHD

had stronger positive correlations between the cingular-

parietal network and amygdala (ln[BF10] = 4.97) and be-

tween the cingulo-opercular and retrosplenial-temporal net-

works (ln[BF10] = 5.36).Theyalsohadstrongeranticorrelations

betweentheauditorynetworkandbrainstem(ln[BF10] = 4.59).

Noneof rs-fMRI connectivity indicesdemonstratedsignificant

differenceaftermultiple comparisoncorrection (q[FDR] > .05)

between children with and without low mood and between

children with and without anxiety (eTables 3 and 4 in the

Supplement).

Figure 1 and eTable 17 in the Supplement show follow-up

analyses that directly compared rs-fMRI connectivity be-

tween children with anhedonia and those with another phe-

notype. Briefly, children with anhedonia differed from those

with lowmood andwithADHD inmany connectivity indices.

These involved the cingulo-opercular, salience, cingulo-

parietal, default, and sensorimotor-hand networks. Com-

pared with children with anxiety, those with anhedonia ex-

hibitedweaker anticorrelations between the dorsal-attention

network and left hippocampus.

Phenotype Specificity in Task-Evoked fMRI Activation

Aswith rs-fMRI above, we first show themodulation by each

of the other phenotypes on their own.We then contrast them

to anhedonia.

Findings inADHDmarkedlydiffered fromthose inanhedo-

nia. Unlike anhedonia,we foundnodifferences (q[FDR] > .05)

Figure 3. Group Differences Between ChildrenWith andWithout Anhedonia in Task-Evoked Functional Magnetic Resonance Imaging Activation

During Reward Anticipation
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Figure 4. Group Differences in Task-Evoked Functional Magnetic Resonance Imaging Activation DuringWorkingMemory
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between childrenwith andwithoutADHD in task-evoked acti-

vation during reward anticipation at any regions (Figure 2 and

eTable9 intheSupplement).However,wefoundsignificantdif-

ferences(q[FDR] < .05)betweenchildrenwithandwithoutADHD

intask-evokedactivationduringworkingmemory(Figure4and

eTable13 intheSupplement).Here,childrenwithADHDshowed

alterations inmany areas, eg, the left inferior-frontal, middle-

frontal andright super-marginalgyri, anterior-cingulatecortex,

bilateral inferior-parietal lobes,andbilateralhippocampiamong

others.Unlike inanhedoniaorADHD, in lowmoodandanxiety,

we found no phenotype-associated differences (q[FDR] > .05)

in task-evoked activation both during reward anticipation and

workingmemory (Figure 2, Figure 4; and eTables 7-8 and 11-12

in the Supplement).

Ofnote,anhedoniasignificantlymodulatedtask-evokedac-

tivationduring rewardanticipation (butnotworkingmemory).

As such,weconductedpairwise, follow-upanalysesduring re-

wardanticipation,directlycomparingtask-evokedactivationbe-

tweenchildrenwithanhedoniavsthosewithanotherphenotype.

These analyses yielded no significant findings (q[FDR] > .05;

eTables 14-16 in the Supplement).

Discussion

This studyhad2 aims, namely to (1) compare rs-fMRI connec-

tivityandtask-evoked fMRIactivation inchildrenwithorwith-

out anhedoniaand (2)probe the specificityof alterations inan-

hedonia against other clinical phenotypes. For the first aim,

we identified functional brain alterations in children with

anhedonia in both rs-fMRI connectivity and task-evoked ac-

tivation. For rs-fMRI,we found changes in various connectiv-

ity indices, many centered within the cingulo-opercular net-

work, which is associated with sustained arousal18,65 and is

oftencoactivatedwith thestriatumduring tasks requiringhigh

alertness.18,65Weaker connectivity between the ventral stria-

tum (nucleus accumbens) and the cingulo-opercular net-

work found here has been previously linked with anhedonia

in schizophrenia14,15 (althoughnote 1 contradicting findingby

Sharma et al66) and depression.67,68 Moreover, connectivity

alterations with the cingulo-opercular network appear wide-

spread beyond the nucleus accumbens, including the hippo-

campus and brain stem. These areas are considered part of a

putative reward circuit,69,70 and thus their altered connectiv-

ity with the cingulo-opercular network suggests an altered

reward-arousal integration in children with anhedonia.

Childrenwithanhedoniaalsodemonstratedcontext speci-

ficity,expressedas task-specificalterations.Here, childrenwith

anhedonia showed hypoactivation during reward anticipa-

tion in the dorsal striatum (putamen) and cingulo-opercular

network. These areas of hypoactivation overlapwith those of

ameta-analysisof anhedoniaduring rewardanticipation23and

those of recentwork on arousal during reward anticipation.71

Importantly, this hypoactivation pattern in anhedonia only

emergedduring rewardanticipationbutnotworkingmemory,

thus indicating context specificity. Altogether, hypoconnec-

tivity at rest and hypoactivation during reward processing

complementarily map anhedonia onto aberrations in neural

cognitive processes: lack of intrinsic reward-arousal integra-

tion and diminishment of reward-arousal activity while an-

ticipating rewards.

The second aim concerns the phenotypic specificity—

whether neural correlates of anhedonia could be demarcated

against other phenotypes. Several patterns emerged from in-

vestigating themodulation by lowmood, anxiety, andADHD.

Regarding associations unique to anhedonia, anhedonia was

associatedwithvarious changes in connectivity indices linked

to the cingulo-opercular network, many of which were sig-

nificantly different from lowmoodandADHD. Similarly, from

task-evoked activation, anhedonia was the only phenotype

among the 4 to show aberrations during reward anticipation,

whileADHDwas theonlyone toshowaberrationsduringwork-

ingmemory, in keepingwith prior theory and findings.37This

double dissociation is consistent with research linking anhe-

donia todiminished rewardanticipation11,12,23,24 andADHDto

deficits in working memory.72 However, other findings pro-

vided less compelling evidenceof specificity.Namely, in some

instances, findingsoccurring inanhedoniawerenot foundwith

anxiety, although contrasts of children with anhedonia and

anxietydidnot reveal significantdifferences.Regardless, over-

all patterns did provide evidence of specificity. In particular,

the data linked anhedonia specifically to aberrant connectiv-

itywithin the arousal-related cingulo-opercular network and

hypoactivity during reward anticipation.

Limitations

Our study has some limitations. First, participants were

drawn from the community and therefore were not nece-

ssarily representative of clinical cases. However, this

approach avoids referral biases73 and may provide advan-

tages associated with generalizability. Second, our definition

of anhedonia relies on a measure generated from criterion

standard clinical interviews (Kiddie Schedule for Affective

Disorders and Schizophrenia for DSM-5). While this is an

advantage, it also has the limitation of only generating a cat-

egorical definition of anhedonia. It is therefore reassuring

that our findings are consistent with previous studies in

anhedonia.23 Third, despite the large sample size, there

were too few cases of major depressive disorder and schizo-

phrenia at this age group to examine the modulation by

anhedonia within those disorders. Both illnesses have been

associated with striatal reward-network aberrations37,42,74

and these may be due to anhedonia. Future waves of ABCD

should capture the age-related increase in prevalence of

both disorders.

Conclusions

Anhedonia inyouth is associatedwithhypoconnectivityat rest

and hypoactivation during reward anticipation. This sug-

gests perturbed intrinsic reward-arousal integration and di-

minished extrinsic reward-arousal activity in the reward-

anticipation context. Detecting such anhedonia-specific

alterations helps differentiate the pathophysiological under-

pinnings of anhedonia from other phenotypes.
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